linux/arch/ia64/pci/pci.c
Jiang Liu 3772aea7d6 ia64/PCI/ACPI: Use common ACPI resource parsing interface for host bridge
Use common ACPI resource parsing interface to parse ACPI resources for
PCI host bridge, so we could share more code between IA64 and x86.
Later we will consolidate arch specific implementations into ACPI core.

Tested-by: Tony Luck <tony.luck@intel.com>
Signed-off-by: Jiang Liu <jiang.liu@linux.intel.com>
Reviewed-by: Hanjun Guo <hanjun.guo@linaro.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2015-10-16 22:18:51 +02:00

797 lines
20 KiB
C

/*
* pci.c - Low-Level PCI Access in IA-64
*
* Derived from bios32.c of i386 tree.
*
* (c) Copyright 2002, 2005 Hewlett-Packard Development Company, L.P.
* David Mosberger-Tang <davidm@hpl.hp.com>
* Bjorn Helgaas <bjorn.helgaas@hp.com>
* Copyright (C) 2004 Silicon Graphics, Inc.
*
* Note: Above list of copyright holders is incomplete...
*/
#include <linux/acpi.h>
#include <linux/types.h>
#include <linux/kernel.h>
#include <linux/pci.h>
#include <linux/pci-acpi.h>
#include <linux/init.h>
#include <linux/ioport.h>
#include <linux/slab.h>
#include <linux/spinlock.h>
#include <linux/bootmem.h>
#include <linux/export.h>
#include <asm/machvec.h>
#include <asm/page.h>
#include <asm/io.h>
#include <asm/sal.h>
#include <asm/smp.h>
#include <asm/irq.h>
#include <asm/hw_irq.h>
/*
* Low-level SAL-based PCI configuration access functions. Note that SAL
* calls are already serialized (via sal_lock), so we don't need another
* synchronization mechanism here.
*/
#define PCI_SAL_ADDRESS(seg, bus, devfn, reg) \
(((u64) seg << 24) | (bus << 16) | (devfn << 8) | (reg))
/* SAL 3.2 adds support for extended config space. */
#define PCI_SAL_EXT_ADDRESS(seg, bus, devfn, reg) \
(((u64) seg << 28) | (bus << 20) | (devfn << 12) | (reg))
int raw_pci_read(unsigned int seg, unsigned int bus, unsigned int devfn,
int reg, int len, u32 *value)
{
u64 addr, data = 0;
int mode, result;
if (!value || (seg > 65535) || (bus > 255) || (devfn > 255) || (reg > 4095))
return -EINVAL;
if ((seg | reg) <= 255) {
addr = PCI_SAL_ADDRESS(seg, bus, devfn, reg);
mode = 0;
} else if (sal_revision >= SAL_VERSION_CODE(3,2)) {
addr = PCI_SAL_EXT_ADDRESS(seg, bus, devfn, reg);
mode = 1;
} else {
return -EINVAL;
}
result = ia64_sal_pci_config_read(addr, mode, len, &data);
if (result != 0)
return -EINVAL;
*value = (u32) data;
return 0;
}
int raw_pci_write(unsigned int seg, unsigned int bus, unsigned int devfn,
int reg, int len, u32 value)
{
u64 addr;
int mode, result;
if ((seg > 65535) || (bus > 255) || (devfn > 255) || (reg > 4095))
return -EINVAL;
if ((seg | reg) <= 255) {
addr = PCI_SAL_ADDRESS(seg, bus, devfn, reg);
mode = 0;
} else if (sal_revision >= SAL_VERSION_CODE(3,2)) {
addr = PCI_SAL_EXT_ADDRESS(seg, bus, devfn, reg);
mode = 1;
} else {
return -EINVAL;
}
result = ia64_sal_pci_config_write(addr, mode, len, value);
if (result != 0)
return -EINVAL;
return 0;
}
static int pci_read(struct pci_bus *bus, unsigned int devfn, int where,
int size, u32 *value)
{
return raw_pci_read(pci_domain_nr(bus), bus->number,
devfn, where, size, value);
}
static int pci_write(struct pci_bus *bus, unsigned int devfn, int where,
int size, u32 value)
{
return raw_pci_write(pci_domain_nr(bus), bus->number,
devfn, where, size, value);
}
struct pci_ops pci_root_ops = {
.read = pci_read,
.write = pci_write,
};
struct pci_root_info {
struct pci_controller controller;
struct acpi_device *bridge;
struct list_head resources;
struct list_head io_resources;
char name[16];
};
static unsigned int
new_space (u64 phys_base, int sparse)
{
u64 mmio_base;
int i;
if (phys_base == 0)
return 0; /* legacy I/O port space */
mmio_base = (u64) ioremap(phys_base, 0);
for (i = 0; i < num_io_spaces; i++)
if (io_space[i].mmio_base == mmio_base &&
io_space[i].sparse == sparse)
return i;
if (num_io_spaces == MAX_IO_SPACES) {
pr_err("PCI: Too many IO port spaces "
"(MAX_IO_SPACES=%lu)\n", MAX_IO_SPACES);
return ~0;
}
i = num_io_spaces++;
io_space[i].mmio_base = mmio_base;
io_space[i].sparse = sparse;
return i;
}
static int add_io_space(struct device *dev, struct pci_root_info *info,
struct resource_entry *entry)
{
struct iospace_resource *iospace;
struct resource *resource, *res = entry->res;
char *name;
unsigned long base, min, max, base_port;
unsigned int sparse = 0, space_nr, len;
len = strlen(info->name) + 32;
iospace = kzalloc(sizeof(*iospace) + len, GFP_KERNEL);
if (!iospace) {
dev_err(dev, "PCI: No memory for %s I/O port space\n",
info->name);
return -ENOMEM;
}
if (res->flags & IORESOURCE_IO_SPARSE)
sparse = 1;
space_nr = new_space(entry->offset, sparse);
if (space_nr == ~0)
goto free_resource;
name = (char *)(iospace + 1);
min = res->start - entry->offset;
max = res->end - entry->offset;
base = __pa(io_space[space_nr].mmio_base);
base_port = IO_SPACE_BASE(space_nr);
snprintf(name, len, "%s I/O Ports %08lx-%08lx", info->name,
base_port + min, base_port + max);
/*
* The SDM guarantees the legacy 0-64K space is sparse, but if the
* mapping is done by the processor (not the bridge), ACPI may not
* mark it as sparse.
*/
if (space_nr == 0)
sparse = 1;
resource = &iospace->res;
resource->name = name;
resource->flags = IORESOURCE_MEM;
resource->start = base + (sparse ? IO_SPACE_SPARSE_ENCODING(min) : min);
resource->end = base + (sparse ? IO_SPACE_SPARSE_ENCODING(max) : max);
if (insert_resource(&iomem_resource, resource)) {
dev_err(dev,
"can't allocate host bridge io space resource %pR\n",
resource);
goto free_resource;
}
entry->offset = base_port;
res->start = min + base_port;
res->end = max + base_port;
list_add_tail(&iospace->list, &info->io_resources);
return 0;
free_resource:
kfree(iospace);
return -ENOSPC;
}
/*
* An IO port or MMIO resource assigned to a PCI host bridge may be
* consumed by the host bridge itself or available to its child
* bus/devices. The ACPI specification defines a bit (Producer/Consumer)
* to tell whether the resource is consumed by the host bridge itself,
* but firmware hasn't used that bit consistently, so we can't rely on it.
*
* On x86 and IA64 platforms, all IO port and MMIO resources are assumed
* to be available to child bus/devices except one special case:
* IO port [0xCF8-0xCFF] is consumed by the host bridge itself
* to access PCI configuration space.
*
* So explicitly filter out PCI CFG IO ports[0xCF8-0xCFF].
*/
static bool resource_is_pcicfg_ioport(struct resource *res)
{
return (res->flags & IORESOURCE_IO) &&
res->start == 0xCF8 && res->end == 0xCFF;
}
static int
probe_pci_root_info(struct pci_root_info *info, struct acpi_device *device,
int busnum, int domain)
{
int ret;
struct list_head *list = &info->resources;
struct resource_entry *entry, *tmp;
ret = acpi_dev_get_resources(device, list,
acpi_dev_filter_resource_type_cb,
(void *)(IORESOURCE_IO | IORESOURCE_MEM));
if (ret < 0)
dev_warn(&device->dev,
"failed to parse _CRS method, error code %d\n", ret);
else if (ret == 0)
dev_dbg(&device->dev,
"no IO and memory resources present in _CRS\n");
else
resource_list_for_each_entry_safe(entry, tmp, list) {
if ((entry->res->flags & IORESOURCE_DISABLED) ||
resource_is_pcicfg_ioport(entry->res))
resource_list_destroy_entry(entry);
else
entry->res->name = info->name;
}
return ret;
}
static void validate_resources(struct device *dev, struct list_head *resources,
unsigned long type)
{
LIST_HEAD(list);
struct resource *res1, *res2, *root = NULL;
struct resource_entry *tmp, *entry, *entry2;
BUG_ON((type & (IORESOURCE_MEM | IORESOURCE_IO)) == 0);
root = (type & IORESOURCE_MEM) ? &iomem_resource : &ioport_resource;
list_splice_init(resources, &list);
resource_list_for_each_entry_safe(entry, tmp, &list) {
bool free = false;
resource_size_t end;
res1 = entry->res;
if (!(res1->flags & type))
goto next;
/* Exclude non-addressable range or non-addressable portion */
end = min(res1->end, root->end);
if (end <= res1->start) {
dev_info(dev, "host bridge window %pR (ignored, not CPU addressable)\n",
res1);
free = true;
goto next;
} else if (res1->end != end) {
dev_info(dev, "host bridge window %pR ([%#llx-%#llx] ignored, not CPU addressable)\n",
res1, (unsigned long long)end + 1,
(unsigned long long)res1->end);
res1->end = end;
}
resource_list_for_each_entry(entry2, resources) {
res2 = entry2->res;
if (!(res2->flags & type))
continue;
/*
* I don't like throwing away windows because then
* our resources no longer match the ACPI _CRS, but
* the kernel resource tree doesn't allow overlaps.
*/
if (resource_overlaps(res1, res2)) {
res2->start = min(res1->start, res2->start);
res2->end = max(res1->end, res2->end);
dev_info(dev, "host bridge window expanded to %pR; %pR ignored\n",
res2, res1);
free = true;
goto next;
}
}
next:
resource_list_del(entry);
if (free)
resource_list_free_entry(entry);
else
resource_list_add_tail(entry, resources);
}
}
static void add_resources(struct pci_root_info *info, struct device *dev)
{
struct resource_entry *entry, *tmp;
struct resource *res, *conflict, *root = NULL;
struct list_head *list = &info->resources;
validate_resources(dev, list, IORESOURCE_MEM);
validate_resources(dev, list, IORESOURCE_IO);
resource_list_for_each_entry_safe(entry, tmp, list) {
res = entry->res;
if (res->flags & IORESOURCE_MEM) {
root = &iomem_resource;
/*
* HP's firmware has a hack to work around a Windows
* bug. Ignore these tiny memory ranges.
*/
if (resource_size(res) <= 16) {
resource_list_destroy_entry(entry);
continue;
}
} else if (res->flags & IORESOURCE_IO) {
root = &ioport_resource;
if (add_io_space(&info->bridge->dev, info, entry)) {
resource_list_destroy_entry(entry);
continue;
}
} else {
BUG_ON(res);
}
conflict = insert_resource_conflict(root, res);
if (conflict) {
dev_info(dev,
"ignoring host bridge window %pR (conflicts with %s %pR)\n",
res, conflict->name, conflict);
resource_list_destroy_entry(entry);
}
}
}
static void __release_pci_root_info(struct pci_root_info *info)
{
struct resource *res;
struct iospace_resource *iospace, *tmp;
struct resource_entry *entry, *tentry;
list_for_each_entry_safe(iospace, tmp, &info->io_resources, list) {
release_resource(&iospace->res);
kfree(iospace);
}
resource_list_for_each_entry_safe(entry, tentry, &info->resources) {
res = entry->res;
if (res->parent &&
(res->flags & (IORESOURCE_MEM | IORESOURCE_IO)))
release_resource(res);
resource_list_destroy_entry(entry);
}
kfree(info);
}
static void release_pci_root_info(struct pci_host_bridge *bridge)
{
struct pci_root_info *info = bridge->release_data;
__release_pci_root_info(info);
}
struct pci_bus *pci_acpi_scan_root(struct acpi_pci_root *root)
{
struct acpi_device *device = root->device;
int domain = root->segment;
int bus = root->secondary.start;
struct pci_root_info *info;
struct pci_bus *pbus;
int ret;
info = kzalloc(sizeof(*info), GFP_KERNEL);
if (!info) {
dev_err(&device->dev,
"pci_bus %04x:%02x: ignored (out of memory)\n",
domain, bus);
return NULL;
}
info->controller.segment = domain;
info->controller.companion = device;
info->controller.node = acpi_get_node(device->handle);
info->bridge = device;
INIT_LIST_HEAD(&info->resources);
INIT_LIST_HEAD(&info->io_resources);
snprintf(info->name, sizeof(info->name),
"PCI Bus %04x:%02x", domain, bus);
ret = probe_pci_root_info(info, device, bus, domain);
if (ret <= 0) {
kfree(info);
return NULL;
}
add_resources(info, &info->bridge->dev);
pci_add_resource(&info->resources, &root->secondary);
/*
* See arch/x86/pci/acpi.c.
* The desired pci bus might already be scanned in a quirk. We
* should handle the case here, but it appears that IA64 hasn't
* such quirk. So we just ignore the case now.
*/
pbus = pci_create_root_bus(NULL, bus, &pci_root_ops,
&info->controller, &info->resources);
if (!pbus) {
__release_pci_root_info(info);
return NULL;
}
pci_set_host_bridge_release(to_pci_host_bridge(pbus->bridge),
release_pci_root_info, info);
pci_scan_child_bus(pbus);
return pbus;
}
int pcibios_root_bridge_prepare(struct pci_host_bridge *bridge)
{
/*
* We pass NULL as parent to pci_create_root_bus(), so if it is not NULL
* here, pci_create_root_bus() has been called by someone else and
* sysdata is likely to be different from what we expect. Let it go in
* that case.
*/
if (!bridge->dev.parent) {
struct pci_controller *controller = bridge->bus->sysdata;
ACPI_COMPANION_SET(&bridge->dev, controller->companion);
}
return 0;
}
void pcibios_fixup_device_resources(struct pci_dev *dev)
{
int idx;
if (!dev->bus)
return;
for (idx = 0; idx < PCI_BRIDGE_RESOURCES; idx++) {
struct resource *r = &dev->resource[idx];
if (!r->flags || r->parent || !r->start)
continue;
pci_claim_resource(dev, idx);
}
}
EXPORT_SYMBOL_GPL(pcibios_fixup_device_resources);
static void pcibios_fixup_bridge_resources(struct pci_dev *dev)
{
int idx;
if (!dev->bus)
return;
for (idx = PCI_BRIDGE_RESOURCES; idx < PCI_NUM_RESOURCES; idx++) {
struct resource *r = &dev->resource[idx];
if (!r->flags || r->parent || !r->start)
continue;
pci_claim_bridge_resource(dev, idx);
}
}
/*
* Called after each bus is probed, but before its children are examined.
*/
void pcibios_fixup_bus(struct pci_bus *b)
{
struct pci_dev *dev;
if (b->self) {
pci_read_bridge_bases(b);
pcibios_fixup_bridge_resources(b->self);
}
list_for_each_entry(dev, &b->devices, bus_list)
pcibios_fixup_device_resources(dev);
platform_pci_fixup_bus(b);
}
void pcibios_add_bus(struct pci_bus *bus)
{
acpi_pci_add_bus(bus);
}
void pcibios_remove_bus(struct pci_bus *bus)
{
acpi_pci_remove_bus(bus);
}
void pcibios_set_master (struct pci_dev *dev)
{
/* No special bus mastering setup handling */
}
int
pcibios_enable_device (struct pci_dev *dev, int mask)
{
int ret;
ret = pci_enable_resources(dev, mask);
if (ret < 0)
return ret;
if (!dev->msi_enabled)
return acpi_pci_irq_enable(dev);
return 0;
}
void
pcibios_disable_device (struct pci_dev *dev)
{
BUG_ON(atomic_read(&dev->enable_cnt));
if (!dev->msi_enabled)
acpi_pci_irq_disable(dev);
}
resource_size_t
pcibios_align_resource (void *data, const struct resource *res,
resource_size_t size, resource_size_t align)
{
return res->start;
}
int
pci_mmap_page_range (struct pci_dev *dev, struct vm_area_struct *vma,
enum pci_mmap_state mmap_state, int write_combine)
{
unsigned long size = vma->vm_end - vma->vm_start;
pgprot_t prot;
/*
* I/O space cannot be accessed via normal processor loads and
* stores on this platform.
*/
if (mmap_state == pci_mmap_io)
/*
* XXX we could relax this for I/O spaces for which ACPI
* indicates that the space is 1-to-1 mapped. But at the
* moment, we don't support multiple PCI address spaces and
* the legacy I/O space is not 1-to-1 mapped, so this is moot.
*/
return -EINVAL;
if (!valid_mmap_phys_addr_range(vma->vm_pgoff, size))
return -EINVAL;
prot = phys_mem_access_prot(NULL, vma->vm_pgoff, size,
vma->vm_page_prot);
/*
* If the user requested WC, the kernel uses UC or WC for this region,
* and the chipset supports WC, we can use WC. Otherwise, we have to
* use the same attribute the kernel uses.
*/
if (write_combine &&
((pgprot_val(prot) & _PAGE_MA_MASK) == _PAGE_MA_UC ||
(pgprot_val(prot) & _PAGE_MA_MASK) == _PAGE_MA_WC) &&
efi_range_is_wc(vma->vm_start, vma->vm_end - vma->vm_start))
vma->vm_page_prot = pgprot_writecombine(vma->vm_page_prot);
else
vma->vm_page_prot = prot;
if (remap_pfn_range(vma, vma->vm_start, vma->vm_pgoff,
vma->vm_end - vma->vm_start, vma->vm_page_prot))
return -EAGAIN;
return 0;
}
/**
* ia64_pci_get_legacy_mem - generic legacy mem routine
* @bus: bus to get legacy memory base address for
*
* Find the base of legacy memory for @bus. This is typically the first
* megabyte of bus address space for @bus or is simply 0 on platforms whose
* chipsets support legacy I/O and memory routing. Returns the base address
* or an error pointer if an error occurred.
*
* This is the ia64 generic version of this routine. Other platforms
* are free to override it with a machine vector.
*/
char *ia64_pci_get_legacy_mem(struct pci_bus *bus)
{
return (char *)__IA64_UNCACHED_OFFSET;
}
/**
* pci_mmap_legacy_page_range - map legacy memory space to userland
* @bus: bus whose legacy space we're mapping
* @vma: vma passed in by mmap
*
* Map legacy memory space for this device back to userspace using a machine
* vector to get the base address.
*/
int
pci_mmap_legacy_page_range(struct pci_bus *bus, struct vm_area_struct *vma,
enum pci_mmap_state mmap_state)
{
unsigned long size = vma->vm_end - vma->vm_start;
pgprot_t prot;
char *addr;
/* We only support mmap'ing of legacy memory space */
if (mmap_state != pci_mmap_mem)
return -ENOSYS;
/*
* Avoid attribute aliasing. See Documentation/ia64/aliasing.txt
* for more details.
*/
if (!valid_mmap_phys_addr_range(vma->vm_pgoff, size))
return -EINVAL;
prot = phys_mem_access_prot(NULL, vma->vm_pgoff, size,
vma->vm_page_prot);
addr = pci_get_legacy_mem(bus);
if (IS_ERR(addr))
return PTR_ERR(addr);
vma->vm_pgoff += (unsigned long)addr >> PAGE_SHIFT;
vma->vm_page_prot = prot;
if (remap_pfn_range(vma, vma->vm_start, vma->vm_pgoff,
size, vma->vm_page_prot))
return -EAGAIN;
return 0;
}
/**
* ia64_pci_legacy_read - read from legacy I/O space
* @bus: bus to read
* @port: legacy port value
* @val: caller allocated storage for returned value
* @size: number of bytes to read
*
* Simply reads @size bytes from @port and puts the result in @val.
*
* Again, this (and the write routine) are generic versions that can be
* overridden by the platform. This is necessary on platforms that don't
* support legacy I/O routing or that hard fail on legacy I/O timeouts.
*/
int ia64_pci_legacy_read(struct pci_bus *bus, u16 port, u32 *val, u8 size)
{
int ret = size;
switch (size) {
case 1:
*val = inb(port);
break;
case 2:
*val = inw(port);
break;
case 4:
*val = inl(port);
break;
default:
ret = -EINVAL;
break;
}
return ret;
}
/**
* ia64_pci_legacy_write - perform a legacy I/O write
* @bus: bus pointer
* @port: port to write
* @val: value to write
* @size: number of bytes to write from @val
*
* Simply writes @size bytes of @val to @port.
*/
int ia64_pci_legacy_write(struct pci_bus *bus, u16 port, u32 val, u8 size)
{
int ret = size;
switch (size) {
case 1:
outb(val, port);
break;
case 2:
outw(val, port);
break;
case 4:
outl(val, port);
break;
default:
ret = -EINVAL;
break;
}
return ret;
}
/**
* set_pci_cacheline_size - determine cacheline size for PCI devices
*
* We want to use the line-size of the outer-most cache. We assume
* that this line-size is the same for all CPUs.
*
* Code mostly taken from arch/ia64/kernel/palinfo.c:cache_info().
*/
static void __init set_pci_dfl_cacheline_size(void)
{
unsigned long levels, unique_caches;
long status;
pal_cache_config_info_t cci;
status = ia64_pal_cache_summary(&levels, &unique_caches);
if (status != 0) {
pr_err("%s: ia64_pal_cache_summary() failed "
"(status=%ld)\n", __func__, status);
return;
}
status = ia64_pal_cache_config_info(levels - 1,
/* cache_type (data_or_unified)= */ 2, &cci);
if (status != 0) {
pr_err("%s: ia64_pal_cache_config_info() failed "
"(status=%ld)\n", __func__, status);
return;
}
pci_dfl_cache_line_size = (1 << cci.pcci_line_size) / 4;
}
u64 ia64_dma_get_required_mask(struct device *dev)
{
u32 low_totalram = ((max_pfn - 1) << PAGE_SHIFT);
u32 high_totalram = ((max_pfn - 1) >> (32 - PAGE_SHIFT));
u64 mask;
if (!high_totalram) {
/* convert to mask just covering totalram */
low_totalram = (1 << (fls(low_totalram) - 1));
low_totalram += low_totalram - 1;
mask = low_totalram;
} else {
high_totalram = (1 << (fls(high_totalram) - 1));
high_totalram += high_totalram - 1;
mask = (((u64)high_totalram) << 32) + 0xffffffff;
}
return mask;
}
EXPORT_SYMBOL_GPL(ia64_dma_get_required_mask);
u64 dma_get_required_mask(struct device *dev)
{
return platform_dma_get_required_mask(dev);
}
EXPORT_SYMBOL_GPL(dma_get_required_mask);
static int __init pcibios_init(void)
{
set_pci_dfl_cacheline_size();
return 0;
}
subsys_initcall(pcibios_init);