linux/drivers/pci/hotplug/pnv_php.c
Gavin Shan 360aebd85a drivers/pci/hotplug: Support surprise hotplug in powernv driver
This supports PCI surprise hotplug. The design is highlighted as
below:

   * The PCI slot's surprise hotplug capability is exposed through
     device node property "ibm,slot-surprise-pluggable", meaning
     PCI surprise hotplug will be disabled if skiboot doesn't support
     it yet.
   * The interrupt because of presence or link state change is raised
     on surprise hotplug event. One event is allocated and queued to
     the PCI slot for workqueue to pick it up and process in serialized
     fashion. The code flow for surprise hotplug is same to that for
     managed hotplug except: the affected PEs are put into frozen state
     to avoid unexpected EEH error reporting in surprise hot remove path.

Signed-off-by: Gavin Shan <gwshan@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2016-09-29 15:02:28 +10:00

926 lines
22 KiB
C

/*
* PCI Hotplug Driver for PowerPC PowerNV platform.
*
* Copyright Gavin Shan, IBM Corporation 2016.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*/
#include <linux/libfdt.h>
#include <linux/module.h>
#include <linux/pci.h>
#include <linux/pci_hotplug.h>
#include <asm/opal.h>
#include <asm/pnv-pci.h>
#include <asm/ppc-pci.h>
#define DRIVER_VERSION "0.1"
#define DRIVER_AUTHOR "Gavin Shan, IBM Corporation"
#define DRIVER_DESC "PowerPC PowerNV PCI Hotplug Driver"
struct pnv_php_event {
bool added;
struct pnv_php_slot *php_slot;
struct work_struct work;
};
static LIST_HEAD(pnv_php_slot_list);
static DEFINE_SPINLOCK(pnv_php_lock);
static void pnv_php_register(struct device_node *dn);
static void pnv_php_unregister_one(struct device_node *dn);
static void pnv_php_unregister(struct device_node *dn);
static void pnv_php_disable_irq(struct pnv_php_slot *php_slot)
{
struct pci_dev *pdev = php_slot->pdev;
u16 ctrl;
if (php_slot->irq > 0) {
pcie_capability_read_word(pdev, PCI_EXP_SLTCTL, &ctrl);
ctrl &= ~(PCI_EXP_SLTCTL_HPIE |
PCI_EXP_SLTCTL_PDCE |
PCI_EXP_SLTCTL_DLLSCE);
pcie_capability_write_word(pdev, PCI_EXP_SLTCTL, ctrl);
free_irq(php_slot->irq, php_slot);
php_slot->irq = 0;
}
if (php_slot->wq) {
destroy_workqueue(php_slot->wq);
php_slot->wq = NULL;
}
if (pdev->msix_enabled)
pci_disable_msix(pdev);
else if (pdev->msi_enabled)
pci_disable_msi(pdev);
}
static void pnv_php_free_slot(struct kref *kref)
{
struct pnv_php_slot *php_slot = container_of(kref,
struct pnv_php_slot, kref);
WARN_ON(!list_empty(&php_slot->children));
pnv_php_disable_irq(php_slot);
kfree(php_slot->name);
kfree(php_slot);
}
static inline void pnv_php_put_slot(struct pnv_php_slot *php_slot)
{
if (WARN_ON(!php_slot))
return;
kref_put(&php_slot->kref, pnv_php_free_slot);
}
static struct pnv_php_slot *pnv_php_match(struct device_node *dn,
struct pnv_php_slot *php_slot)
{
struct pnv_php_slot *target, *tmp;
if (php_slot->dn == dn) {
kref_get(&php_slot->kref);
return php_slot;
}
list_for_each_entry(tmp, &php_slot->children, link) {
target = pnv_php_match(dn, tmp);
if (target)
return target;
}
return NULL;
}
struct pnv_php_slot *pnv_php_find_slot(struct device_node *dn)
{
struct pnv_php_slot *php_slot, *tmp;
unsigned long flags;
spin_lock_irqsave(&pnv_php_lock, flags);
list_for_each_entry(tmp, &pnv_php_slot_list, link) {
php_slot = pnv_php_match(dn, tmp);
if (php_slot) {
spin_unlock_irqrestore(&pnv_php_lock, flags);
return php_slot;
}
}
spin_unlock_irqrestore(&pnv_php_lock, flags);
return NULL;
}
EXPORT_SYMBOL_GPL(pnv_php_find_slot);
/*
* Remove pdn for all children of the indicated device node.
* The function should remove pdn in a depth-first manner.
*/
static void pnv_php_rmv_pdns(struct device_node *dn)
{
struct device_node *child;
for_each_child_of_node(dn, child) {
pnv_php_rmv_pdns(child);
pci_remove_device_node_info(child);
}
}
/*
* Detach all child nodes of the indicated device nodes. The
* function should handle device nodes in depth-first manner.
*
* We should not invoke of_node_release() as the memory for
* individual device node is part of large memory block. The
* large block is allocated from memblock (system bootup) or
* kmalloc() when unflattening the device tree by OF changeset.
* We can not free the large block allocated from memblock. For
* later case, it should be released at once.
*/
static void pnv_php_detach_device_nodes(struct device_node *parent)
{
struct device_node *dn;
int refcount;
for_each_child_of_node(parent, dn) {
pnv_php_detach_device_nodes(dn);
of_node_put(dn);
refcount = atomic_read(&dn->kobj.kref.refcount);
if (refcount != 1)
pr_warn("Invalid refcount %d on <%s>\n",
refcount, of_node_full_name(dn));
of_detach_node(dn);
}
}
static void pnv_php_rmv_devtree(struct pnv_php_slot *php_slot)
{
pnv_php_rmv_pdns(php_slot->dn);
/*
* Decrease the refcount if the device nodes were created
* through OF changeset before detaching them.
*/
if (php_slot->fdt)
of_changeset_destroy(&php_slot->ocs);
pnv_php_detach_device_nodes(php_slot->dn);
if (php_slot->fdt) {
kfree(php_slot->dt);
kfree(php_slot->fdt);
php_slot->dt = NULL;
php_slot->dn->child = NULL;
php_slot->fdt = NULL;
}
}
/*
* As the nodes in OF changeset are applied in reverse order, we
* need revert the nodes in advance so that we have correct node
* order after the changeset is applied.
*/
static void pnv_php_reverse_nodes(struct device_node *parent)
{
struct device_node *child, *next;
/* In-depth first */
for_each_child_of_node(parent, child)
pnv_php_reverse_nodes(child);
/* Reverse the nodes in the child list */
child = parent->child;
parent->child = NULL;
while (child) {
next = child->sibling;
child->sibling = parent->child;
parent->child = child;
child = next;
}
}
static int pnv_php_populate_changeset(struct of_changeset *ocs,
struct device_node *dn)
{
struct device_node *child;
int ret = 0;
for_each_child_of_node(dn, child) {
ret = of_changeset_attach_node(ocs, child);
if (ret)
break;
ret = pnv_php_populate_changeset(ocs, child);
if (ret)
break;
}
return ret;
}
static void *pnv_php_add_one_pdn(struct device_node *dn, void *data)
{
struct pci_controller *hose = (struct pci_controller *)data;
struct pci_dn *pdn;
pdn = pci_add_device_node_info(hose, dn);
if (!pdn)
return ERR_PTR(-ENOMEM);
return NULL;
}
static void pnv_php_add_pdns(struct pnv_php_slot *slot)
{
struct pci_controller *hose = pci_bus_to_host(slot->bus);
pci_traverse_device_nodes(slot->dn, pnv_php_add_one_pdn, hose);
}
static int pnv_php_add_devtree(struct pnv_php_slot *php_slot)
{
void *fdt, *fdt1, *dt;
int ret;
/* We don't know the FDT blob size. We try to get it through
* maximal memory chunk and then copy it to another chunk that
* fits the real size.
*/
fdt1 = kzalloc(0x10000, GFP_KERNEL);
if (!fdt1) {
ret = -ENOMEM;
dev_warn(&php_slot->pdev->dev, "Cannot alloc FDT blob\n");
goto out;
}
ret = pnv_pci_get_device_tree(php_slot->dn->phandle, fdt1, 0x10000);
if (ret) {
dev_warn(&php_slot->pdev->dev, "Error %d getting FDT blob\n",
ret);
goto free_fdt1;
}
fdt = kzalloc(fdt_totalsize(fdt1), GFP_KERNEL);
if (!fdt) {
ret = -ENOMEM;
dev_warn(&php_slot->pdev->dev, "Cannot %d bytes memory\n",
fdt_totalsize(fdt1));
goto free_fdt1;
}
/* Unflatten device tree blob */
memcpy(fdt, fdt1, fdt_totalsize(fdt1));
dt = of_fdt_unflatten_tree(fdt, php_slot->dn, NULL);
if (!dt) {
ret = -EINVAL;
dev_warn(&php_slot->pdev->dev, "Cannot unflatten FDT\n");
goto free_fdt;
}
/* Initialize and apply the changeset */
of_changeset_init(&php_slot->ocs);
pnv_php_reverse_nodes(php_slot->dn);
ret = pnv_php_populate_changeset(&php_slot->ocs, php_slot->dn);
if (ret) {
pnv_php_reverse_nodes(php_slot->dn);
dev_warn(&php_slot->pdev->dev, "Error %d populating changeset\n",
ret);
goto free_dt;
}
php_slot->dn->child = NULL;
ret = of_changeset_apply(&php_slot->ocs);
if (ret) {
dev_warn(&php_slot->pdev->dev, "Error %d applying changeset\n",
ret);
goto destroy_changeset;
}
/* Add device node firmware data */
pnv_php_add_pdns(php_slot);
php_slot->fdt = fdt;
php_slot->dt = dt;
kfree(fdt1);
goto out;
destroy_changeset:
of_changeset_destroy(&php_slot->ocs);
free_dt:
kfree(dt);
php_slot->dn->child = NULL;
free_fdt:
kfree(fdt);
free_fdt1:
kfree(fdt1);
out:
return ret;
}
int pnv_php_set_slot_power_state(struct hotplug_slot *slot,
uint8_t state)
{
struct pnv_php_slot *php_slot = slot->private;
struct opal_msg msg;
int ret;
ret = pnv_pci_set_power_state(php_slot->id, state, &msg);
if (ret > 0) {
if (be64_to_cpu(msg.params[1]) != php_slot->dn->phandle ||
be64_to_cpu(msg.params[2]) != state ||
be64_to_cpu(msg.params[3]) != OPAL_SUCCESS) {
dev_warn(&php_slot->pdev->dev, "Wrong msg (%lld, %lld, %lld)\n",
be64_to_cpu(msg.params[1]),
be64_to_cpu(msg.params[2]),
be64_to_cpu(msg.params[3]));
return -ENOMSG;
}
} else if (ret < 0) {
dev_warn(&php_slot->pdev->dev, "Error %d powering %s\n",
ret, (state == OPAL_PCI_SLOT_POWER_ON) ? "on" : "off");
return ret;
}
if (state == OPAL_PCI_SLOT_POWER_OFF || state == OPAL_PCI_SLOT_OFFLINE)
pnv_php_rmv_devtree(php_slot);
else
ret = pnv_php_add_devtree(php_slot);
return ret;
}
EXPORT_SYMBOL_GPL(pnv_php_set_slot_power_state);
static int pnv_php_get_power_state(struct hotplug_slot *slot, u8 *state)
{
struct pnv_php_slot *php_slot = slot->private;
uint8_t power_state = OPAL_PCI_SLOT_POWER_ON;
int ret;
/*
* Retrieve power status from firmware. If we fail
* getting that, the power status fails back to
* be on.
*/
ret = pnv_pci_get_power_state(php_slot->id, &power_state);
if (ret) {
dev_warn(&php_slot->pdev->dev, "Error %d getting power status\n",
ret);
} else {
*state = power_state;
slot->info->power_status = power_state;
}
return 0;
}
static int pnv_php_get_adapter_state(struct hotplug_slot *slot, u8 *state)
{
struct pnv_php_slot *php_slot = slot->private;
uint8_t presence = OPAL_PCI_SLOT_EMPTY;
int ret;
/*
* Retrieve presence status from firmware. If we can't
* get that, it will fail back to be empty.
*/
ret = pnv_pci_get_presence_state(php_slot->id, &presence);
if (ret >= 0) {
*state = presence;
slot->info->adapter_status = presence;
ret = 0;
} else {
dev_warn(&php_slot->pdev->dev, "Error %d getting presence\n",
ret);
}
return ret;
}
static int pnv_php_set_attention_state(struct hotplug_slot *slot, u8 state)
{
/* FIXME: Make it real once firmware supports it */
slot->info->attention_status = state;
return 0;
}
static int pnv_php_enable(struct pnv_php_slot *php_slot, bool rescan)
{
struct hotplug_slot *slot = &php_slot->slot;
uint8_t presence = OPAL_PCI_SLOT_EMPTY;
uint8_t power_status = OPAL_PCI_SLOT_POWER_ON;
int ret;
/* Check if the slot has been configured */
if (php_slot->state != PNV_PHP_STATE_REGISTERED)
return 0;
/* Retrieve slot presence status */
ret = pnv_php_get_adapter_state(slot, &presence);
if (ret)
return ret;
/* Proceed if there have nothing behind the slot */
if (presence == OPAL_PCI_SLOT_EMPTY)
goto scan;
/*
* If the power supply to the slot is off, we can't detect
* adapter presence state. That means we have to turn the
* slot on before going to probe slot's presence state.
*
* On the first time, we don't change the power status to
* boost system boot with assumption that the firmware
* supplies consistent slot power status: empty slot always
* has its power off and non-empty slot has its power on.
*/
if (!php_slot->power_state_check) {
php_slot->power_state_check = true;
ret = pnv_php_get_power_state(slot, &power_status);
if (ret)
return ret;
if (power_status != OPAL_PCI_SLOT_POWER_ON)
return 0;
}
/* Check the power status. Scan the slot if it is already on */
ret = pnv_php_get_power_state(slot, &power_status);
if (ret)
return ret;
if (power_status == OPAL_PCI_SLOT_POWER_ON)
goto scan;
/* Power is off, turn it on and then scan the slot */
ret = pnv_php_set_slot_power_state(slot, OPAL_PCI_SLOT_POWER_ON);
if (ret)
return ret;
scan:
if (presence == OPAL_PCI_SLOT_PRESENT) {
if (rescan) {
pci_lock_rescan_remove();
pci_hp_add_devices(php_slot->bus);
pci_unlock_rescan_remove();
}
/* Rescan for child hotpluggable slots */
php_slot->state = PNV_PHP_STATE_POPULATED;
if (rescan)
pnv_php_register(php_slot->dn);
} else {
php_slot->state = PNV_PHP_STATE_POPULATED;
}
return 0;
}
static int pnv_php_enable_slot(struct hotplug_slot *slot)
{
struct pnv_php_slot *php_slot = container_of(slot,
struct pnv_php_slot, slot);
return pnv_php_enable(php_slot, true);
}
static int pnv_php_disable_slot(struct hotplug_slot *slot)
{
struct pnv_php_slot *php_slot = slot->private;
int ret;
if (php_slot->state != PNV_PHP_STATE_POPULATED)
return 0;
/* Remove all devices behind the slot */
pci_lock_rescan_remove();
pci_hp_remove_devices(php_slot->bus);
pci_unlock_rescan_remove();
/* Detach the child hotpluggable slots */
pnv_php_unregister(php_slot->dn);
/* Notify firmware and remove device nodes */
ret = pnv_php_set_slot_power_state(slot, OPAL_PCI_SLOT_POWER_OFF);
php_slot->state = PNV_PHP_STATE_REGISTERED;
return ret;
}
static struct hotplug_slot_ops php_slot_ops = {
.get_power_status = pnv_php_get_power_state,
.get_adapter_status = pnv_php_get_adapter_state,
.set_attention_status = pnv_php_set_attention_state,
.enable_slot = pnv_php_enable_slot,
.disable_slot = pnv_php_disable_slot,
};
static void pnv_php_release(struct hotplug_slot *slot)
{
struct pnv_php_slot *php_slot = slot->private;
unsigned long flags;
/* Remove from global or child list */
spin_lock_irqsave(&pnv_php_lock, flags);
list_del(&php_slot->link);
spin_unlock_irqrestore(&pnv_php_lock, flags);
/* Detach from parent */
pnv_php_put_slot(php_slot);
pnv_php_put_slot(php_slot->parent);
}
static struct pnv_php_slot *pnv_php_alloc_slot(struct device_node *dn)
{
struct pnv_php_slot *php_slot;
struct pci_bus *bus;
const char *label;
uint64_t id;
label = of_get_property(dn, "ibm,slot-label", NULL);
if (!label)
return NULL;
if (pnv_pci_get_slot_id(dn, &id))
return NULL;
bus = pci_find_bus_by_node(dn);
if (!bus)
return NULL;
php_slot = kzalloc(sizeof(*php_slot), GFP_KERNEL);
if (!php_slot)
return NULL;
php_slot->name = kstrdup(label, GFP_KERNEL);
if (!php_slot->name) {
kfree(php_slot);
return NULL;
}
if (dn->child && PCI_DN(dn->child))
php_slot->slot_no = PCI_SLOT(PCI_DN(dn->child)->devfn);
else
php_slot->slot_no = -1; /* Placeholder slot */
kref_init(&php_slot->kref);
php_slot->state = PNV_PHP_STATE_INITIALIZED;
php_slot->dn = dn;
php_slot->pdev = bus->self;
php_slot->bus = bus;
php_slot->id = id;
php_slot->power_state_check = false;
php_slot->slot.ops = &php_slot_ops;
php_slot->slot.info = &php_slot->slot_info;
php_slot->slot.release = pnv_php_release;
php_slot->slot.private = php_slot;
INIT_LIST_HEAD(&php_slot->children);
INIT_LIST_HEAD(&php_slot->link);
return php_slot;
}
static int pnv_php_register_slot(struct pnv_php_slot *php_slot)
{
struct pnv_php_slot *parent;
struct device_node *dn = php_slot->dn;
unsigned long flags;
int ret;
/* Check if the slot is registered or not */
parent = pnv_php_find_slot(php_slot->dn);
if (parent) {
pnv_php_put_slot(parent);
return -EEXIST;
}
/* Register PCI slot */
ret = pci_hp_register(&php_slot->slot, php_slot->bus,
php_slot->slot_no, php_slot->name);
if (ret) {
dev_warn(&php_slot->pdev->dev, "Error %d registering slot\n",
ret);
return ret;
}
/* Attach to the parent's child list or global list */
while ((dn = of_get_parent(dn))) {
if (!PCI_DN(dn)) {
of_node_put(dn);
break;
}
parent = pnv_php_find_slot(dn);
if (parent) {
of_node_put(dn);
break;
}
of_node_put(dn);
}
spin_lock_irqsave(&pnv_php_lock, flags);
php_slot->parent = parent;
if (parent)
list_add_tail(&php_slot->link, &parent->children);
else
list_add_tail(&php_slot->link, &pnv_php_slot_list);
spin_unlock_irqrestore(&pnv_php_lock, flags);
php_slot->state = PNV_PHP_STATE_REGISTERED;
return 0;
}
static int pnv_php_enable_msix(struct pnv_php_slot *php_slot)
{
struct pci_dev *pdev = php_slot->pdev;
struct msix_entry entry;
int nr_entries, ret;
u16 pcie_flag;
/* Get total number of MSIx entries */
nr_entries = pci_msix_vec_count(pdev);
if (nr_entries < 0)
return nr_entries;
/* Check hotplug MSIx entry is in range */
pcie_capability_read_word(pdev, PCI_EXP_FLAGS, &pcie_flag);
entry.entry = (pcie_flag & PCI_EXP_FLAGS_IRQ) >> 9;
if (entry.entry >= nr_entries)
return -ERANGE;
/* Enable MSIx */
ret = pci_enable_msix_exact(pdev, &entry, 1);
if (ret) {
dev_warn(&pdev->dev, "Error %d enabling MSIx\n", ret);
return ret;
}
return entry.vector;
}
static void pnv_php_event_handler(struct work_struct *work)
{
struct pnv_php_event *event =
container_of(work, struct pnv_php_event, work);
struct pnv_php_slot *php_slot = event->php_slot;
if (event->added)
pnv_php_enable_slot(&php_slot->slot);
else
pnv_php_disable_slot(&php_slot->slot);
kfree(event);
}
static irqreturn_t pnv_php_interrupt(int irq, void *data)
{
struct pnv_php_slot *php_slot = data;
struct pci_dev *pchild, *pdev = php_slot->pdev;
struct eeh_dev *edev;
struct eeh_pe *pe;
struct pnv_php_event *event;
u16 sts, lsts;
u8 presence;
bool added;
unsigned long flags;
int ret;
pcie_capability_read_word(pdev, PCI_EXP_SLTSTA, &sts);
sts &= (PCI_EXP_SLTSTA_PDC | PCI_EXP_SLTSTA_DLLSC);
pcie_capability_write_word(pdev, PCI_EXP_SLTSTA, sts);
if (sts & PCI_EXP_SLTSTA_DLLSC) {
pcie_capability_read_word(pdev, PCI_EXP_LNKSTA, &lsts);
added = !!(lsts & PCI_EXP_LNKSTA_DLLLA);
} else if (sts & PCI_EXP_SLTSTA_PDC) {
ret = pnv_pci_get_presence_state(php_slot->id, &presence);
if (!ret)
return IRQ_HANDLED;
added = !!(presence == OPAL_PCI_SLOT_PRESENT);
} else {
return IRQ_NONE;
}
/* Freeze the removed PE to avoid unexpected error reporting */
if (!added) {
pchild = list_first_entry_or_null(&php_slot->bus->devices,
struct pci_dev, bus_list);
edev = pchild ? pci_dev_to_eeh_dev(pchild) : NULL;
pe = edev ? edev->pe : NULL;
if (pe) {
eeh_serialize_lock(&flags);
eeh_pe_state_mark(pe, EEH_PE_ISOLATED);
eeh_serialize_unlock(flags);
eeh_pe_set_option(pe, EEH_OPT_FREEZE_PE);
}
}
/*
* The PE is left in frozen state if the event is missed. It's
* fine as the PCI devices (PE) aren't functional any more.
*/
event = kzalloc(sizeof(*event), GFP_ATOMIC);
if (!event) {
dev_warn(&pdev->dev, "PCI slot [%s] missed hotplug event 0x%04x\n",
php_slot->name, sts);
return IRQ_HANDLED;
}
dev_info(&pdev->dev, "PCI slot [%s] %s (IRQ: %d)\n",
php_slot->name, added ? "added" : "removed", irq);
INIT_WORK(&event->work, pnv_php_event_handler);
event->added = added;
event->php_slot = php_slot;
queue_work(php_slot->wq, &event->work);
return IRQ_HANDLED;
}
static void pnv_php_init_irq(struct pnv_php_slot *php_slot, int irq)
{
struct pci_dev *pdev = php_slot->pdev;
u16 sts, ctrl;
int ret;
/* Allocate workqueue */
php_slot->wq = alloc_workqueue("pciehp-%s", 0, 0, php_slot->name);
if (!php_slot->wq) {
dev_warn(&pdev->dev, "Cannot alloc workqueue\n");
pnv_php_disable_irq(php_slot);
return;
}
/* Clear pending interrupts */
pcie_capability_read_word(pdev, PCI_EXP_SLTSTA, &sts);
sts |= (PCI_EXP_SLTSTA_PDC | PCI_EXP_SLTSTA_DLLSC);
pcie_capability_write_word(pdev, PCI_EXP_SLTSTA, sts);
/* Request the interrupt */
ret = request_irq(irq, pnv_php_interrupt, IRQF_SHARED,
php_slot->name, php_slot);
if (ret) {
pnv_php_disable_irq(php_slot);
dev_warn(&pdev->dev, "Error %d enabling IRQ %d\n", ret, irq);
return;
}
/* Enable the interrupts */
pcie_capability_read_word(pdev, PCI_EXP_SLTCTL, &ctrl);
ctrl |= (PCI_EXP_SLTCTL_HPIE |
PCI_EXP_SLTCTL_PDCE |
PCI_EXP_SLTCTL_DLLSCE);
pcie_capability_write_word(pdev, PCI_EXP_SLTCTL, ctrl);
/* The interrupt is initialized successfully when @irq is valid */
php_slot->irq = irq;
}
static void pnv_php_enable_irq(struct pnv_php_slot *php_slot)
{
struct pci_dev *pdev = php_slot->pdev;
int irq, ret;
ret = pci_enable_device(pdev);
if (ret) {
dev_warn(&pdev->dev, "Error %d enabling device\n", ret);
return;
}
pci_set_master(pdev);
/* Enable MSIx interrupt */
irq = pnv_php_enable_msix(php_slot);
if (irq > 0) {
pnv_php_init_irq(php_slot, irq);
return;
}
/*
* Use MSI if MSIx doesn't work. Fail back to legacy INTx
* if MSI doesn't work either
*/
ret = pci_enable_msi(pdev);
if (!ret || pdev->irq) {
irq = pdev->irq;
pnv_php_init_irq(php_slot, irq);
}
}
static int pnv_php_register_one(struct device_node *dn)
{
struct pnv_php_slot *php_slot;
const __be32 *prop32;
int ret;
/* Check if it's hotpluggable slot */
prop32 = of_get_property(dn, "ibm,slot-pluggable", NULL);
if (!prop32 || !of_read_number(prop32, 1))
return -ENXIO;
prop32 = of_get_property(dn, "ibm,reset-by-firmware", NULL);
if (!prop32 || !of_read_number(prop32, 1))
return -ENXIO;
php_slot = pnv_php_alloc_slot(dn);
if (!php_slot)
return -ENODEV;
ret = pnv_php_register_slot(php_slot);
if (ret)
goto free_slot;
ret = pnv_php_enable(php_slot, false);
if (ret)
goto unregister_slot;
/* Enable interrupt if the slot supports surprise hotplug */
prop32 = of_get_property(dn, "ibm,slot-surprise-pluggable", NULL);
if (prop32 && of_read_number(prop32, 1))
pnv_php_enable_irq(php_slot);
return 0;
unregister_slot:
pnv_php_unregister_one(php_slot->dn);
free_slot:
pnv_php_put_slot(php_slot);
return ret;
}
static void pnv_php_register(struct device_node *dn)
{
struct device_node *child;
/*
* The parent slots should be registered before their
* child slots.
*/
for_each_child_of_node(dn, child) {
pnv_php_register_one(child);
pnv_php_register(child);
}
}
static void pnv_php_unregister_one(struct device_node *dn)
{
struct pnv_php_slot *php_slot;
php_slot = pnv_php_find_slot(dn);
if (!php_slot)
return;
php_slot->state = PNV_PHP_STATE_OFFLINE;
pnv_php_put_slot(php_slot);
pci_hp_deregister(&php_slot->slot);
}
static void pnv_php_unregister(struct device_node *dn)
{
struct device_node *child;
/* The child slots should go before their parent slots */
for_each_child_of_node(dn, child) {
pnv_php_unregister(child);
pnv_php_unregister_one(child);
}
}
static int __init pnv_php_init(void)
{
struct device_node *dn;
pr_info(DRIVER_DESC " version: " DRIVER_VERSION "\n");
for_each_compatible_node(dn, NULL, "ibm,ioda2-phb")
pnv_php_register(dn);
return 0;
}
static void __exit pnv_php_exit(void)
{
struct device_node *dn;
for_each_compatible_node(dn, NULL, "ibm,ioda2-phb")
pnv_php_unregister(dn);
}
module_init(pnv_php_init);
module_exit(pnv_php_exit);
MODULE_VERSION(DRIVER_VERSION);
MODULE_LICENSE("GPL v2");
MODULE_AUTHOR(DRIVER_AUTHOR);
MODULE_DESCRIPTION(DRIVER_DESC);