36126f8f2e
This changes the interfaces in <asm/word-at-a-time.h> to be a bit more complicated, but a lot more generic. In particular, it allows us to really do the operations efficiently on both little-endian and big-endian machines, pretty much regardless of machine details. For example, if you can rely on a fast population count instruction on your architecture, this will allow you to make your optimized <asm/word-at-a-time.h> file with that. NOTE! The "generic" version in include/asm-generic/word-at-a-time.h is not truly generic, it actually only works on big-endian. Why? Because on little-endian the generic algorithms are wasteful, since you can inevitably do better. The x86 implementation is an example of that. (The only truly non-generic part of the asm-generic implementation is the "find_zero()" function, and you could make a little-endian version of it. And if the Kbuild infrastructure allowed us to pick a particular header file, that would be lovely) The <asm/word-at-a-time.h> functions are as follows: - WORD_AT_A_TIME_CONSTANTS: specific constants that the algorithm uses. - has_zero(): take a word, and determine if it has a zero byte in it. It gets the word, the pointer to the constant pool, and a pointer to an intermediate "data" field it can set. This is the "quick-and-dirty" zero tester: it's what is run inside the hot loops. - "prep_zero_mask()": take the word, the data that has_zero() produced, and the constant pool, and generate an *exact* mask of which byte had the first zero. This is run directly *outside* the loop, and allows the "has_zero()" function to answer the "is there a zero byte" question without necessarily getting exactly *which* byte is the first one to contain a zero. If you do multiple byte lookups concurrently (eg "hash_name()", which looks for both NUL and '/' bytes), after you've done the prep_zero_mask() phase, the result of those can be or'ed together to get the "either or" case. - The result from "prep_zero_mask()" can then be fed into "find_zero()" (to find the byte offset of the first byte that was zero) or into "zero_bytemask()" (to find the bytemask of the bytes preceding the zero byte). The existence of zero_bytemask() is optional, and is not necessary for the normal string routines. But dentry name hashing needs it, so if you enable DENTRY_WORD_AT_A_TIME you need to expose it. This changes the generic strncpy_from_user() function and the dentry hashing functions to use these modified word-at-a-time interfaces. This gets us back to the optimized state of the x86 strncpy that we lost in the previous commit when moving over to the generic version. Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
---|---|---|
.. | ||
bitops | ||
asm-offsets.h | ||
bitops.h | ||
byteorder.h | ||
cache.h | ||
cpuinfo.h | ||
delay.h | ||
dma-mapping.h | ||
elf.h | ||
fixmap.h | ||
gpio.h | ||
io.h | ||
irq.h | ||
irqflags.h | ||
Kbuild | ||
kvm_para.h | ||
linkage.h | ||
mmu_context.h | ||
mmu.h | ||
mutex.h | ||
page.h | ||
param.h | ||
pgalloc.h | ||
pgtable.h | ||
processor.h | ||
prom.h | ||
ptrace.h | ||
serial.h | ||
sigcontext.h | ||
spinlock.h | ||
spr_defs.h | ||
spr.h | ||
syscall.h | ||
syscalls.h | ||
thread_info.h | ||
timex.h | ||
tlb.h | ||
tlbflush.h | ||
uaccess.h | ||
unaligned.h | ||
unistd.h |