linux/arch/x86/crypto/sha256-avx-asm.S
Linus Torvalds 94a855111e - Add the call depth tracking mitigation for Retbleed which has
been long in the making. It is a lighterweight software-only fix for
 Skylake-based cores where enabling IBRS is a big hammer and causes a
 significant performance impact.
 
 What it basically does is, it aligns all kernel functions to 16 bytes
 boundary and adds a 16-byte padding before the function, objtool
 collects all functions' locations and when the mitigation gets applied,
 it patches a call accounting thunk which is used to track the call depth
 of the stack at any time.
 
 When that call depth reaches a magical, microarchitecture-specific value
 for the Return Stack Buffer, the code stuffs that RSB and avoids its
 underflow which could otherwise lead to the Intel variant of Retbleed.
 
 This software-only solution brings a lot of the lost performance back,
 as benchmarks suggest:
 
   https://lore.kernel.org/all/20220915111039.092790446@infradead.org/
 
 That page above also contains a lot more detailed explanation of the
 whole mechanism
 
 - Implement a new control flow integrity scheme called FineIBT which is
 based on the software kCFI implementation and uses hardware IBT support
 where present to annotate and track indirect branches using a hash to
 validate them
 
 - Other misc fixes and cleanups
 -----BEGIN PGP SIGNATURE-----
 
 iQIzBAABCgAdFiEEzv7L6UO9uDPlPSfHEsHwGGHeVUoFAmOZp5EACgkQEsHwGGHe
 VUrZFxAAvi/+8L0IYSK4mKJvixGbTFjxN/Swo2JVOfs34LqGUT6JaBc+VUMwZxdb
 VMTFIZ3ttkKEodjhxGI7oGev6V8UfhI37SmO2lYKXpQVjXXnMlv/M+Vw3teE38CN
 gopi+xtGnT1IeWQ3tc/Tv18pleJ0mh5HKWiW+9KoqgXj0wgF9x4eRYDz1TDCDA/A
 iaBzs56j8m/FSykZHnrWZ/MvjKNPdGlfJASUCPeTM2dcrXQGJ93+X2hJctzDte0y
 Nuiw6Y0htfFBE7xoJn+sqm5Okr+McoUM18/CCprbgSKYk18iMYm3ZtAi6FUQZS1A
 ua4wQCf49loGp15PO61AS5d3OBf5D3q/WihQRbCaJvTVgPp9sWYnWwtcVUuhMllh
 ZQtBU9REcVJ/22bH09Q9CjBW0VpKpXHveqQdqRDViLJ6v/iI6EFGmD24SW/VxyRd
 73k9MBGrL/dOf1SbEzdsnvcSB3LGzp0Om8o/KzJWOomrVKjBCJy16bwTEsCZEJmP
 i406m92GPXeaN1GhTko7vmF0GnkEdJs1GVCZPluCAxxbhHukyxHnrjlQjI4vC80n
 Ylc0B3Kvitw7LGJsPqu+/jfNHADC/zhx1qz/30wb5cFmFbN1aRdp3pm8JYUkn+l/
 zri2Y6+O89gvE/9/xUhMohzHsWUO7xITiBavewKeTP9GSWybWUs=
 =cRy1
 -----END PGP SIGNATURE-----

Merge tag 'x86_core_for_v6.2' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip

Pull x86 core updates from Borislav Petkov:

 - Add the call depth tracking mitigation for Retbleed which has been
   long in the making. It is a lighterweight software-only fix for
   Skylake-based cores where enabling IBRS is a big hammer and causes a
   significant performance impact.

   What it basically does is, it aligns all kernel functions to 16 bytes
   boundary and adds a 16-byte padding before the function, objtool
   collects all functions' locations and when the mitigation gets
   applied, it patches a call accounting thunk which is used to track
   the call depth of the stack at any time.

   When that call depth reaches a magical, microarchitecture-specific
   value for the Return Stack Buffer, the code stuffs that RSB and
   avoids its underflow which could otherwise lead to the Intel variant
   of Retbleed.

   This software-only solution brings a lot of the lost performance
   back, as benchmarks suggest:

       https://lore.kernel.org/all/20220915111039.092790446@infradead.org/

   That page above also contains a lot more detailed explanation of the
   whole mechanism

 - Implement a new control flow integrity scheme called FineIBT which is
   based on the software kCFI implementation and uses hardware IBT
   support where present to annotate and track indirect branches using a
   hash to validate them

 - Other misc fixes and cleanups

* tag 'x86_core_for_v6.2' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (80 commits)
  x86/paravirt: Use common macro for creating simple asm paravirt functions
  x86/paravirt: Remove clobber bitmask from .parainstructions
  x86/debug: Include percpu.h in debugreg.h to get DECLARE_PER_CPU() et al
  x86/cpufeatures: Move X86_FEATURE_CALL_DEPTH from bit 18 to bit 19 of word 11, to leave space for WIP X86_FEATURE_SGX_EDECCSSA bit
  x86/Kconfig: Enable kernel IBT by default
  x86,pm: Force out-of-line memcpy()
  objtool: Fix weak hole vs prefix symbol
  objtool: Optimize elf_dirty_reloc_sym()
  x86/cfi: Add boot time hash randomization
  x86/cfi: Boot time selection of CFI scheme
  x86/ibt: Implement FineIBT
  objtool: Add --cfi to generate the .cfi_sites section
  x86: Add prefix symbols for function padding
  objtool: Add option to generate prefix symbols
  objtool: Avoid O(bloody terrible) behaviour -- an ode to libelf
  objtool: Slice up elf_create_section_symbol()
  kallsyms: Revert "Take callthunks into account"
  x86: Unconfuse CONFIG_ and X86_FEATURE_ namespaces
  x86/retpoline: Fix crash printing warning
  x86/paravirt: Fix a !PARAVIRT build warning
  ...
2022-12-14 15:03:00 -08:00

500 lines
17 KiB
ArmAsm

########################################################################
# Implement fast SHA-256 with AVX1 instructions. (x86_64)
#
# Copyright (C) 2013 Intel Corporation.
#
# Authors:
# James Guilford <james.guilford@intel.com>
# Kirk Yap <kirk.s.yap@intel.com>
# Tim Chen <tim.c.chen@linux.intel.com>
#
# This software is available to you under a choice of one of two
# licenses. You may choose to be licensed under the terms of the GNU
# General Public License (GPL) Version 2, available from the file
# COPYING in the main directory of this source tree, or the
# OpenIB.org BSD license below:
#
# Redistribution and use in source and binary forms, with or
# without modification, are permitted provided that the following
# conditions are met:
#
# - Redistributions of source code must retain the above
# copyright notice, this list of conditions and the following
# disclaimer.
#
# - Redistributions in binary form must reproduce the above
# copyright notice, this list of conditions and the following
# disclaimer in the documentation and/or other materials
# provided with the distribution.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
# EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
# MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
# NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
# BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
# ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
# CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
########################################################################
#
# This code is described in an Intel White-Paper:
# "Fast SHA-256 Implementations on Intel Architecture Processors"
#
# To find it, surf to http://www.intel.com/p/en_US/embedded
# and search for that title.
#
########################################################################
# This code schedules 1 block at a time, with 4 lanes per block
########################################################################
#include <linux/linkage.h>
#include <linux/cfi_types.h>
## assume buffers not aligned
#define VMOVDQ vmovdqu
################################ Define Macros
# addm [mem], reg
# Add reg to mem using reg-mem add and store
.macro addm p1 p2
add \p1, \p2
mov \p2, \p1
.endm
.macro MY_ROR p1 p2
shld $(32-(\p1)), \p2, \p2
.endm
################################
# COPY_XMM_AND_BSWAP xmm, [mem], byte_flip_mask
# Load xmm with mem and byte swap each dword
.macro COPY_XMM_AND_BSWAP p1 p2 p3
VMOVDQ \p2, \p1
vpshufb \p3, \p1, \p1
.endm
################################
X0 = %xmm4
X1 = %xmm5
X2 = %xmm6
X3 = %xmm7
XTMP0 = %xmm0
XTMP1 = %xmm1
XTMP2 = %xmm2
XTMP3 = %xmm3
XTMP4 = %xmm8
XFER = %xmm9
XTMP5 = %xmm11
SHUF_00BA = %xmm10 # shuffle xBxA -> 00BA
SHUF_DC00 = %xmm12 # shuffle xDxC -> DC00
BYTE_FLIP_MASK = %xmm13
NUM_BLKS = %rdx # 3rd arg
INP = %rsi # 2nd arg
CTX = %rdi # 1st arg
SRND = %rsi # clobbers INP
c = %ecx
d = %r8d
e = %edx
TBL = %r12
a = %eax
b = %ebx
f = %r9d
g = %r10d
h = %r11d
y0 = %r13d
y1 = %r14d
y2 = %r15d
_INP_END_SIZE = 8
_INP_SIZE = 8
_XFER_SIZE = 16
_XMM_SAVE_SIZE = 0
_INP_END = 0
_INP = _INP_END + _INP_END_SIZE
_XFER = _INP + _INP_SIZE
_XMM_SAVE = _XFER + _XFER_SIZE
STACK_SIZE = _XMM_SAVE + _XMM_SAVE_SIZE
# rotate_Xs
# Rotate values of symbols X0...X3
.macro rotate_Xs
X_ = X0
X0 = X1
X1 = X2
X2 = X3
X3 = X_
.endm
# ROTATE_ARGS
# Rotate values of symbols a...h
.macro ROTATE_ARGS
TMP_ = h
h = g
g = f
f = e
e = d
d = c
c = b
b = a
a = TMP_
.endm
.macro FOUR_ROUNDS_AND_SCHED
## compute s0 four at a time and s1 two at a time
## compute W[-16] + W[-7] 4 at a time
mov e, y0 # y0 = e
MY_ROR (25-11), y0 # y0 = e >> (25-11)
mov a, y1 # y1 = a
vpalignr $4, X2, X3, XTMP0 # XTMP0 = W[-7]
MY_ROR (22-13), y1 # y1 = a >> (22-13)
xor e, y0 # y0 = e ^ (e >> (25-11))
mov f, y2 # y2 = f
MY_ROR (11-6), y0 # y0 = (e >> (11-6)) ^ (e >> (25-6))
xor a, y1 # y1 = a ^ (a >> (22-13)
xor g, y2 # y2 = f^g
vpaddd X0, XTMP0, XTMP0 # XTMP0 = W[-7] + W[-16]
xor e, y0 # y0 = e ^ (e >> (11-6)) ^ (e >> (25-6))
and e, y2 # y2 = (f^g)&e
MY_ROR (13-2), y1 # y1 = (a >> (13-2)) ^ (a >> (22-2))
## compute s0
vpalignr $4, X0, X1, XTMP1 # XTMP1 = W[-15]
xor a, y1 # y1 = a ^ (a >> (13-2)) ^ (a >> (22-2))
MY_ROR 6, y0 # y0 = S1 = (e>>6) & (e>>11) ^ (e>>25)
xor g, y2 # y2 = CH = ((f^g)&e)^g
MY_ROR 2, y1 # y1 = S0 = (a>>2) ^ (a>>13) ^ (a>>22)
add y0, y2 # y2 = S1 + CH
add _XFER(%rsp), y2 # y2 = k + w + S1 + CH
mov a, y0 # y0 = a
add y2, h # h = h + S1 + CH + k + w
mov a, y2 # y2 = a
vpsrld $7, XTMP1, XTMP2
or c, y0 # y0 = a|c
add h, d # d = d + h + S1 + CH + k + w
and c, y2 # y2 = a&c
vpslld $(32-7), XTMP1, XTMP3
and b, y0 # y0 = (a|c)&b
add y1, h # h = h + S1 + CH + k + w + S0
vpor XTMP2, XTMP3, XTMP3 # XTMP1 = W[-15] MY_ROR 7
or y2, y0 # y0 = MAJ = (a|c)&b)|(a&c)
add y0, h # h = h + S1 + CH + k + w + S0 + MAJ
ROTATE_ARGS
mov e, y0 # y0 = e
mov a, y1 # y1 = a
MY_ROR (25-11), y0 # y0 = e >> (25-11)
xor e, y0 # y0 = e ^ (e >> (25-11))
mov f, y2 # y2 = f
MY_ROR (22-13), y1 # y1 = a >> (22-13)
vpsrld $18, XTMP1, XTMP2 #
xor a, y1 # y1 = a ^ (a >> (22-13)
MY_ROR (11-6), y0 # y0 = (e >> (11-6)) ^ (e >> (25-6))
xor g, y2 # y2 = f^g
vpsrld $3, XTMP1, XTMP4 # XTMP4 = W[-15] >> 3
MY_ROR (13-2), y1 # y1 = (a >> (13-2)) ^ (a >> (22-2))
xor e, y0 # y0 = e ^ (e >> (11-6)) ^ (e >> (25-6))
and e, y2 # y2 = (f^g)&e
MY_ROR 6, y0 # y0 = S1 = (e>>6) & (e>>11) ^ (e>>25)
vpslld $(32-18), XTMP1, XTMP1
xor a, y1 # y1 = a ^ (a >> (13-2)) ^ (a >> (22-2))
xor g, y2 # y2 = CH = ((f^g)&e)^g
vpxor XTMP1, XTMP3, XTMP3 #
add y0, y2 # y2 = S1 + CH
add (1*4 + _XFER)(%rsp), y2 # y2 = k + w + S1 + CH
MY_ROR 2, y1 # y1 = S0 = (a>>2) ^ (a>>13) ^ (a>>22)
vpxor XTMP2, XTMP3, XTMP3 # XTMP1 = W[-15] MY_ROR 7 ^ W[-15] MY_ROR
mov a, y0 # y0 = a
add y2, h # h = h + S1 + CH + k + w
mov a, y2 # y2 = a
vpxor XTMP4, XTMP3, XTMP1 # XTMP1 = s0
or c, y0 # y0 = a|c
add h, d # d = d + h + S1 + CH + k + w
and c, y2 # y2 = a&c
## compute low s1
vpshufd $0b11111010, X3, XTMP2 # XTMP2 = W[-2] {BBAA}
and b, y0 # y0 = (a|c)&b
add y1, h # h = h + S1 + CH + k + w + S0
vpaddd XTMP1, XTMP0, XTMP0 # XTMP0 = W[-16] + W[-7] + s0
or y2, y0 # y0 = MAJ = (a|c)&b)|(a&c)
add y0, h # h = h + S1 + CH + k + w + S0 + MAJ
ROTATE_ARGS
mov e, y0 # y0 = e
mov a, y1 # y1 = a
MY_ROR (25-11), y0 # y0 = e >> (25-11)
xor e, y0 # y0 = e ^ (e >> (25-11))
MY_ROR (22-13), y1 # y1 = a >> (22-13)
mov f, y2 # y2 = f
xor a, y1 # y1 = a ^ (a >> (22-13)
MY_ROR (11-6), y0 # y0 = (e >> (11-6)) ^ (e >> (25-6))
vpsrld $10, XTMP2, XTMP4 # XTMP4 = W[-2] >> 10 {BBAA}
xor g, y2 # y2 = f^g
vpsrlq $19, XTMP2, XTMP3 # XTMP3 = W[-2] MY_ROR 19 {xBxA}
xor e, y0 # y0 = e ^ (e >> (11-6)) ^ (e >> (25-6))
and e, y2 # y2 = (f^g)&e
vpsrlq $17, XTMP2, XTMP2 # XTMP2 = W[-2] MY_ROR 17 {xBxA}
MY_ROR (13-2), y1 # y1 = (a >> (13-2)) ^ (a >> (22-2))
xor a, y1 # y1 = a ^ (a >> (13-2)) ^ (a >> (22-2))
xor g, y2 # y2 = CH = ((f^g)&e)^g
MY_ROR 6, y0 # y0 = S1 = (e>>6) & (e>>11) ^ (e>>25)
vpxor XTMP3, XTMP2, XTMP2 #
add y0, y2 # y2 = S1 + CH
MY_ROR 2, y1 # y1 = S0 = (a>>2) ^ (a>>13) ^ (a>>22)
add (2*4 + _XFER)(%rsp), y2 # y2 = k + w + S1 + CH
vpxor XTMP2, XTMP4, XTMP4 # XTMP4 = s1 {xBxA}
mov a, y0 # y0 = a
add y2, h # h = h + S1 + CH + k + w
mov a, y2 # y2 = a
vpshufb SHUF_00BA, XTMP4, XTMP4 # XTMP4 = s1 {00BA}
or c, y0 # y0 = a|c
add h, d # d = d + h + S1 + CH + k + w
and c, y2 # y2 = a&c
vpaddd XTMP4, XTMP0, XTMP0 # XTMP0 = {..., ..., W[1], W[0]}
and b, y0 # y0 = (a|c)&b
add y1, h # h = h + S1 + CH + k + w + S0
## compute high s1
vpshufd $0b01010000, XTMP0, XTMP2 # XTMP2 = W[-2] {DDCC}
or y2, y0 # y0 = MAJ = (a|c)&b)|(a&c)
add y0, h # h = h + S1 + CH + k + w + S0 + MAJ
ROTATE_ARGS
mov e, y0 # y0 = e
MY_ROR (25-11), y0 # y0 = e >> (25-11)
mov a, y1 # y1 = a
MY_ROR (22-13), y1 # y1 = a >> (22-13)
xor e, y0 # y0 = e ^ (e >> (25-11))
mov f, y2 # y2 = f
MY_ROR (11-6), y0 # y0 = (e >> (11-6)) ^ (e >> (25-6))
vpsrld $10, XTMP2, XTMP5 # XTMP5 = W[-2] >> 10 {DDCC}
xor a, y1 # y1 = a ^ (a >> (22-13)
xor g, y2 # y2 = f^g
vpsrlq $19, XTMP2, XTMP3 # XTMP3 = W[-2] MY_ROR 19 {xDxC}
xor e, y0 # y0 = e ^ (e >> (11-6)) ^ (e >> (25-6))
and e, y2 # y2 = (f^g)&e
MY_ROR (13-2), y1 # y1 = (a >> (13-2)) ^ (a >> (22-2))
vpsrlq $17, XTMP2, XTMP2 # XTMP2 = W[-2] MY_ROR 17 {xDxC}
xor a, y1 # y1 = a ^ (a >> (13-2)) ^ (a >> (22-2))
MY_ROR 6, y0 # y0 = S1 = (e>>6) & (e>>11) ^ (e>>25)
xor g, y2 # y2 = CH = ((f^g)&e)^g
vpxor XTMP3, XTMP2, XTMP2
MY_ROR 2, y1 # y1 = S0 = (a>>2) ^ (a>>13) ^ (a>>22)
add y0, y2 # y2 = S1 + CH
add (3*4 + _XFER)(%rsp), y2 # y2 = k + w + S1 + CH
vpxor XTMP2, XTMP5, XTMP5 # XTMP5 = s1 {xDxC}
mov a, y0 # y0 = a
add y2, h # h = h + S1 + CH + k + w
mov a, y2 # y2 = a
vpshufb SHUF_DC00, XTMP5, XTMP5 # XTMP5 = s1 {DC00}
or c, y0 # y0 = a|c
add h, d # d = d + h + S1 + CH + k + w
and c, y2 # y2 = a&c
vpaddd XTMP0, XTMP5, X0 # X0 = {W[3], W[2], W[1], W[0]}
and b, y0 # y0 = (a|c)&b
add y1, h # h = h + S1 + CH + k + w + S0
or y2, y0 # y0 = MAJ = (a|c)&b)|(a&c)
add y0, h # h = h + S1 + CH + k + w + S0 + MAJ
ROTATE_ARGS
rotate_Xs
.endm
## input is [rsp + _XFER + %1 * 4]
.macro DO_ROUND round
mov e, y0 # y0 = e
MY_ROR (25-11), y0 # y0 = e >> (25-11)
mov a, y1 # y1 = a
xor e, y0 # y0 = e ^ (e >> (25-11))
MY_ROR (22-13), y1 # y1 = a >> (22-13)
mov f, y2 # y2 = f
xor a, y1 # y1 = a ^ (a >> (22-13)
MY_ROR (11-6), y0 # y0 = (e >> (11-6)) ^ (e >> (25-6))
xor g, y2 # y2 = f^g
xor e, y0 # y0 = e ^ (e >> (11-6)) ^ (e >> (25-6))
MY_ROR (13-2), y1 # y1 = (a >> (13-2)) ^ (a >> (22-2))
and e, y2 # y2 = (f^g)&e
xor a, y1 # y1 = a ^ (a >> (13-2)) ^ (a >> (22-2))
MY_ROR 6, y0 # y0 = S1 = (e>>6) & (e>>11) ^ (e>>25)
xor g, y2 # y2 = CH = ((f^g)&e)^g
add y0, y2 # y2 = S1 + CH
MY_ROR 2, y1 # y1 = S0 = (a>>2) ^ (a>>13) ^ (a>>22)
offset = \round * 4 + _XFER #
add offset(%rsp), y2 # y2 = k + w + S1 + CH
mov a, y0 # y0 = a
add y2, h # h = h + S1 + CH + k + w
mov a, y2 # y2 = a
or c, y0 # y0 = a|c
add h, d # d = d + h + S1 + CH + k + w
and c, y2 # y2 = a&c
and b, y0 # y0 = (a|c)&b
add y1, h # h = h + S1 + CH + k + w + S0
or y2, y0 # y0 = MAJ = (a|c)&b)|(a&c)
add y0, h # h = h + S1 + CH + k + w + S0 + MAJ
ROTATE_ARGS
.endm
########################################################################
## void sha256_transform_avx(state sha256_state *state, const u8 *data, int blocks)
## arg 1 : pointer to state
## arg 2 : pointer to input data
## arg 3 : Num blocks
########################################################################
.text
SYM_TYPED_FUNC_START(sha256_transform_avx)
pushq %rbx
pushq %r12
pushq %r13
pushq %r14
pushq %r15
pushq %rbp
movq %rsp, %rbp
subq $STACK_SIZE, %rsp # allocate stack space
and $~15, %rsp # align stack pointer
shl $6, NUM_BLKS # convert to bytes
jz done_hash
add INP, NUM_BLKS # pointer to end of data
mov NUM_BLKS, _INP_END(%rsp)
## load initial digest
mov 4*0(CTX), a
mov 4*1(CTX), b
mov 4*2(CTX), c
mov 4*3(CTX), d
mov 4*4(CTX), e
mov 4*5(CTX), f
mov 4*6(CTX), g
mov 4*7(CTX), h
vmovdqa PSHUFFLE_BYTE_FLIP_MASK(%rip), BYTE_FLIP_MASK
vmovdqa _SHUF_00BA(%rip), SHUF_00BA
vmovdqa _SHUF_DC00(%rip), SHUF_DC00
loop0:
lea K256(%rip), TBL
## byte swap first 16 dwords
COPY_XMM_AND_BSWAP X0, 0*16(INP), BYTE_FLIP_MASK
COPY_XMM_AND_BSWAP X1, 1*16(INP), BYTE_FLIP_MASK
COPY_XMM_AND_BSWAP X2, 2*16(INP), BYTE_FLIP_MASK
COPY_XMM_AND_BSWAP X3, 3*16(INP), BYTE_FLIP_MASK
mov INP, _INP(%rsp)
## schedule 48 input dwords, by doing 3 rounds of 16 each
mov $3, SRND
.align 16
loop1:
vpaddd (TBL), X0, XFER
vmovdqa XFER, _XFER(%rsp)
FOUR_ROUNDS_AND_SCHED
vpaddd 1*16(TBL), X0, XFER
vmovdqa XFER, _XFER(%rsp)
FOUR_ROUNDS_AND_SCHED
vpaddd 2*16(TBL), X0, XFER
vmovdqa XFER, _XFER(%rsp)
FOUR_ROUNDS_AND_SCHED
vpaddd 3*16(TBL), X0, XFER
vmovdqa XFER, _XFER(%rsp)
add $4*16, TBL
FOUR_ROUNDS_AND_SCHED
sub $1, SRND
jne loop1
mov $2, SRND
loop2:
vpaddd (TBL), X0, XFER
vmovdqa XFER, _XFER(%rsp)
DO_ROUND 0
DO_ROUND 1
DO_ROUND 2
DO_ROUND 3
vpaddd 1*16(TBL), X1, XFER
vmovdqa XFER, _XFER(%rsp)
add $2*16, TBL
DO_ROUND 0
DO_ROUND 1
DO_ROUND 2
DO_ROUND 3
vmovdqa X2, X0
vmovdqa X3, X1
sub $1, SRND
jne loop2
addm (4*0)(CTX),a
addm (4*1)(CTX),b
addm (4*2)(CTX),c
addm (4*3)(CTX),d
addm (4*4)(CTX),e
addm (4*5)(CTX),f
addm (4*6)(CTX),g
addm (4*7)(CTX),h
mov _INP(%rsp), INP
add $64, INP
cmp _INP_END(%rsp), INP
jne loop0
done_hash:
mov %rbp, %rsp
popq %rbp
popq %r15
popq %r14
popq %r13
popq %r12
popq %rbx
RET
SYM_FUNC_END(sha256_transform_avx)
.section .rodata.cst256.K256, "aM", @progbits, 256
.align 64
K256:
.long 0x428a2f98,0x71374491,0xb5c0fbcf,0xe9b5dba5
.long 0x3956c25b,0x59f111f1,0x923f82a4,0xab1c5ed5
.long 0xd807aa98,0x12835b01,0x243185be,0x550c7dc3
.long 0x72be5d74,0x80deb1fe,0x9bdc06a7,0xc19bf174
.long 0xe49b69c1,0xefbe4786,0x0fc19dc6,0x240ca1cc
.long 0x2de92c6f,0x4a7484aa,0x5cb0a9dc,0x76f988da
.long 0x983e5152,0xa831c66d,0xb00327c8,0xbf597fc7
.long 0xc6e00bf3,0xd5a79147,0x06ca6351,0x14292967
.long 0x27b70a85,0x2e1b2138,0x4d2c6dfc,0x53380d13
.long 0x650a7354,0x766a0abb,0x81c2c92e,0x92722c85
.long 0xa2bfe8a1,0xa81a664b,0xc24b8b70,0xc76c51a3
.long 0xd192e819,0xd6990624,0xf40e3585,0x106aa070
.long 0x19a4c116,0x1e376c08,0x2748774c,0x34b0bcb5
.long 0x391c0cb3,0x4ed8aa4a,0x5b9cca4f,0x682e6ff3
.long 0x748f82ee,0x78a5636f,0x84c87814,0x8cc70208
.long 0x90befffa,0xa4506ceb,0xbef9a3f7,0xc67178f2
.section .rodata.cst16.PSHUFFLE_BYTE_FLIP_MASK, "aM", @progbits, 16
.align 16
PSHUFFLE_BYTE_FLIP_MASK:
.octa 0x0c0d0e0f08090a0b0405060700010203
.section .rodata.cst16._SHUF_00BA, "aM", @progbits, 16
.align 16
# shuffle xBxA -> 00BA
_SHUF_00BA:
.octa 0xFFFFFFFFFFFFFFFF0b0a090803020100
.section .rodata.cst16._SHUF_DC00, "aM", @progbits, 16
.align 16
# shuffle xDxC -> DC00
_SHUF_DC00:
.octa 0x0b0a090803020100FFFFFFFFFFFFFFFF