linux/drivers/usb/core/devio.c
Jeff Layton c7603adcc6 usb: convert to ctime accessor functions
In later patches, we're going to change how the inode's ctime field is
used. Switch to using accessor functions instead of raw accesses of
inode->i_ctime.

Acked-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Reviewed-by: Jan Kara <jack@suse.cz>
Signed-off-by: Jeff Layton <jlayton@kernel.org>
Message-Id: <20230705190309.579783-18-jlayton@kernel.org>
Signed-off-by: Christian Brauner <brauner@kernel.org>
2023-07-13 10:28:03 +02:00

2921 lines
71 KiB
C

// SPDX-License-Identifier: GPL-2.0+
/*****************************************************************************/
/*
* devio.c -- User space communication with USB devices.
*
* Copyright (C) 1999-2000 Thomas Sailer (sailer@ife.ee.ethz.ch)
*
* This file implements the usbfs/x/y files, where
* x is the bus number and y the device number.
*
* It allows user space programs/"drivers" to communicate directly
* with USB devices without intervening kernel driver.
*
* Revision history
* 22.12.1999 0.1 Initial release (split from proc_usb.c)
* 04.01.2000 0.2 Turned into its own filesystem
* 30.09.2005 0.3 Fix user-triggerable oops in async URB delivery
* (CAN-2005-3055)
*/
/*****************************************************************************/
#include <linux/fs.h>
#include <linux/mm.h>
#include <linux/sched/signal.h>
#include <linux/slab.h>
#include <linux/signal.h>
#include <linux/poll.h>
#include <linux/module.h>
#include <linux/string.h>
#include <linux/usb.h>
#include <linux/usbdevice_fs.h>
#include <linux/usb/hcd.h> /* for usbcore internals */
#include <linux/usb/quirks.h>
#include <linux/cdev.h>
#include <linux/notifier.h>
#include <linux/security.h>
#include <linux/user_namespace.h>
#include <linux/scatterlist.h>
#include <linux/uaccess.h>
#include <linux/dma-mapping.h>
#include <asm/byteorder.h>
#include <linux/moduleparam.h>
#include "usb.h"
#ifdef CONFIG_PM
#define MAYBE_CAP_SUSPEND USBDEVFS_CAP_SUSPEND
#else
#define MAYBE_CAP_SUSPEND 0
#endif
#define USB_MAXBUS 64
#define USB_DEVICE_MAX (USB_MAXBUS * 128)
#define USB_SG_SIZE 16384 /* split-size for large txs */
/* Mutual exclusion for ps->list in resume vs. release and remove */
static DEFINE_MUTEX(usbfs_mutex);
struct usb_dev_state {
struct list_head list; /* state list */
struct usb_device *dev;
struct file *file;
spinlock_t lock; /* protects the async urb lists */
struct list_head async_pending;
struct list_head async_completed;
struct list_head memory_list;
wait_queue_head_t wait; /* wake up if a request completed */
wait_queue_head_t wait_for_resume; /* wake up upon runtime resume */
unsigned int discsignr;
struct pid *disc_pid;
const struct cred *cred;
sigval_t disccontext;
unsigned long ifclaimed;
u32 disabled_bulk_eps;
unsigned long interface_allowed_mask;
int not_yet_resumed;
bool suspend_allowed;
bool privileges_dropped;
};
struct usb_memory {
struct list_head memlist;
int vma_use_count;
int urb_use_count;
u32 size;
void *mem;
dma_addr_t dma_handle;
unsigned long vm_start;
struct usb_dev_state *ps;
};
struct async {
struct list_head asynclist;
struct usb_dev_state *ps;
struct pid *pid;
const struct cred *cred;
unsigned int signr;
unsigned int ifnum;
void __user *userbuffer;
void __user *userurb;
sigval_t userurb_sigval;
struct urb *urb;
struct usb_memory *usbm;
unsigned int mem_usage;
int status;
u8 bulk_addr;
u8 bulk_status;
};
static bool usbfs_snoop;
module_param(usbfs_snoop, bool, S_IRUGO | S_IWUSR);
MODULE_PARM_DESC(usbfs_snoop, "true to log all usbfs traffic");
static unsigned usbfs_snoop_max = 65536;
module_param(usbfs_snoop_max, uint, S_IRUGO | S_IWUSR);
MODULE_PARM_DESC(usbfs_snoop_max,
"maximum number of bytes to print while snooping");
#define snoop(dev, format, arg...) \
do { \
if (usbfs_snoop) \
dev_info(dev, format, ## arg); \
} while (0)
enum snoop_when {
SUBMIT, COMPLETE
};
#define USB_DEVICE_DEV MKDEV(USB_DEVICE_MAJOR, 0)
/* Limit on the total amount of memory we can allocate for transfers */
static u32 usbfs_memory_mb = 16;
module_param(usbfs_memory_mb, uint, 0644);
MODULE_PARM_DESC(usbfs_memory_mb,
"maximum MB allowed for usbfs buffers (0 = no limit)");
/* Hard limit, necessary to avoid arithmetic overflow */
#define USBFS_XFER_MAX (UINT_MAX / 2 - 1000000)
static DEFINE_SPINLOCK(usbfs_memory_usage_lock);
static u64 usbfs_memory_usage; /* Total memory currently allocated */
/* Check whether it's okay to allocate more memory for a transfer */
static int usbfs_increase_memory_usage(u64 amount)
{
u64 lim, total_mem;
unsigned long flags;
int ret;
lim = READ_ONCE(usbfs_memory_mb);
lim <<= 20;
ret = 0;
spin_lock_irqsave(&usbfs_memory_usage_lock, flags);
total_mem = usbfs_memory_usage + amount;
if (lim > 0 && total_mem > lim)
ret = -ENOMEM;
else
usbfs_memory_usage = total_mem;
spin_unlock_irqrestore(&usbfs_memory_usage_lock, flags);
return ret;
}
/* Memory for a transfer is being deallocated */
static void usbfs_decrease_memory_usage(u64 amount)
{
unsigned long flags;
spin_lock_irqsave(&usbfs_memory_usage_lock, flags);
if (amount > usbfs_memory_usage)
usbfs_memory_usage = 0;
else
usbfs_memory_usage -= amount;
spin_unlock_irqrestore(&usbfs_memory_usage_lock, flags);
}
static int connected(struct usb_dev_state *ps)
{
return (!list_empty(&ps->list) &&
ps->dev->state != USB_STATE_NOTATTACHED);
}
static void dec_usb_memory_use_count(struct usb_memory *usbm, int *count)
{
struct usb_dev_state *ps = usbm->ps;
struct usb_hcd *hcd = bus_to_hcd(ps->dev->bus);
unsigned long flags;
spin_lock_irqsave(&ps->lock, flags);
--*count;
if (usbm->urb_use_count == 0 && usbm->vma_use_count == 0) {
list_del(&usbm->memlist);
spin_unlock_irqrestore(&ps->lock, flags);
hcd_buffer_free_pages(hcd, usbm->size,
usbm->mem, usbm->dma_handle);
usbfs_decrease_memory_usage(
usbm->size + sizeof(struct usb_memory));
kfree(usbm);
} else {
spin_unlock_irqrestore(&ps->lock, flags);
}
}
static void usbdev_vm_open(struct vm_area_struct *vma)
{
struct usb_memory *usbm = vma->vm_private_data;
unsigned long flags;
spin_lock_irqsave(&usbm->ps->lock, flags);
++usbm->vma_use_count;
spin_unlock_irqrestore(&usbm->ps->lock, flags);
}
static void usbdev_vm_close(struct vm_area_struct *vma)
{
struct usb_memory *usbm = vma->vm_private_data;
dec_usb_memory_use_count(usbm, &usbm->vma_use_count);
}
static const struct vm_operations_struct usbdev_vm_ops = {
.open = usbdev_vm_open,
.close = usbdev_vm_close
};
static int usbdev_mmap(struct file *file, struct vm_area_struct *vma)
{
struct usb_memory *usbm = NULL;
struct usb_dev_state *ps = file->private_data;
struct usb_hcd *hcd = bus_to_hcd(ps->dev->bus);
size_t size = vma->vm_end - vma->vm_start;
void *mem;
unsigned long flags;
dma_addr_t dma_handle = DMA_MAPPING_ERROR;
int ret;
ret = usbfs_increase_memory_usage(size + sizeof(struct usb_memory));
if (ret)
goto error;
usbm = kzalloc(sizeof(struct usb_memory), GFP_KERNEL);
if (!usbm) {
ret = -ENOMEM;
goto error_decrease_mem;
}
mem = hcd_buffer_alloc_pages(hcd,
size, GFP_USER | __GFP_NOWARN, &dma_handle);
if (!mem) {
ret = -ENOMEM;
goto error_free_usbm;
}
memset(mem, 0, size);
usbm->mem = mem;
usbm->dma_handle = dma_handle;
usbm->size = size;
usbm->ps = ps;
usbm->vm_start = vma->vm_start;
usbm->vma_use_count = 1;
INIT_LIST_HEAD(&usbm->memlist);
/*
* In DMA-unavailable cases, hcd_buffer_alloc_pages allocates
* normal pages and assigns DMA_MAPPING_ERROR to dma_handle. Check
* whether we are in such cases, and then use remap_pfn_range (or
* dma_mmap_coherent) to map normal (or DMA) pages into the user
* space, respectively.
*/
if (dma_handle == DMA_MAPPING_ERROR) {
if (remap_pfn_range(vma, vma->vm_start,
virt_to_phys(usbm->mem) >> PAGE_SHIFT,
size, vma->vm_page_prot) < 0) {
dec_usb_memory_use_count(usbm, &usbm->vma_use_count);
return -EAGAIN;
}
} else {
if (dma_mmap_coherent(hcd->self.sysdev, vma, mem, dma_handle,
size)) {
dec_usb_memory_use_count(usbm, &usbm->vma_use_count);
return -EAGAIN;
}
}
vm_flags_set(vma, VM_IO | VM_DONTEXPAND | VM_DONTDUMP);
vma->vm_ops = &usbdev_vm_ops;
vma->vm_private_data = usbm;
spin_lock_irqsave(&ps->lock, flags);
list_add_tail(&usbm->memlist, &ps->memory_list);
spin_unlock_irqrestore(&ps->lock, flags);
return 0;
error_free_usbm:
kfree(usbm);
error_decrease_mem:
usbfs_decrease_memory_usage(size + sizeof(struct usb_memory));
error:
return ret;
}
static ssize_t usbdev_read(struct file *file, char __user *buf, size_t nbytes,
loff_t *ppos)
{
struct usb_dev_state *ps = file->private_data;
struct usb_device *dev = ps->dev;
ssize_t ret = 0;
unsigned len;
loff_t pos;
int i;
pos = *ppos;
usb_lock_device(dev);
if (!connected(ps)) {
ret = -ENODEV;
goto err;
} else if (pos < 0) {
ret = -EINVAL;
goto err;
}
if (pos < sizeof(struct usb_device_descriptor)) {
/* 18 bytes - fits on the stack */
struct usb_device_descriptor temp_desc;
memcpy(&temp_desc, &dev->descriptor, sizeof(dev->descriptor));
le16_to_cpus(&temp_desc.bcdUSB);
le16_to_cpus(&temp_desc.idVendor);
le16_to_cpus(&temp_desc.idProduct);
le16_to_cpus(&temp_desc.bcdDevice);
len = sizeof(struct usb_device_descriptor) - pos;
if (len > nbytes)
len = nbytes;
if (copy_to_user(buf, ((char *)&temp_desc) + pos, len)) {
ret = -EFAULT;
goto err;
}
*ppos += len;
buf += len;
nbytes -= len;
ret += len;
}
pos = sizeof(struct usb_device_descriptor);
for (i = 0; nbytes && i < dev->descriptor.bNumConfigurations; i++) {
struct usb_config_descriptor *config =
(struct usb_config_descriptor *)dev->rawdescriptors[i];
unsigned int length = le16_to_cpu(config->wTotalLength);
if (*ppos < pos + length) {
/* The descriptor may claim to be longer than it
* really is. Here is the actual allocated length. */
unsigned alloclen =
le16_to_cpu(dev->config[i].desc.wTotalLength);
len = length - (*ppos - pos);
if (len > nbytes)
len = nbytes;
/* Simply don't write (skip over) unallocated parts */
if (alloclen > (*ppos - pos)) {
alloclen -= (*ppos - pos);
if (copy_to_user(buf,
dev->rawdescriptors[i] + (*ppos - pos),
min(len, alloclen))) {
ret = -EFAULT;
goto err;
}
}
*ppos += len;
buf += len;
nbytes -= len;
ret += len;
}
pos += length;
}
err:
usb_unlock_device(dev);
return ret;
}
/*
* async list handling
*/
static struct async *alloc_async(unsigned int numisoframes)
{
struct async *as;
as = kzalloc(sizeof(struct async), GFP_KERNEL);
if (!as)
return NULL;
as->urb = usb_alloc_urb(numisoframes, GFP_KERNEL);
if (!as->urb) {
kfree(as);
return NULL;
}
return as;
}
static void free_async(struct async *as)
{
int i;
put_pid(as->pid);
if (as->cred)
put_cred(as->cred);
for (i = 0; i < as->urb->num_sgs; i++) {
if (sg_page(&as->urb->sg[i]))
kfree(sg_virt(&as->urb->sg[i]));
}
kfree(as->urb->sg);
if (as->usbm == NULL)
kfree(as->urb->transfer_buffer);
else
dec_usb_memory_use_count(as->usbm, &as->usbm->urb_use_count);
kfree(as->urb->setup_packet);
usb_free_urb(as->urb);
usbfs_decrease_memory_usage(as->mem_usage);
kfree(as);
}
static void async_newpending(struct async *as)
{
struct usb_dev_state *ps = as->ps;
unsigned long flags;
spin_lock_irqsave(&ps->lock, flags);
list_add_tail(&as->asynclist, &ps->async_pending);
spin_unlock_irqrestore(&ps->lock, flags);
}
static void async_removepending(struct async *as)
{
struct usb_dev_state *ps = as->ps;
unsigned long flags;
spin_lock_irqsave(&ps->lock, flags);
list_del_init(&as->asynclist);
spin_unlock_irqrestore(&ps->lock, flags);
}
static struct async *async_getcompleted(struct usb_dev_state *ps)
{
unsigned long flags;
struct async *as = NULL;
spin_lock_irqsave(&ps->lock, flags);
if (!list_empty(&ps->async_completed)) {
as = list_entry(ps->async_completed.next, struct async,
asynclist);
list_del_init(&as->asynclist);
}
spin_unlock_irqrestore(&ps->lock, flags);
return as;
}
static struct async *async_getpending(struct usb_dev_state *ps,
void __user *userurb)
{
struct async *as;
list_for_each_entry(as, &ps->async_pending, asynclist)
if (as->userurb == userurb) {
list_del_init(&as->asynclist);
return as;
}
return NULL;
}
static void snoop_urb(struct usb_device *udev,
void __user *userurb, int pipe, unsigned length,
int timeout_or_status, enum snoop_when when,
unsigned char *data, unsigned data_len)
{
static const char *types[] = {"isoc", "int", "ctrl", "bulk"};
static const char *dirs[] = {"out", "in"};
int ep;
const char *t, *d;
if (!usbfs_snoop)
return;
ep = usb_pipeendpoint(pipe);
t = types[usb_pipetype(pipe)];
d = dirs[!!usb_pipein(pipe)];
if (userurb) { /* Async */
if (when == SUBMIT)
dev_info(&udev->dev, "userurb %px, ep%d %s-%s, "
"length %u\n",
userurb, ep, t, d, length);
else
dev_info(&udev->dev, "userurb %px, ep%d %s-%s, "
"actual_length %u status %d\n",
userurb, ep, t, d, length,
timeout_or_status);
} else {
if (when == SUBMIT)
dev_info(&udev->dev, "ep%d %s-%s, length %u, "
"timeout %d\n",
ep, t, d, length, timeout_or_status);
else
dev_info(&udev->dev, "ep%d %s-%s, actual_length %u, "
"status %d\n",
ep, t, d, length, timeout_or_status);
}
data_len = min(data_len, usbfs_snoop_max);
if (data && data_len > 0) {
print_hex_dump(KERN_DEBUG, "data: ", DUMP_PREFIX_NONE, 32, 1,
data, data_len, 1);
}
}
static void snoop_urb_data(struct urb *urb, unsigned len)
{
int i, size;
len = min(len, usbfs_snoop_max);
if (!usbfs_snoop || len == 0)
return;
if (urb->num_sgs == 0) {
print_hex_dump(KERN_DEBUG, "data: ", DUMP_PREFIX_NONE, 32, 1,
urb->transfer_buffer, len, 1);
return;
}
for (i = 0; i < urb->num_sgs && len; i++) {
size = (len > USB_SG_SIZE) ? USB_SG_SIZE : len;
print_hex_dump(KERN_DEBUG, "data: ", DUMP_PREFIX_NONE, 32, 1,
sg_virt(&urb->sg[i]), size, 1);
len -= size;
}
}
static int copy_urb_data_to_user(u8 __user *userbuffer, struct urb *urb)
{
unsigned i, len, size;
if (urb->number_of_packets > 0) /* Isochronous */
len = urb->transfer_buffer_length;
else /* Non-Isoc */
len = urb->actual_length;
if (urb->num_sgs == 0) {
if (copy_to_user(userbuffer, urb->transfer_buffer, len))
return -EFAULT;
return 0;
}
for (i = 0; i < urb->num_sgs && len; i++) {
size = (len > USB_SG_SIZE) ? USB_SG_SIZE : len;
if (copy_to_user(userbuffer, sg_virt(&urb->sg[i]), size))
return -EFAULT;
userbuffer += size;
len -= size;
}
return 0;
}
#define AS_CONTINUATION 1
#define AS_UNLINK 2
static void cancel_bulk_urbs(struct usb_dev_state *ps, unsigned bulk_addr)
__releases(ps->lock)
__acquires(ps->lock)
{
struct urb *urb;
struct async *as;
/* Mark all the pending URBs that match bulk_addr, up to but not
* including the first one without AS_CONTINUATION. If such an
* URB is encountered then a new transfer has already started so
* the endpoint doesn't need to be disabled; otherwise it does.
*/
list_for_each_entry(as, &ps->async_pending, asynclist) {
if (as->bulk_addr == bulk_addr) {
if (as->bulk_status != AS_CONTINUATION)
goto rescan;
as->bulk_status = AS_UNLINK;
as->bulk_addr = 0;
}
}
ps->disabled_bulk_eps |= (1 << bulk_addr);
/* Now carefully unlink all the marked pending URBs */
rescan:
list_for_each_entry_reverse(as, &ps->async_pending, asynclist) {
if (as->bulk_status == AS_UNLINK) {
as->bulk_status = 0; /* Only once */
urb = as->urb;
usb_get_urb(urb);
spin_unlock(&ps->lock); /* Allow completions */
usb_unlink_urb(urb);
usb_put_urb(urb);
spin_lock(&ps->lock);
goto rescan;
}
}
}
static void async_completed(struct urb *urb)
{
struct async *as = urb->context;
struct usb_dev_state *ps = as->ps;
struct pid *pid = NULL;
const struct cred *cred = NULL;
unsigned long flags;
sigval_t addr;
int signr, errno;
spin_lock_irqsave(&ps->lock, flags);
list_move_tail(&as->asynclist, &ps->async_completed);
as->status = urb->status;
signr = as->signr;
if (signr) {
errno = as->status;
addr = as->userurb_sigval;
pid = get_pid(as->pid);
cred = get_cred(as->cred);
}
snoop(&urb->dev->dev, "urb complete\n");
snoop_urb(urb->dev, as->userurb, urb->pipe, urb->actual_length,
as->status, COMPLETE, NULL, 0);
if (usb_urb_dir_in(urb))
snoop_urb_data(urb, urb->actual_length);
if (as->status < 0 && as->bulk_addr && as->status != -ECONNRESET &&
as->status != -ENOENT)
cancel_bulk_urbs(ps, as->bulk_addr);
wake_up(&ps->wait);
spin_unlock_irqrestore(&ps->lock, flags);
if (signr) {
kill_pid_usb_asyncio(signr, errno, addr, pid, cred);
put_pid(pid);
put_cred(cred);
}
}
static void destroy_async(struct usb_dev_state *ps, struct list_head *list)
{
struct urb *urb;
struct async *as;
unsigned long flags;
spin_lock_irqsave(&ps->lock, flags);
while (!list_empty(list)) {
as = list_last_entry(list, struct async, asynclist);
list_del_init(&as->asynclist);
urb = as->urb;
usb_get_urb(urb);
/* drop the spinlock so the completion handler can run */
spin_unlock_irqrestore(&ps->lock, flags);
usb_kill_urb(urb);
usb_put_urb(urb);
spin_lock_irqsave(&ps->lock, flags);
}
spin_unlock_irqrestore(&ps->lock, flags);
}
static void destroy_async_on_interface(struct usb_dev_state *ps,
unsigned int ifnum)
{
struct list_head *p, *q, hitlist;
unsigned long flags;
INIT_LIST_HEAD(&hitlist);
spin_lock_irqsave(&ps->lock, flags);
list_for_each_safe(p, q, &ps->async_pending)
if (ifnum == list_entry(p, struct async, asynclist)->ifnum)
list_move_tail(p, &hitlist);
spin_unlock_irqrestore(&ps->lock, flags);
destroy_async(ps, &hitlist);
}
static void destroy_all_async(struct usb_dev_state *ps)
{
destroy_async(ps, &ps->async_pending);
}
/*
* interface claims are made only at the request of user level code,
* which can also release them (explicitly or by closing files).
* they're also undone when devices disconnect.
*/
static int driver_probe(struct usb_interface *intf,
const struct usb_device_id *id)
{
return -ENODEV;
}
static void driver_disconnect(struct usb_interface *intf)
{
struct usb_dev_state *ps = usb_get_intfdata(intf);
unsigned int ifnum = intf->altsetting->desc.bInterfaceNumber;
if (!ps)
return;
/* NOTE: this relies on usbcore having canceled and completed
* all pending I/O requests; 2.6 does that.
*/
if (likely(ifnum < 8*sizeof(ps->ifclaimed)))
clear_bit(ifnum, &ps->ifclaimed);
else
dev_warn(&intf->dev, "interface number %u out of range\n",
ifnum);
usb_set_intfdata(intf, NULL);
/* force async requests to complete */
destroy_async_on_interface(ps, ifnum);
}
/* We don't care about suspend/resume of claimed interfaces */
static int driver_suspend(struct usb_interface *intf, pm_message_t msg)
{
return 0;
}
static int driver_resume(struct usb_interface *intf)
{
return 0;
}
#ifdef CONFIG_PM
/* The following routines apply to the entire device, not interfaces */
void usbfs_notify_suspend(struct usb_device *udev)
{
/* We don't need to handle this */
}
void usbfs_notify_resume(struct usb_device *udev)
{
struct usb_dev_state *ps;
/* Protect against simultaneous remove or release */
mutex_lock(&usbfs_mutex);
list_for_each_entry(ps, &udev->filelist, list) {
WRITE_ONCE(ps->not_yet_resumed, 0);
wake_up_all(&ps->wait_for_resume);
}
mutex_unlock(&usbfs_mutex);
}
#endif
struct usb_driver usbfs_driver = {
.name = "usbfs",
.probe = driver_probe,
.disconnect = driver_disconnect,
.suspend = driver_suspend,
.resume = driver_resume,
.supports_autosuspend = 1,
};
static int claimintf(struct usb_dev_state *ps, unsigned int ifnum)
{
struct usb_device *dev = ps->dev;
struct usb_interface *intf;
int err;
if (ifnum >= 8*sizeof(ps->ifclaimed))
return -EINVAL;
/* already claimed */
if (test_bit(ifnum, &ps->ifclaimed))
return 0;
if (ps->privileges_dropped &&
!test_bit(ifnum, &ps->interface_allowed_mask))
return -EACCES;
intf = usb_ifnum_to_if(dev, ifnum);
if (!intf)
err = -ENOENT;
else {
unsigned int old_suppress;
/* suppress uevents while claiming interface */
old_suppress = dev_get_uevent_suppress(&intf->dev);
dev_set_uevent_suppress(&intf->dev, 1);
err = usb_driver_claim_interface(&usbfs_driver, intf, ps);
dev_set_uevent_suppress(&intf->dev, old_suppress);
}
if (err == 0)
set_bit(ifnum, &ps->ifclaimed);
return err;
}
static int releaseintf(struct usb_dev_state *ps, unsigned int ifnum)
{
struct usb_device *dev;
struct usb_interface *intf;
int err;
err = -EINVAL;
if (ifnum >= 8*sizeof(ps->ifclaimed))
return err;
dev = ps->dev;
intf = usb_ifnum_to_if(dev, ifnum);
if (!intf)
err = -ENOENT;
else if (test_and_clear_bit(ifnum, &ps->ifclaimed)) {
unsigned int old_suppress;
/* suppress uevents while releasing interface */
old_suppress = dev_get_uevent_suppress(&intf->dev);
dev_set_uevent_suppress(&intf->dev, 1);
usb_driver_release_interface(&usbfs_driver, intf);
dev_set_uevent_suppress(&intf->dev, old_suppress);
err = 0;
}
return err;
}
static int checkintf(struct usb_dev_state *ps, unsigned int ifnum)
{
if (ps->dev->state != USB_STATE_CONFIGURED)
return -EHOSTUNREACH;
if (ifnum >= 8*sizeof(ps->ifclaimed))
return -EINVAL;
if (test_bit(ifnum, &ps->ifclaimed))
return 0;
/* if not yet claimed, claim it for the driver */
dev_warn(&ps->dev->dev, "usbfs: process %d (%s) did not claim "
"interface %u before use\n", task_pid_nr(current),
current->comm, ifnum);
return claimintf(ps, ifnum);
}
static int findintfep(struct usb_device *dev, unsigned int ep)
{
unsigned int i, j, e;
struct usb_interface *intf;
struct usb_host_interface *alts;
struct usb_endpoint_descriptor *endpt;
if (ep & ~(USB_DIR_IN|0xf))
return -EINVAL;
if (!dev->actconfig)
return -ESRCH;
for (i = 0; i < dev->actconfig->desc.bNumInterfaces; i++) {
intf = dev->actconfig->interface[i];
for (j = 0; j < intf->num_altsetting; j++) {
alts = &intf->altsetting[j];
for (e = 0; e < alts->desc.bNumEndpoints; e++) {
endpt = &alts->endpoint[e].desc;
if (endpt->bEndpointAddress == ep)
return alts->desc.bInterfaceNumber;
}
}
}
return -ENOENT;
}
static int check_ctrlrecip(struct usb_dev_state *ps, unsigned int requesttype,
unsigned int request, unsigned int index)
{
int ret = 0;
struct usb_host_interface *alt_setting;
if (ps->dev->state != USB_STATE_UNAUTHENTICATED
&& ps->dev->state != USB_STATE_ADDRESS
&& ps->dev->state != USB_STATE_CONFIGURED)
return -EHOSTUNREACH;
if (USB_TYPE_VENDOR == (USB_TYPE_MASK & requesttype))
return 0;
/*
* check for the special corner case 'get_device_id' in the printer
* class specification, which we always want to allow as it is used
* to query things like ink level, etc.
*/
if (requesttype == 0xa1 && request == 0) {
alt_setting = usb_find_alt_setting(ps->dev->actconfig,
index >> 8, index & 0xff);
if (alt_setting
&& alt_setting->desc.bInterfaceClass == USB_CLASS_PRINTER)
return 0;
}
index &= 0xff;
switch (requesttype & USB_RECIP_MASK) {
case USB_RECIP_ENDPOINT:
if ((index & ~USB_DIR_IN) == 0)
return 0;
ret = findintfep(ps->dev, index);
if (ret < 0) {
/*
* Some not fully compliant Win apps seem to get
* index wrong and have the endpoint number here
* rather than the endpoint address (with the
* correct direction). Win does let this through,
* so we'll not reject it here but leave it to
* the device to not break KVM. But we warn.
*/
ret = findintfep(ps->dev, index ^ 0x80);
if (ret >= 0)
dev_info(&ps->dev->dev,
"%s: process %i (%s) requesting ep %02x but needs %02x\n",
__func__, task_pid_nr(current),
current->comm, index, index ^ 0x80);
}
if (ret >= 0)
ret = checkintf(ps, ret);
break;
case USB_RECIP_INTERFACE:
ret = checkintf(ps, index);
break;
}
return ret;
}
static struct usb_host_endpoint *ep_to_host_endpoint(struct usb_device *dev,
unsigned char ep)
{
if (ep & USB_ENDPOINT_DIR_MASK)
return dev->ep_in[ep & USB_ENDPOINT_NUMBER_MASK];
else
return dev->ep_out[ep & USB_ENDPOINT_NUMBER_MASK];
}
static int parse_usbdevfs_streams(struct usb_dev_state *ps,
struct usbdevfs_streams __user *streams,
unsigned int *num_streams_ret,
unsigned int *num_eps_ret,
struct usb_host_endpoint ***eps_ret,
struct usb_interface **intf_ret)
{
unsigned int i, num_streams, num_eps;
struct usb_host_endpoint **eps;
struct usb_interface *intf = NULL;
unsigned char ep;
int ifnum, ret;
if (get_user(num_streams, &streams->num_streams) ||
get_user(num_eps, &streams->num_eps))
return -EFAULT;
if (num_eps < 1 || num_eps > USB_MAXENDPOINTS)
return -EINVAL;
/* The XHCI controller allows max 2 ^ 16 streams */
if (num_streams_ret && (num_streams < 2 || num_streams > 65536))
return -EINVAL;
eps = kmalloc_array(num_eps, sizeof(*eps), GFP_KERNEL);
if (!eps)
return -ENOMEM;
for (i = 0; i < num_eps; i++) {
if (get_user(ep, &streams->eps[i])) {
ret = -EFAULT;
goto error;
}
eps[i] = ep_to_host_endpoint(ps->dev, ep);
if (!eps[i]) {
ret = -EINVAL;
goto error;
}
/* usb_alloc/free_streams operate on an usb_interface */
ifnum = findintfep(ps->dev, ep);
if (ifnum < 0) {
ret = ifnum;
goto error;
}
if (i == 0) {
ret = checkintf(ps, ifnum);
if (ret < 0)
goto error;
intf = usb_ifnum_to_if(ps->dev, ifnum);
} else {
/* Verify all eps belong to the same interface */
if (ifnum != intf->altsetting->desc.bInterfaceNumber) {
ret = -EINVAL;
goto error;
}
}
}
if (num_streams_ret)
*num_streams_ret = num_streams;
*num_eps_ret = num_eps;
*eps_ret = eps;
*intf_ret = intf;
return 0;
error:
kfree(eps);
return ret;
}
static struct usb_device *usbdev_lookup_by_devt(dev_t devt)
{
struct device *dev;
dev = bus_find_device_by_devt(&usb_bus_type, devt);
if (!dev)
return NULL;
return to_usb_device(dev);
}
/*
* file operations
*/
static int usbdev_open(struct inode *inode, struct file *file)
{
struct usb_device *dev = NULL;
struct usb_dev_state *ps;
int ret;
ret = -ENOMEM;
ps = kzalloc(sizeof(struct usb_dev_state), GFP_KERNEL);
if (!ps)
goto out_free_ps;
ret = -ENODEV;
/* usbdev device-node */
if (imajor(inode) == USB_DEVICE_MAJOR)
dev = usbdev_lookup_by_devt(inode->i_rdev);
if (!dev)
goto out_free_ps;
usb_lock_device(dev);
if (dev->state == USB_STATE_NOTATTACHED)
goto out_unlock_device;
ret = usb_autoresume_device(dev);
if (ret)
goto out_unlock_device;
ps->dev = dev;
ps->file = file;
ps->interface_allowed_mask = 0xFFFFFFFF; /* 32 bits */
spin_lock_init(&ps->lock);
INIT_LIST_HEAD(&ps->list);
INIT_LIST_HEAD(&ps->async_pending);
INIT_LIST_HEAD(&ps->async_completed);
INIT_LIST_HEAD(&ps->memory_list);
init_waitqueue_head(&ps->wait);
init_waitqueue_head(&ps->wait_for_resume);
ps->disc_pid = get_pid(task_pid(current));
ps->cred = get_current_cred();
smp_wmb();
/* Can't race with resume; the device is already active */
list_add_tail(&ps->list, &dev->filelist);
file->private_data = ps;
usb_unlock_device(dev);
snoop(&dev->dev, "opened by process %d: %s\n", task_pid_nr(current),
current->comm);
return ret;
out_unlock_device:
usb_unlock_device(dev);
usb_put_dev(dev);
out_free_ps:
kfree(ps);
return ret;
}
static int usbdev_release(struct inode *inode, struct file *file)
{
struct usb_dev_state *ps = file->private_data;
struct usb_device *dev = ps->dev;
unsigned int ifnum;
struct async *as;
usb_lock_device(dev);
usb_hub_release_all_ports(dev, ps);
/* Protect against simultaneous resume */
mutex_lock(&usbfs_mutex);
list_del_init(&ps->list);
mutex_unlock(&usbfs_mutex);
for (ifnum = 0; ps->ifclaimed && ifnum < 8*sizeof(ps->ifclaimed);
ifnum++) {
if (test_bit(ifnum, &ps->ifclaimed))
releaseintf(ps, ifnum);
}
destroy_all_async(ps);
if (!ps->suspend_allowed)
usb_autosuspend_device(dev);
usb_unlock_device(dev);
usb_put_dev(dev);
put_pid(ps->disc_pid);
put_cred(ps->cred);
as = async_getcompleted(ps);
while (as) {
free_async(as);
as = async_getcompleted(ps);
}
kfree(ps);
return 0;
}
static void usbfs_blocking_completion(struct urb *urb)
{
complete((struct completion *) urb->context);
}
/*
* Much like usb_start_wait_urb, but returns status separately from
* actual_length and uses a killable wait.
*/
static int usbfs_start_wait_urb(struct urb *urb, int timeout,
unsigned int *actlen)
{
DECLARE_COMPLETION_ONSTACK(ctx);
unsigned long expire;
int rc;
urb->context = &ctx;
urb->complete = usbfs_blocking_completion;
*actlen = 0;
rc = usb_submit_urb(urb, GFP_KERNEL);
if (unlikely(rc))
return rc;
expire = (timeout ? msecs_to_jiffies(timeout) : MAX_SCHEDULE_TIMEOUT);
rc = wait_for_completion_killable_timeout(&ctx, expire);
if (rc <= 0) {
usb_kill_urb(urb);
*actlen = urb->actual_length;
if (urb->status != -ENOENT)
; /* Completed before it was killed */
else if (rc < 0)
return -EINTR;
else
return -ETIMEDOUT;
}
*actlen = urb->actual_length;
return urb->status;
}
static int do_proc_control(struct usb_dev_state *ps,
struct usbdevfs_ctrltransfer *ctrl)
{
struct usb_device *dev = ps->dev;
unsigned int tmo;
unsigned char *tbuf;
unsigned int wLength, actlen;
int i, pipe, ret;
struct urb *urb = NULL;
struct usb_ctrlrequest *dr = NULL;
ret = check_ctrlrecip(ps, ctrl->bRequestType, ctrl->bRequest,
ctrl->wIndex);
if (ret)
return ret;
wLength = ctrl->wLength; /* To suppress 64k PAGE_SIZE warning */
if (wLength > PAGE_SIZE)
return -EINVAL;
ret = usbfs_increase_memory_usage(PAGE_SIZE + sizeof(struct urb) +
sizeof(struct usb_ctrlrequest));
if (ret)
return ret;
ret = -ENOMEM;
tbuf = (unsigned char *)__get_free_page(GFP_KERNEL);
if (!tbuf)
goto done;
urb = usb_alloc_urb(0, GFP_NOIO);
if (!urb)
goto done;
dr = kmalloc(sizeof(struct usb_ctrlrequest), GFP_NOIO);
if (!dr)
goto done;
dr->bRequestType = ctrl->bRequestType;
dr->bRequest = ctrl->bRequest;
dr->wValue = cpu_to_le16(ctrl->wValue);
dr->wIndex = cpu_to_le16(ctrl->wIndex);
dr->wLength = cpu_to_le16(ctrl->wLength);
tmo = ctrl->timeout;
snoop(&dev->dev, "control urb: bRequestType=%02x "
"bRequest=%02x wValue=%04x "
"wIndex=%04x wLength=%04x\n",
ctrl->bRequestType, ctrl->bRequest, ctrl->wValue,
ctrl->wIndex, ctrl->wLength);
if ((ctrl->bRequestType & USB_DIR_IN) && wLength) {
pipe = usb_rcvctrlpipe(dev, 0);
usb_fill_control_urb(urb, dev, pipe, (unsigned char *) dr, tbuf,
wLength, NULL, NULL);
snoop_urb(dev, NULL, pipe, wLength, tmo, SUBMIT, NULL, 0);
usb_unlock_device(dev);
i = usbfs_start_wait_urb(urb, tmo, &actlen);
/* Linger a bit, prior to the next control message. */
if (dev->quirks & USB_QUIRK_DELAY_CTRL_MSG)
msleep(200);
usb_lock_device(dev);
snoop_urb(dev, NULL, pipe, actlen, i, COMPLETE, tbuf, actlen);
if (!i && actlen) {
if (copy_to_user(ctrl->data, tbuf, actlen)) {
ret = -EFAULT;
goto done;
}
}
} else {
if (wLength) {
if (copy_from_user(tbuf, ctrl->data, wLength)) {
ret = -EFAULT;
goto done;
}
}
pipe = usb_sndctrlpipe(dev, 0);
usb_fill_control_urb(urb, dev, pipe, (unsigned char *) dr, tbuf,
wLength, NULL, NULL);
snoop_urb(dev, NULL, pipe, wLength, tmo, SUBMIT, tbuf, wLength);
usb_unlock_device(dev);
i = usbfs_start_wait_urb(urb, tmo, &actlen);
/* Linger a bit, prior to the next control message. */
if (dev->quirks & USB_QUIRK_DELAY_CTRL_MSG)
msleep(200);
usb_lock_device(dev);
snoop_urb(dev, NULL, pipe, actlen, i, COMPLETE, NULL, 0);
}
if (i < 0 && i != -EPIPE) {
dev_printk(KERN_DEBUG, &dev->dev, "usbfs: USBDEVFS_CONTROL "
"failed cmd %s rqt %u rq %u len %u ret %d\n",
current->comm, ctrl->bRequestType, ctrl->bRequest,
ctrl->wLength, i);
}
ret = (i < 0 ? i : actlen);
done:
kfree(dr);
usb_free_urb(urb);
free_page((unsigned long) tbuf);
usbfs_decrease_memory_usage(PAGE_SIZE + sizeof(struct urb) +
sizeof(struct usb_ctrlrequest));
return ret;
}
static int proc_control(struct usb_dev_state *ps, void __user *arg)
{
struct usbdevfs_ctrltransfer ctrl;
if (copy_from_user(&ctrl, arg, sizeof(ctrl)))
return -EFAULT;
return do_proc_control(ps, &ctrl);
}
static int do_proc_bulk(struct usb_dev_state *ps,
struct usbdevfs_bulktransfer *bulk)
{
struct usb_device *dev = ps->dev;
unsigned int tmo, len1, len2, pipe;
unsigned char *tbuf;
int i, ret;
struct urb *urb = NULL;
struct usb_host_endpoint *ep;
ret = findintfep(ps->dev, bulk->ep);
if (ret < 0)
return ret;
ret = checkintf(ps, ret);
if (ret)
return ret;
len1 = bulk->len;
if (len1 < 0 || len1 >= (INT_MAX - sizeof(struct urb)))
return -EINVAL;
if (bulk->ep & USB_DIR_IN)
pipe = usb_rcvbulkpipe(dev, bulk->ep & 0x7f);
else
pipe = usb_sndbulkpipe(dev, bulk->ep & 0x7f);
ep = usb_pipe_endpoint(dev, pipe);
if (!ep || !usb_endpoint_maxp(&ep->desc))
return -EINVAL;
ret = usbfs_increase_memory_usage(len1 + sizeof(struct urb));
if (ret)
return ret;
/*
* len1 can be almost arbitrarily large. Don't WARN if it's
* too big, just fail the request.
*/
ret = -ENOMEM;
tbuf = kmalloc(len1, GFP_KERNEL | __GFP_NOWARN);
if (!tbuf)
goto done;
urb = usb_alloc_urb(0, GFP_KERNEL);
if (!urb)
goto done;
if ((ep->desc.bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) ==
USB_ENDPOINT_XFER_INT) {
pipe = (pipe & ~(3 << 30)) | (PIPE_INTERRUPT << 30);
usb_fill_int_urb(urb, dev, pipe, tbuf, len1,
NULL, NULL, ep->desc.bInterval);
} else {
usb_fill_bulk_urb(urb, dev, pipe, tbuf, len1, NULL, NULL);
}
tmo = bulk->timeout;
if (bulk->ep & 0x80) {
snoop_urb(dev, NULL, pipe, len1, tmo, SUBMIT, NULL, 0);
usb_unlock_device(dev);
i = usbfs_start_wait_urb(urb, tmo, &len2);
usb_lock_device(dev);
snoop_urb(dev, NULL, pipe, len2, i, COMPLETE, tbuf, len2);
if (!i && len2) {
if (copy_to_user(bulk->data, tbuf, len2)) {
ret = -EFAULT;
goto done;
}
}
} else {
if (len1) {
if (copy_from_user(tbuf, bulk->data, len1)) {
ret = -EFAULT;
goto done;
}
}
snoop_urb(dev, NULL, pipe, len1, tmo, SUBMIT, tbuf, len1);
usb_unlock_device(dev);
i = usbfs_start_wait_urb(urb, tmo, &len2);
usb_lock_device(dev);
snoop_urb(dev, NULL, pipe, len2, i, COMPLETE, NULL, 0);
}
ret = (i < 0 ? i : len2);
done:
usb_free_urb(urb);
kfree(tbuf);
usbfs_decrease_memory_usage(len1 + sizeof(struct urb));
return ret;
}
static int proc_bulk(struct usb_dev_state *ps, void __user *arg)
{
struct usbdevfs_bulktransfer bulk;
if (copy_from_user(&bulk, arg, sizeof(bulk)))
return -EFAULT;
return do_proc_bulk(ps, &bulk);
}
static void check_reset_of_active_ep(struct usb_device *udev,
unsigned int epnum, char *ioctl_name)
{
struct usb_host_endpoint **eps;
struct usb_host_endpoint *ep;
eps = (epnum & USB_DIR_IN) ? udev->ep_in : udev->ep_out;
ep = eps[epnum & 0x0f];
if (ep && !list_empty(&ep->urb_list))
dev_warn(&udev->dev, "Process %d (%s) called USBDEVFS_%s for active endpoint 0x%02x\n",
task_pid_nr(current), current->comm,
ioctl_name, epnum);
}
static int proc_resetep(struct usb_dev_state *ps, void __user *arg)
{
unsigned int ep;
int ret;
if (get_user(ep, (unsigned int __user *)arg))
return -EFAULT;
ret = findintfep(ps->dev, ep);
if (ret < 0)
return ret;
ret = checkintf(ps, ret);
if (ret)
return ret;
check_reset_of_active_ep(ps->dev, ep, "RESETEP");
usb_reset_endpoint(ps->dev, ep);
return 0;
}
static int proc_clearhalt(struct usb_dev_state *ps, void __user *arg)
{
unsigned int ep;
int pipe;
int ret;
if (get_user(ep, (unsigned int __user *)arg))
return -EFAULT;
ret = findintfep(ps->dev, ep);
if (ret < 0)
return ret;
ret = checkintf(ps, ret);
if (ret)
return ret;
check_reset_of_active_ep(ps->dev, ep, "CLEAR_HALT");
if (ep & USB_DIR_IN)
pipe = usb_rcvbulkpipe(ps->dev, ep & 0x7f);
else
pipe = usb_sndbulkpipe(ps->dev, ep & 0x7f);
return usb_clear_halt(ps->dev, pipe);
}
static int proc_getdriver(struct usb_dev_state *ps, void __user *arg)
{
struct usbdevfs_getdriver gd;
struct usb_interface *intf;
int ret;
if (copy_from_user(&gd, arg, sizeof(gd)))
return -EFAULT;
intf = usb_ifnum_to_if(ps->dev, gd.interface);
if (!intf || !intf->dev.driver)
ret = -ENODATA;
else {
strscpy(gd.driver, intf->dev.driver->name,
sizeof(gd.driver));
ret = (copy_to_user(arg, &gd, sizeof(gd)) ? -EFAULT : 0);
}
return ret;
}
static int proc_connectinfo(struct usb_dev_state *ps, void __user *arg)
{
struct usbdevfs_connectinfo ci;
memset(&ci, 0, sizeof(ci));
ci.devnum = ps->dev->devnum;
ci.slow = ps->dev->speed == USB_SPEED_LOW;
if (copy_to_user(arg, &ci, sizeof(ci)))
return -EFAULT;
return 0;
}
static int proc_conninfo_ex(struct usb_dev_state *ps,
void __user *arg, size_t size)
{
struct usbdevfs_conninfo_ex ci;
struct usb_device *udev = ps->dev;
if (size < sizeof(ci.size))
return -EINVAL;
memset(&ci, 0, sizeof(ci));
ci.size = sizeof(ci);
ci.busnum = udev->bus->busnum;
ci.devnum = udev->devnum;
ci.speed = udev->speed;
while (udev && udev->portnum != 0) {
if (++ci.num_ports <= ARRAY_SIZE(ci.ports))
ci.ports[ARRAY_SIZE(ci.ports) - ci.num_ports] =
udev->portnum;
udev = udev->parent;
}
if (ci.num_ports < ARRAY_SIZE(ci.ports))
memmove(&ci.ports[0],
&ci.ports[ARRAY_SIZE(ci.ports) - ci.num_ports],
ci.num_ports);
if (copy_to_user(arg, &ci, min(sizeof(ci), size)))
return -EFAULT;
return 0;
}
static int proc_resetdevice(struct usb_dev_state *ps)
{
struct usb_host_config *actconfig = ps->dev->actconfig;
struct usb_interface *interface;
int i, number;
/* Don't allow a device reset if the process has dropped the
* privilege to do such things and any of the interfaces are
* currently claimed.
*/
if (ps->privileges_dropped && actconfig) {
for (i = 0; i < actconfig->desc.bNumInterfaces; ++i) {
interface = actconfig->interface[i];
number = interface->cur_altsetting->desc.bInterfaceNumber;
if (usb_interface_claimed(interface) &&
!test_bit(number, &ps->ifclaimed)) {
dev_warn(&ps->dev->dev,
"usbfs: interface %d claimed by %s while '%s' resets device\n",
number, interface->dev.driver->name, current->comm);
return -EACCES;
}
}
}
return usb_reset_device(ps->dev);
}
static int proc_setintf(struct usb_dev_state *ps, void __user *arg)
{
struct usbdevfs_setinterface setintf;
int ret;
if (copy_from_user(&setintf, arg, sizeof(setintf)))
return -EFAULT;
ret = checkintf(ps, setintf.interface);
if (ret)
return ret;
destroy_async_on_interface(ps, setintf.interface);
return usb_set_interface(ps->dev, setintf.interface,
setintf.altsetting);
}
static int proc_setconfig(struct usb_dev_state *ps, void __user *arg)
{
int u;
int status = 0;
struct usb_host_config *actconfig;
if (get_user(u, (int __user *)arg))
return -EFAULT;
actconfig = ps->dev->actconfig;
/* Don't touch the device if any interfaces are claimed.
* It could interfere with other drivers' operations, and if
* an interface is claimed by usbfs it could easily deadlock.
*/
if (actconfig) {
int i;
for (i = 0; i < actconfig->desc.bNumInterfaces; ++i) {
if (usb_interface_claimed(actconfig->interface[i])) {
dev_warn(&ps->dev->dev,
"usbfs: interface %d claimed by %s "
"while '%s' sets config #%d\n",
actconfig->interface[i]
->cur_altsetting
->desc.bInterfaceNumber,
actconfig->interface[i]
->dev.driver->name,
current->comm, u);
status = -EBUSY;
break;
}
}
}
/* SET_CONFIGURATION is often abused as a "cheap" driver reset,
* so avoid usb_set_configuration()'s kick to sysfs
*/
if (status == 0) {
if (actconfig && actconfig->desc.bConfigurationValue == u)
status = usb_reset_configuration(ps->dev);
else
status = usb_set_configuration(ps->dev, u);
}
return status;
}
static struct usb_memory *
find_memory_area(struct usb_dev_state *ps, const struct usbdevfs_urb *uurb)
{
struct usb_memory *usbm = NULL, *iter;
unsigned long flags;
unsigned long uurb_start = (unsigned long)uurb->buffer;
spin_lock_irqsave(&ps->lock, flags);
list_for_each_entry(iter, &ps->memory_list, memlist) {
if (uurb_start >= iter->vm_start &&
uurb_start < iter->vm_start + iter->size) {
if (uurb->buffer_length > iter->vm_start + iter->size -
uurb_start) {
usbm = ERR_PTR(-EINVAL);
} else {
usbm = iter;
usbm->urb_use_count++;
}
break;
}
}
spin_unlock_irqrestore(&ps->lock, flags);
return usbm;
}
static int proc_do_submiturb(struct usb_dev_state *ps, struct usbdevfs_urb *uurb,
struct usbdevfs_iso_packet_desc __user *iso_frame_desc,
void __user *arg, sigval_t userurb_sigval)
{
struct usbdevfs_iso_packet_desc *isopkt = NULL;
struct usb_host_endpoint *ep;
struct async *as = NULL;
struct usb_ctrlrequest *dr = NULL;
unsigned int u, totlen, isofrmlen;
int i, ret, num_sgs = 0, ifnum = -1;
int number_of_packets = 0;
unsigned int stream_id = 0;
void *buf;
bool is_in;
bool allow_short = false;
bool allow_zero = false;
unsigned long mask = USBDEVFS_URB_SHORT_NOT_OK |
USBDEVFS_URB_BULK_CONTINUATION |
USBDEVFS_URB_NO_FSBR |
USBDEVFS_URB_ZERO_PACKET |
USBDEVFS_URB_NO_INTERRUPT;
/* USBDEVFS_URB_ISO_ASAP is a special case */
if (uurb->type == USBDEVFS_URB_TYPE_ISO)
mask |= USBDEVFS_URB_ISO_ASAP;
if (uurb->flags & ~mask)
return -EINVAL;
if ((unsigned int)uurb->buffer_length >= USBFS_XFER_MAX)
return -EINVAL;
if (uurb->buffer_length > 0 && !uurb->buffer)
return -EINVAL;
if (!(uurb->type == USBDEVFS_URB_TYPE_CONTROL &&
(uurb->endpoint & ~USB_ENDPOINT_DIR_MASK) == 0)) {
ifnum = findintfep(ps->dev, uurb->endpoint);
if (ifnum < 0)
return ifnum;
ret = checkintf(ps, ifnum);
if (ret)
return ret;
}
ep = ep_to_host_endpoint(ps->dev, uurb->endpoint);
if (!ep)
return -ENOENT;
is_in = (uurb->endpoint & USB_ENDPOINT_DIR_MASK) != 0;
u = 0;
switch (uurb->type) {
case USBDEVFS_URB_TYPE_CONTROL:
if (!usb_endpoint_xfer_control(&ep->desc))
return -EINVAL;
/* min 8 byte setup packet */
if (uurb->buffer_length < 8)
return -EINVAL;
dr = kmalloc(sizeof(struct usb_ctrlrequest), GFP_KERNEL);
if (!dr)
return -ENOMEM;
if (copy_from_user(dr, uurb->buffer, 8)) {
ret = -EFAULT;
goto error;
}
if (uurb->buffer_length < (le16_to_cpu(dr->wLength) + 8)) {
ret = -EINVAL;
goto error;
}
ret = check_ctrlrecip(ps, dr->bRequestType, dr->bRequest,
le16_to_cpu(dr->wIndex));
if (ret)
goto error;
uurb->buffer_length = le16_to_cpu(dr->wLength);
uurb->buffer += 8;
if ((dr->bRequestType & USB_DIR_IN) && uurb->buffer_length) {
is_in = true;
uurb->endpoint |= USB_DIR_IN;
} else {
is_in = false;
uurb->endpoint &= ~USB_DIR_IN;
}
if (is_in)
allow_short = true;
snoop(&ps->dev->dev, "control urb: bRequestType=%02x "
"bRequest=%02x wValue=%04x "
"wIndex=%04x wLength=%04x\n",
dr->bRequestType, dr->bRequest,
__le16_to_cpu(dr->wValue),
__le16_to_cpu(dr->wIndex),
__le16_to_cpu(dr->wLength));
u = sizeof(struct usb_ctrlrequest);
break;
case USBDEVFS_URB_TYPE_BULK:
if (!is_in)
allow_zero = true;
else
allow_short = true;
switch (usb_endpoint_type(&ep->desc)) {
case USB_ENDPOINT_XFER_CONTROL:
case USB_ENDPOINT_XFER_ISOC:
return -EINVAL;
case USB_ENDPOINT_XFER_INT:
/* allow single-shot interrupt transfers */
uurb->type = USBDEVFS_URB_TYPE_INTERRUPT;
goto interrupt_urb;
}
num_sgs = DIV_ROUND_UP(uurb->buffer_length, USB_SG_SIZE);
if (num_sgs == 1 || num_sgs > ps->dev->bus->sg_tablesize)
num_sgs = 0;
if (ep->streams)
stream_id = uurb->stream_id;
break;
case USBDEVFS_URB_TYPE_INTERRUPT:
if (!usb_endpoint_xfer_int(&ep->desc))
return -EINVAL;
interrupt_urb:
if (!is_in)
allow_zero = true;
else
allow_short = true;
break;
case USBDEVFS_URB_TYPE_ISO:
/* arbitrary limit */
if (uurb->number_of_packets < 1 ||
uurb->number_of_packets > 128)
return -EINVAL;
if (!usb_endpoint_xfer_isoc(&ep->desc))
return -EINVAL;
number_of_packets = uurb->number_of_packets;
isofrmlen = sizeof(struct usbdevfs_iso_packet_desc) *
number_of_packets;
isopkt = memdup_user(iso_frame_desc, isofrmlen);
if (IS_ERR(isopkt)) {
ret = PTR_ERR(isopkt);
isopkt = NULL;
goto error;
}
for (totlen = u = 0; u < number_of_packets; u++) {
/*
* arbitrary limit need for USB 3.1 Gen2
* sizemax: 96 DPs at SSP, 96 * 1024 = 98304
*/
if (isopkt[u].length > 98304) {
ret = -EINVAL;
goto error;
}
totlen += isopkt[u].length;
}
u *= sizeof(struct usb_iso_packet_descriptor);
uurb->buffer_length = totlen;
break;
default:
return -EINVAL;
}
if (uurb->buffer_length > 0 &&
!access_ok(uurb->buffer, uurb->buffer_length)) {
ret = -EFAULT;
goto error;
}
as = alloc_async(number_of_packets);
if (!as) {
ret = -ENOMEM;
goto error;
}
as->usbm = find_memory_area(ps, uurb);
if (IS_ERR(as->usbm)) {
ret = PTR_ERR(as->usbm);
as->usbm = NULL;
goto error;
}
/* do not use SG buffers when memory mapped segments
* are in use
*/
if (as->usbm)
num_sgs = 0;
u += sizeof(struct async) + sizeof(struct urb) +
(as->usbm ? 0 : uurb->buffer_length) +
num_sgs * sizeof(struct scatterlist);
ret = usbfs_increase_memory_usage(u);
if (ret)
goto error;
as->mem_usage = u;
if (num_sgs) {
as->urb->sg = kmalloc_array(num_sgs,
sizeof(struct scatterlist),
GFP_KERNEL | __GFP_NOWARN);
if (!as->urb->sg) {
ret = -ENOMEM;
goto error;
}
as->urb->num_sgs = num_sgs;
sg_init_table(as->urb->sg, as->urb->num_sgs);
totlen = uurb->buffer_length;
for (i = 0; i < as->urb->num_sgs; i++) {
u = (totlen > USB_SG_SIZE) ? USB_SG_SIZE : totlen;
buf = kmalloc(u, GFP_KERNEL);
if (!buf) {
ret = -ENOMEM;
goto error;
}
sg_set_buf(&as->urb->sg[i], buf, u);
if (!is_in) {
if (copy_from_user(buf, uurb->buffer, u)) {
ret = -EFAULT;
goto error;
}
uurb->buffer += u;
}
totlen -= u;
}
} else if (uurb->buffer_length > 0) {
if (as->usbm) {
unsigned long uurb_start = (unsigned long)uurb->buffer;
as->urb->transfer_buffer = as->usbm->mem +
(uurb_start - as->usbm->vm_start);
} else {
as->urb->transfer_buffer = kmalloc(uurb->buffer_length,
GFP_KERNEL | __GFP_NOWARN);
if (!as->urb->transfer_buffer) {
ret = -ENOMEM;
goto error;
}
if (!is_in) {
if (copy_from_user(as->urb->transfer_buffer,
uurb->buffer,
uurb->buffer_length)) {
ret = -EFAULT;
goto error;
}
} else if (uurb->type == USBDEVFS_URB_TYPE_ISO) {
/*
* Isochronous input data may end up being
* discontiguous if some of the packets are
* short. Clear the buffer so that the gaps
* don't leak kernel data to userspace.
*/
memset(as->urb->transfer_buffer, 0,
uurb->buffer_length);
}
}
}
as->urb->dev = ps->dev;
as->urb->pipe = (uurb->type << 30) |
__create_pipe(ps->dev, uurb->endpoint & 0xf) |
(uurb->endpoint & USB_DIR_IN);
/* This tedious sequence is necessary because the URB_* flags
* are internal to the kernel and subject to change, whereas
* the USBDEVFS_URB_* flags are a user API and must not be changed.
*/
u = (is_in ? URB_DIR_IN : URB_DIR_OUT);
if (uurb->flags & USBDEVFS_URB_ISO_ASAP)
u |= URB_ISO_ASAP;
if (allow_short && uurb->flags & USBDEVFS_URB_SHORT_NOT_OK)
u |= URB_SHORT_NOT_OK;
if (allow_zero && uurb->flags & USBDEVFS_URB_ZERO_PACKET)
u |= URB_ZERO_PACKET;
if (uurb->flags & USBDEVFS_URB_NO_INTERRUPT)
u |= URB_NO_INTERRUPT;
as->urb->transfer_flags = u;
if (!allow_short && uurb->flags & USBDEVFS_URB_SHORT_NOT_OK)
dev_warn(&ps->dev->dev, "Requested nonsensical USBDEVFS_URB_SHORT_NOT_OK.\n");
if (!allow_zero && uurb->flags & USBDEVFS_URB_ZERO_PACKET)
dev_warn(&ps->dev->dev, "Requested nonsensical USBDEVFS_URB_ZERO_PACKET.\n");
as->urb->transfer_buffer_length = uurb->buffer_length;
as->urb->setup_packet = (unsigned char *)dr;
dr = NULL;
as->urb->start_frame = uurb->start_frame;
as->urb->number_of_packets = number_of_packets;
as->urb->stream_id = stream_id;
if (ep->desc.bInterval) {
if (uurb->type == USBDEVFS_URB_TYPE_ISO ||
ps->dev->speed == USB_SPEED_HIGH ||
ps->dev->speed >= USB_SPEED_SUPER)
as->urb->interval = 1 <<
min(15, ep->desc.bInterval - 1);
else
as->urb->interval = ep->desc.bInterval;
}
as->urb->context = as;
as->urb->complete = async_completed;
for (totlen = u = 0; u < number_of_packets; u++) {
as->urb->iso_frame_desc[u].offset = totlen;
as->urb->iso_frame_desc[u].length = isopkt[u].length;
totlen += isopkt[u].length;
}
kfree(isopkt);
isopkt = NULL;
as->ps = ps;
as->userurb = arg;
as->userurb_sigval = userurb_sigval;
if (as->usbm) {
unsigned long uurb_start = (unsigned long)uurb->buffer;
as->urb->transfer_flags |= URB_NO_TRANSFER_DMA_MAP;
as->urb->transfer_dma = as->usbm->dma_handle +
(uurb_start - as->usbm->vm_start);
} else if (is_in && uurb->buffer_length > 0)
as->userbuffer = uurb->buffer;
as->signr = uurb->signr;
as->ifnum = ifnum;
as->pid = get_pid(task_pid(current));
as->cred = get_current_cred();
snoop_urb(ps->dev, as->userurb, as->urb->pipe,
as->urb->transfer_buffer_length, 0, SUBMIT,
NULL, 0);
if (!is_in)
snoop_urb_data(as->urb, as->urb->transfer_buffer_length);
async_newpending(as);
if (usb_endpoint_xfer_bulk(&ep->desc)) {
spin_lock_irq(&ps->lock);
/* Not exactly the endpoint address; the direction bit is
* shifted to the 0x10 position so that the value will be
* between 0 and 31.
*/
as->bulk_addr = usb_endpoint_num(&ep->desc) |
((ep->desc.bEndpointAddress & USB_ENDPOINT_DIR_MASK)
>> 3);
/* If this bulk URB is the start of a new transfer, re-enable
* the endpoint. Otherwise mark it as a continuation URB.
*/
if (uurb->flags & USBDEVFS_URB_BULK_CONTINUATION)
as->bulk_status = AS_CONTINUATION;
else
ps->disabled_bulk_eps &= ~(1 << as->bulk_addr);
/* Don't accept continuation URBs if the endpoint is
* disabled because of an earlier error.
*/
if (ps->disabled_bulk_eps & (1 << as->bulk_addr))
ret = -EREMOTEIO;
else
ret = usb_submit_urb(as->urb, GFP_ATOMIC);
spin_unlock_irq(&ps->lock);
} else {
ret = usb_submit_urb(as->urb, GFP_KERNEL);
}
if (ret) {
dev_printk(KERN_DEBUG, &ps->dev->dev,
"usbfs: usb_submit_urb returned %d\n", ret);
snoop_urb(ps->dev, as->userurb, as->urb->pipe,
0, ret, COMPLETE, NULL, 0);
async_removepending(as);
goto error;
}
return 0;
error:
kfree(isopkt);
kfree(dr);
if (as)
free_async(as);
return ret;
}
static int proc_submiturb(struct usb_dev_state *ps, void __user *arg)
{
struct usbdevfs_urb uurb;
sigval_t userurb_sigval;
if (copy_from_user(&uurb, arg, sizeof(uurb)))
return -EFAULT;
memset(&userurb_sigval, 0, sizeof(userurb_sigval));
userurb_sigval.sival_ptr = arg;
return proc_do_submiturb(ps, &uurb,
(((struct usbdevfs_urb __user *)arg)->iso_frame_desc),
arg, userurb_sigval);
}
static int proc_unlinkurb(struct usb_dev_state *ps, void __user *arg)
{
struct urb *urb;
struct async *as;
unsigned long flags;
spin_lock_irqsave(&ps->lock, flags);
as = async_getpending(ps, arg);
if (!as) {
spin_unlock_irqrestore(&ps->lock, flags);
return -EINVAL;
}
urb = as->urb;
usb_get_urb(urb);
spin_unlock_irqrestore(&ps->lock, flags);
usb_kill_urb(urb);
usb_put_urb(urb);
return 0;
}
static void compute_isochronous_actual_length(struct urb *urb)
{
unsigned int i;
if (urb->number_of_packets > 0) {
urb->actual_length = 0;
for (i = 0; i < urb->number_of_packets; i++)
urb->actual_length +=
urb->iso_frame_desc[i].actual_length;
}
}
static int processcompl(struct async *as, void __user * __user *arg)
{
struct urb *urb = as->urb;
struct usbdevfs_urb __user *userurb = as->userurb;
void __user *addr = as->userurb;
unsigned int i;
compute_isochronous_actual_length(urb);
if (as->userbuffer && urb->actual_length) {
if (copy_urb_data_to_user(as->userbuffer, urb))
goto err_out;
}
if (put_user(as->status, &userurb->status))
goto err_out;
if (put_user(urb->actual_length, &userurb->actual_length))
goto err_out;
if (put_user(urb->error_count, &userurb->error_count))
goto err_out;
if (usb_endpoint_xfer_isoc(&urb->ep->desc)) {
for (i = 0; i < urb->number_of_packets; i++) {
if (put_user(urb->iso_frame_desc[i].actual_length,
&userurb->iso_frame_desc[i].actual_length))
goto err_out;
if (put_user(urb->iso_frame_desc[i].status,
&userurb->iso_frame_desc[i].status))
goto err_out;
}
}
if (put_user(addr, (void __user * __user *)arg))
return -EFAULT;
return 0;
err_out:
return -EFAULT;
}
static struct async *reap_as(struct usb_dev_state *ps)
{
DECLARE_WAITQUEUE(wait, current);
struct async *as = NULL;
struct usb_device *dev = ps->dev;
add_wait_queue(&ps->wait, &wait);
for (;;) {
__set_current_state(TASK_INTERRUPTIBLE);
as = async_getcompleted(ps);
if (as || !connected(ps))
break;
if (signal_pending(current))
break;
usb_unlock_device(dev);
schedule();
usb_lock_device(dev);
}
remove_wait_queue(&ps->wait, &wait);
set_current_state(TASK_RUNNING);
return as;
}
static int proc_reapurb(struct usb_dev_state *ps, void __user *arg)
{
struct async *as = reap_as(ps);
if (as) {
int retval;
snoop(&ps->dev->dev, "reap %px\n", as->userurb);
retval = processcompl(as, (void __user * __user *)arg);
free_async(as);
return retval;
}
if (signal_pending(current))
return -EINTR;
return -ENODEV;
}
static int proc_reapurbnonblock(struct usb_dev_state *ps, void __user *arg)
{
int retval;
struct async *as;
as = async_getcompleted(ps);
if (as) {
snoop(&ps->dev->dev, "reap %px\n", as->userurb);
retval = processcompl(as, (void __user * __user *)arg);
free_async(as);
} else {
retval = (connected(ps) ? -EAGAIN : -ENODEV);
}
return retval;
}
#ifdef CONFIG_COMPAT
static int proc_control_compat(struct usb_dev_state *ps,
struct usbdevfs_ctrltransfer32 __user *p32)
{
struct usbdevfs_ctrltransfer ctrl;
u32 udata;
if (copy_from_user(&ctrl, p32, sizeof(*p32) - sizeof(compat_caddr_t)) ||
get_user(udata, &p32->data))
return -EFAULT;
ctrl.data = compat_ptr(udata);
return do_proc_control(ps, &ctrl);
}
static int proc_bulk_compat(struct usb_dev_state *ps,
struct usbdevfs_bulktransfer32 __user *p32)
{
struct usbdevfs_bulktransfer bulk;
compat_caddr_t addr;
if (get_user(bulk.ep, &p32->ep) ||
get_user(bulk.len, &p32->len) ||
get_user(bulk.timeout, &p32->timeout) ||
get_user(addr, &p32->data))
return -EFAULT;
bulk.data = compat_ptr(addr);
return do_proc_bulk(ps, &bulk);
}
static int proc_disconnectsignal_compat(struct usb_dev_state *ps, void __user *arg)
{
struct usbdevfs_disconnectsignal32 ds;
if (copy_from_user(&ds, arg, sizeof(ds)))
return -EFAULT;
ps->discsignr = ds.signr;
ps->disccontext.sival_int = ds.context;
return 0;
}
static int get_urb32(struct usbdevfs_urb *kurb,
struct usbdevfs_urb32 __user *uurb)
{
struct usbdevfs_urb32 urb32;
if (copy_from_user(&urb32, uurb, sizeof(*uurb)))
return -EFAULT;
kurb->type = urb32.type;
kurb->endpoint = urb32.endpoint;
kurb->status = urb32.status;
kurb->flags = urb32.flags;
kurb->buffer = compat_ptr(urb32.buffer);
kurb->buffer_length = urb32.buffer_length;
kurb->actual_length = urb32.actual_length;
kurb->start_frame = urb32.start_frame;
kurb->number_of_packets = urb32.number_of_packets;
kurb->error_count = urb32.error_count;
kurb->signr = urb32.signr;
kurb->usercontext = compat_ptr(urb32.usercontext);
return 0;
}
static int proc_submiturb_compat(struct usb_dev_state *ps, void __user *arg)
{
struct usbdevfs_urb uurb;
sigval_t userurb_sigval;
if (get_urb32(&uurb, (struct usbdevfs_urb32 __user *)arg))
return -EFAULT;
memset(&userurb_sigval, 0, sizeof(userurb_sigval));
userurb_sigval.sival_int = ptr_to_compat(arg);
return proc_do_submiturb(ps, &uurb,
((struct usbdevfs_urb32 __user *)arg)->iso_frame_desc,
arg, userurb_sigval);
}
static int processcompl_compat(struct async *as, void __user * __user *arg)
{
struct urb *urb = as->urb;
struct usbdevfs_urb32 __user *userurb = as->userurb;
void __user *addr = as->userurb;
unsigned int i;
compute_isochronous_actual_length(urb);
if (as->userbuffer && urb->actual_length) {
if (copy_urb_data_to_user(as->userbuffer, urb))
return -EFAULT;
}
if (put_user(as->status, &userurb->status))
return -EFAULT;
if (put_user(urb->actual_length, &userurb->actual_length))
return -EFAULT;
if (put_user(urb->error_count, &userurb->error_count))
return -EFAULT;
if (usb_endpoint_xfer_isoc(&urb->ep->desc)) {
for (i = 0; i < urb->number_of_packets; i++) {
if (put_user(urb->iso_frame_desc[i].actual_length,
&userurb->iso_frame_desc[i].actual_length))
return -EFAULT;
if (put_user(urb->iso_frame_desc[i].status,
&userurb->iso_frame_desc[i].status))
return -EFAULT;
}
}
if (put_user(ptr_to_compat(addr), (u32 __user *)arg))
return -EFAULT;
return 0;
}
static int proc_reapurb_compat(struct usb_dev_state *ps, void __user *arg)
{
struct async *as = reap_as(ps);
if (as) {
int retval;
snoop(&ps->dev->dev, "reap %px\n", as->userurb);
retval = processcompl_compat(as, (void __user * __user *)arg);
free_async(as);
return retval;
}
if (signal_pending(current))
return -EINTR;
return -ENODEV;
}
static int proc_reapurbnonblock_compat(struct usb_dev_state *ps, void __user *arg)
{
int retval;
struct async *as;
as = async_getcompleted(ps);
if (as) {
snoop(&ps->dev->dev, "reap %px\n", as->userurb);
retval = processcompl_compat(as, (void __user * __user *)arg);
free_async(as);
} else {
retval = (connected(ps) ? -EAGAIN : -ENODEV);
}
return retval;
}
#endif
static int proc_disconnectsignal(struct usb_dev_state *ps, void __user *arg)
{
struct usbdevfs_disconnectsignal ds;
if (copy_from_user(&ds, arg, sizeof(ds)))
return -EFAULT;
ps->discsignr = ds.signr;
ps->disccontext.sival_ptr = ds.context;
return 0;
}
static int proc_claiminterface(struct usb_dev_state *ps, void __user *arg)
{
unsigned int ifnum;
if (get_user(ifnum, (unsigned int __user *)arg))
return -EFAULT;
return claimintf(ps, ifnum);
}
static int proc_releaseinterface(struct usb_dev_state *ps, void __user *arg)
{
unsigned int ifnum;
int ret;
if (get_user(ifnum, (unsigned int __user *)arg))
return -EFAULT;
ret = releaseintf(ps, ifnum);
if (ret < 0)
return ret;
destroy_async_on_interface(ps, ifnum);
return 0;
}
static int proc_ioctl(struct usb_dev_state *ps, struct usbdevfs_ioctl *ctl)
{
int size;
void *buf = NULL;
int retval = 0;
struct usb_interface *intf = NULL;
struct usb_driver *driver = NULL;
if (ps->privileges_dropped)
return -EACCES;
if (!connected(ps))
return -ENODEV;
/* alloc buffer */
size = _IOC_SIZE(ctl->ioctl_code);
if (size > 0) {
buf = kmalloc(size, GFP_KERNEL);
if (buf == NULL)
return -ENOMEM;
if ((_IOC_DIR(ctl->ioctl_code) & _IOC_WRITE)) {
if (copy_from_user(buf, ctl->data, size)) {
kfree(buf);
return -EFAULT;
}
} else {
memset(buf, 0, size);
}
}
if (ps->dev->state != USB_STATE_CONFIGURED)
retval = -EHOSTUNREACH;
else if (!(intf = usb_ifnum_to_if(ps->dev, ctl->ifno)))
retval = -EINVAL;
else switch (ctl->ioctl_code) {
/* disconnect kernel driver from interface */
case USBDEVFS_DISCONNECT:
if (intf->dev.driver) {
driver = to_usb_driver(intf->dev.driver);
dev_dbg(&intf->dev, "disconnect by usbfs\n");
usb_driver_release_interface(driver, intf);
} else
retval = -ENODATA;
break;
/* let kernel drivers try to (re)bind to the interface */
case USBDEVFS_CONNECT:
if (!intf->dev.driver)
retval = device_attach(&intf->dev);
else
retval = -EBUSY;
break;
/* talk directly to the interface's driver */
default:
if (intf->dev.driver)
driver = to_usb_driver(intf->dev.driver);
if (driver == NULL || driver->unlocked_ioctl == NULL) {
retval = -ENOTTY;
} else {
retval = driver->unlocked_ioctl(intf, ctl->ioctl_code, buf);
if (retval == -ENOIOCTLCMD)
retval = -ENOTTY;
}
}
/* cleanup and return */
if (retval >= 0
&& (_IOC_DIR(ctl->ioctl_code) & _IOC_READ) != 0
&& size > 0
&& copy_to_user(ctl->data, buf, size) != 0)
retval = -EFAULT;
kfree(buf);
return retval;
}
static int proc_ioctl_default(struct usb_dev_state *ps, void __user *arg)
{
struct usbdevfs_ioctl ctrl;
if (copy_from_user(&ctrl, arg, sizeof(ctrl)))
return -EFAULT;
return proc_ioctl(ps, &ctrl);
}
#ifdef CONFIG_COMPAT
static int proc_ioctl_compat(struct usb_dev_state *ps, compat_uptr_t arg)
{
struct usbdevfs_ioctl32 ioc32;
struct usbdevfs_ioctl ctrl;
if (copy_from_user(&ioc32, compat_ptr(arg), sizeof(ioc32)))
return -EFAULT;
ctrl.ifno = ioc32.ifno;
ctrl.ioctl_code = ioc32.ioctl_code;
ctrl.data = compat_ptr(ioc32.data);
return proc_ioctl(ps, &ctrl);
}
#endif
static int proc_claim_port(struct usb_dev_state *ps, void __user *arg)
{
unsigned portnum;
int rc;
if (get_user(portnum, (unsigned __user *) arg))
return -EFAULT;
rc = usb_hub_claim_port(ps->dev, portnum, ps);
if (rc == 0)
snoop(&ps->dev->dev, "port %d claimed by process %d: %s\n",
portnum, task_pid_nr(current), current->comm);
return rc;
}
static int proc_release_port(struct usb_dev_state *ps, void __user *arg)
{
unsigned portnum;
if (get_user(portnum, (unsigned __user *) arg))
return -EFAULT;
return usb_hub_release_port(ps->dev, portnum, ps);
}
static int proc_get_capabilities(struct usb_dev_state *ps, void __user *arg)
{
__u32 caps;
caps = USBDEVFS_CAP_ZERO_PACKET | USBDEVFS_CAP_NO_PACKET_SIZE_LIM |
USBDEVFS_CAP_REAP_AFTER_DISCONNECT | USBDEVFS_CAP_MMAP |
USBDEVFS_CAP_DROP_PRIVILEGES |
USBDEVFS_CAP_CONNINFO_EX | MAYBE_CAP_SUSPEND;
if (!ps->dev->bus->no_stop_on_short)
caps |= USBDEVFS_CAP_BULK_CONTINUATION;
if (ps->dev->bus->sg_tablesize)
caps |= USBDEVFS_CAP_BULK_SCATTER_GATHER;
if (put_user(caps, (__u32 __user *)arg))
return -EFAULT;
return 0;
}
static int proc_disconnect_claim(struct usb_dev_state *ps, void __user *arg)
{
struct usbdevfs_disconnect_claim dc;
struct usb_interface *intf;
if (copy_from_user(&dc, arg, sizeof(dc)))
return -EFAULT;
intf = usb_ifnum_to_if(ps->dev, dc.interface);
if (!intf)
return -EINVAL;
if (intf->dev.driver) {
struct usb_driver *driver = to_usb_driver(intf->dev.driver);
if (ps->privileges_dropped)
return -EACCES;
if ((dc.flags & USBDEVFS_DISCONNECT_CLAIM_IF_DRIVER) &&
strncmp(dc.driver, intf->dev.driver->name,
sizeof(dc.driver)) != 0)
return -EBUSY;
if ((dc.flags & USBDEVFS_DISCONNECT_CLAIM_EXCEPT_DRIVER) &&
strncmp(dc.driver, intf->dev.driver->name,
sizeof(dc.driver)) == 0)
return -EBUSY;
dev_dbg(&intf->dev, "disconnect by usbfs\n");
usb_driver_release_interface(driver, intf);
}
return claimintf(ps, dc.interface);
}
static int proc_alloc_streams(struct usb_dev_state *ps, void __user *arg)
{
unsigned num_streams, num_eps;
struct usb_host_endpoint **eps;
struct usb_interface *intf;
int r;
r = parse_usbdevfs_streams(ps, arg, &num_streams, &num_eps,
&eps, &intf);
if (r)
return r;
destroy_async_on_interface(ps,
intf->altsetting[0].desc.bInterfaceNumber);
r = usb_alloc_streams(intf, eps, num_eps, num_streams, GFP_KERNEL);
kfree(eps);
return r;
}
static int proc_free_streams(struct usb_dev_state *ps, void __user *arg)
{
unsigned num_eps;
struct usb_host_endpoint **eps;
struct usb_interface *intf;
int r;
r = parse_usbdevfs_streams(ps, arg, NULL, &num_eps, &eps, &intf);
if (r)
return r;
destroy_async_on_interface(ps,
intf->altsetting[0].desc.bInterfaceNumber);
r = usb_free_streams(intf, eps, num_eps, GFP_KERNEL);
kfree(eps);
return r;
}
static int proc_drop_privileges(struct usb_dev_state *ps, void __user *arg)
{
u32 data;
if (copy_from_user(&data, arg, sizeof(data)))
return -EFAULT;
/* This is a one way operation. Once privileges are
* dropped, you cannot regain them. You may however reissue
* this ioctl to shrink the allowed interfaces mask.
*/
ps->interface_allowed_mask &= data;
ps->privileges_dropped = true;
return 0;
}
static int proc_forbid_suspend(struct usb_dev_state *ps)
{
int ret = 0;
if (ps->suspend_allowed) {
ret = usb_autoresume_device(ps->dev);
if (ret == 0)
ps->suspend_allowed = false;
else if (ret != -ENODEV)
ret = -EIO;
}
return ret;
}
static int proc_allow_suspend(struct usb_dev_state *ps)
{
if (!connected(ps))
return -ENODEV;
WRITE_ONCE(ps->not_yet_resumed, 1);
if (!ps->suspend_allowed) {
usb_autosuspend_device(ps->dev);
ps->suspend_allowed = true;
}
return 0;
}
static int proc_wait_for_resume(struct usb_dev_state *ps)
{
int ret;
usb_unlock_device(ps->dev);
ret = wait_event_interruptible(ps->wait_for_resume,
READ_ONCE(ps->not_yet_resumed) == 0);
usb_lock_device(ps->dev);
if (ret != 0)
return -EINTR;
return proc_forbid_suspend(ps);
}
/*
* NOTE: All requests here that have interface numbers as parameters
* are assuming that somehow the configuration has been prevented from
* changing. But there's no mechanism to ensure that...
*/
static long usbdev_do_ioctl(struct file *file, unsigned int cmd,
void __user *p)
{
struct usb_dev_state *ps = file->private_data;
struct inode *inode = file_inode(file);
struct usb_device *dev = ps->dev;
int ret = -ENOTTY;
if (!(file->f_mode & FMODE_WRITE))
return -EPERM;
usb_lock_device(dev);
/* Reap operations are allowed even after disconnection */
switch (cmd) {
case USBDEVFS_REAPURB:
snoop(&dev->dev, "%s: REAPURB\n", __func__);
ret = proc_reapurb(ps, p);
goto done;
case USBDEVFS_REAPURBNDELAY:
snoop(&dev->dev, "%s: REAPURBNDELAY\n", __func__);
ret = proc_reapurbnonblock(ps, p);
goto done;
#ifdef CONFIG_COMPAT
case USBDEVFS_REAPURB32:
snoop(&dev->dev, "%s: REAPURB32\n", __func__);
ret = proc_reapurb_compat(ps, p);
goto done;
case USBDEVFS_REAPURBNDELAY32:
snoop(&dev->dev, "%s: REAPURBNDELAY32\n", __func__);
ret = proc_reapurbnonblock_compat(ps, p);
goto done;
#endif
}
if (!connected(ps)) {
usb_unlock_device(dev);
return -ENODEV;
}
switch (cmd) {
case USBDEVFS_CONTROL:
snoop(&dev->dev, "%s: CONTROL\n", __func__);
ret = proc_control(ps, p);
if (ret >= 0)
inode->i_mtime = inode_set_ctime_current(inode);
break;
case USBDEVFS_BULK:
snoop(&dev->dev, "%s: BULK\n", __func__);
ret = proc_bulk(ps, p);
if (ret >= 0)
inode->i_mtime = inode_set_ctime_current(inode);
break;
case USBDEVFS_RESETEP:
snoop(&dev->dev, "%s: RESETEP\n", __func__);
ret = proc_resetep(ps, p);
if (ret >= 0)
inode->i_mtime = inode_set_ctime_current(inode);
break;
case USBDEVFS_RESET:
snoop(&dev->dev, "%s: RESET\n", __func__);
ret = proc_resetdevice(ps);
break;
case USBDEVFS_CLEAR_HALT:
snoop(&dev->dev, "%s: CLEAR_HALT\n", __func__);
ret = proc_clearhalt(ps, p);
if (ret >= 0)
inode->i_mtime = inode_set_ctime_current(inode);
break;
case USBDEVFS_GETDRIVER:
snoop(&dev->dev, "%s: GETDRIVER\n", __func__);
ret = proc_getdriver(ps, p);
break;
case USBDEVFS_CONNECTINFO:
snoop(&dev->dev, "%s: CONNECTINFO\n", __func__);
ret = proc_connectinfo(ps, p);
break;
case USBDEVFS_SETINTERFACE:
snoop(&dev->dev, "%s: SETINTERFACE\n", __func__);
ret = proc_setintf(ps, p);
break;
case USBDEVFS_SETCONFIGURATION:
snoop(&dev->dev, "%s: SETCONFIGURATION\n", __func__);
ret = proc_setconfig(ps, p);
break;
case USBDEVFS_SUBMITURB:
snoop(&dev->dev, "%s: SUBMITURB\n", __func__);
ret = proc_submiturb(ps, p);
if (ret >= 0)
inode->i_mtime = inode_set_ctime_current(inode);
break;
#ifdef CONFIG_COMPAT
case USBDEVFS_CONTROL32:
snoop(&dev->dev, "%s: CONTROL32\n", __func__);
ret = proc_control_compat(ps, p);
if (ret >= 0)
inode->i_mtime = inode_set_ctime_current(inode);
break;
case USBDEVFS_BULK32:
snoop(&dev->dev, "%s: BULK32\n", __func__);
ret = proc_bulk_compat(ps, p);
if (ret >= 0)
inode->i_mtime = inode_set_ctime_current(inode);
break;
case USBDEVFS_DISCSIGNAL32:
snoop(&dev->dev, "%s: DISCSIGNAL32\n", __func__);
ret = proc_disconnectsignal_compat(ps, p);
break;
case USBDEVFS_SUBMITURB32:
snoop(&dev->dev, "%s: SUBMITURB32\n", __func__);
ret = proc_submiturb_compat(ps, p);
if (ret >= 0)
inode->i_mtime = inode_set_ctime_current(inode);
break;
case USBDEVFS_IOCTL32:
snoop(&dev->dev, "%s: IOCTL32\n", __func__);
ret = proc_ioctl_compat(ps, ptr_to_compat(p));
break;
#endif
case USBDEVFS_DISCARDURB:
snoop(&dev->dev, "%s: DISCARDURB %px\n", __func__, p);
ret = proc_unlinkurb(ps, p);
break;
case USBDEVFS_DISCSIGNAL:
snoop(&dev->dev, "%s: DISCSIGNAL\n", __func__);
ret = proc_disconnectsignal(ps, p);
break;
case USBDEVFS_CLAIMINTERFACE:
snoop(&dev->dev, "%s: CLAIMINTERFACE\n", __func__);
ret = proc_claiminterface(ps, p);
break;
case USBDEVFS_RELEASEINTERFACE:
snoop(&dev->dev, "%s: RELEASEINTERFACE\n", __func__);
ret = proc_releaseinterface(ps, p);
break;
case USBDEVFS_IOCTL:
snoop(&dev->dev, "%s: IOCTL\n", __func__);
ret = proc_ioctl_default(ps, p);
break;
case USBDEVFS_CLAIM_PORT:
snoop(&dev->dev, "%s: CLAIM_PORT\n", __func__);
ret = proc_claim_port(ps, p);
break;
case USBDEVFS_RELEASE_PORT:
snoop(&dev->dev, "%s: RELEASE_PORT\n", __func__);
ret = proc_release_port(ps, p);
break;
case USBDEVFS_GET_CAPABILITIES:
ret = proc_get_capabilities(ps, p);
break;
case USBDEVFS_DISCONNECT_CLAIM:
ret = proc_disconnect_claim(ps, p);
break;
case USBDEVFS_ALLOC_STREAMS:
ret = proc_alloc_streams(ps, p);
break;
case USBDEVFS_FREE_STREAMS:
ret = proc_free_streams(ps, p);
break;
case USBDEVFS_DROP_PRIVILEGES:
ret = proc_drop_privileges(ps, p);
break;
case USBDEVFS_GET_SPEED:
ret = ps->dev->speed;
break;
case USBDEVFS_FORBID_SUSPEND:
ret = proc_forbid_suspend(ps);
break;
case USBDEVFS_ALLOW_SUSPEND:
ret = proc_allow_suspend(ps);
break;
case USBDEVFS_WAIT_FOR_RESUME:
ret = proc_wait_for_resume(ps);
break;
}
/* Handle variable-length commands */
switch (cmd & ~IOCSIZE_MASK) {
case USBDEVFS_CONNINFO_EX(0):
ret = proc_conninfo_ex(ps, p, _IOC_SIZE(cmd));
break;
}
done:
usb_unlock_device(dev);
if (ret >= 0)
inode->i_atime = current_time(inode);
return ret;
}
static long usbdev_ioctl(struct file *file, unsigned int cmd,
unsigned long arg)
{
int ret;
ret = usbdev_do_ioctl(file, cmd, (void __user *)arg);
return ret;
}
/* No kernel lock - fine */
static __poll_t usbdev_poll(struct file *file,
struct poll_table_struct *wait)
{
struct usb_dev_state *ps = file->private_data;
__poll_t mask = 0;
poll_wait(file, &ps->wait, wait);
if (file->f_mode & FMODE_WRITE && !list_empty(&ps->async_completed))
mask |= EPOLLOUT | EPOLLWRNORM;
if (!connected(ps))
mask |= EPOLLHUP;
if (list_empty(&ps->list))
mask |= EPOLLERR;
return mask;
}
const struct file_operations usbdev_file_operations = {
.owner = THIS_MODULE,
.llseek = no_seek_end_llseek,
.read = usbdev_read,
.poll = usbdev_poll,
.unlocked_ioctl = usbdev_ioctl,
.compat_ioctl = compat_ptr_ioctl,
.mmap = usbdev_mmap,
.open = usbdev_open,
.release = usbdev_release,
};
static void usbdev_remove(struct usb_device *udev)
{
struct usb_dev_state *ps;
/* Protect against simultaneous resume */
mutex_lock(&usbfs_mutex);
while (!list_empty(&udev->filelist)) {
ps = list_entry(udev->filelist.next, struct usb_dev_state, list);
destroy_all_async(ps);
wake_up_all(&ps->wait);
WRITE_ONCE(ps->not_yet_resumed, 0);
wake_up_all(&ps->wait_for_resume);
list_del_init(&ps->list);
if (ps->discsignr)
kill_pid_usb_asyncio(ps->discsignr, EPIPE, ps->disccontext,
ps->disc_pid, ps->cred);
}
mutex_unlock(&usbfs_mutex);
}
static int usbdev_notify(struct notifier_block *self,
unsigned long action, void *dev)
{
switch (action) {
case USB_DEVICE_ADD:
break;
case USB_DEVICE_REMOVE:
usbdev_remove(dev);
break;
}
return NOTIFY_OK;
}
static struct notifier_block usbdev_nb = {
.notifier_call = usbdev_notify,
};
static struct cdev usb_device_cdev;
int __init usb_devio_init(void)
{
int retval;
retval = register_chrdev_region(USB_DEVICE_DEV, USB_DEVICE_MAX,
"usb_device");
if (retval) {
printk(KERN_ERR "Unable to register minors for usb_device\n");
goto out;
}
cdev_init(&usb_device_cdev, &usbdev_file_operations);
retval = cdev_add(&usb_device_cdev, USB_DEVICE_DEV, USB_DEVICE_MAX);
if (retval) {
printk(KERN_ERR "Unable to get usb_device major %d\n",
USB_DEVICE_MAJOR);
goto error_cdev;
}
usb_register_notify(&usbdev_nb);
out:
return retval;
error_cdev:
unregister_chrdev_region(USB_DEVICE_DEV, USB_DEVICE_MAX);
goto out;
}
void usb_devio_cleanup(void)
{
usb_unregister_notify(&usbdev_nb);
cdev_del(&usb_device_cdev);
unregister_chrdev_region(USB_DEVICE_DEV, USB_DEVICE_MAX);
}