Thierry Reding 0ac7facb70 drm/nouveau/fault: Add support for GP10B
There is no BAR2 on GP10B and there is no need to map through BAR2
because all memory is shared between the GPU and the CPU. Add a custom
implementation of the fault sub-device that uses nvkm_memory_addr()
instead of nvkm_memory_bar2() to return the address of a pinned fault
buffer.

Signed-off-by: Thierry Reding <treding@nvidia.com>
Signed-off-by: Ben Skeggs <bskeggs@redhat.com>
2020-01-15 10:49:58 +10:00

236 lines
7.0 KiB
C

/*
* Copyright 2018 Red Hat Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*/
#include "priv.h"
#include <core/memory.h>
#include <subdev/mmu.h>
#include <engine/fifo.h>
#include <nvif/class.h>
static void
gv100_fault_buffer_process(struct nvkm_fault_buffer *buffer)
{
struct nvkm_device *device = buffer->fault->subdev.device;
struct nvkm_memory *mem = buffer->mem;
u32 get = nvkm_rd32(device, buffer->get);
u32 put = nvkm_rd32(device, buffer->put);
if (put == get)
return;
nvkm_kmap(mem);
while (get != put) {
const u32 base = get * buffer->fault->func->buffer.entry_size;
const u32 instlo = nvkm_ro32(mem, base + 0x00);
const u32 insthi = nvkm_ro32(mem, base + 0x04);
const u32 addrlo = nvkm_ro32(mem, base + 0x08);
const u32 addrhi = nvkm_ro32(mem, base + 0x0c);
const u32 timelo = nvkm_ro32(mem, base + 0x10);
const u32 timehi = nvkm_ro32(mem, base + 0x14);
const u32 info0 = nvkm_ro32(mem, base + 0x18);
const u32 info1 = nvkm_ro32(mem, base + 0x1c);
struct nvkm_fault_data info;
if (++get == buffer->entries)
get = 0;
nvkm_wr32(device, buffer->get, get);
info.addr = ((u64)addrhi << 32) | addrlo;
info.inst = ((u64)insthi << 32) | instlo;
info.time = ((u64)timehi << 32) | timelo;
info.engine = (info0 & 0x000000ff);
info.valid = (info1 & 0x80000000) >> 31;
info.gpc = (info1 & 0x1f000000) >> 24;
info.hub = (info1 & 0x00100000) >> 20;
info.access = (info1 & 0x000f0000) >> 16;
info.client = (info1 & 0x00007f00) >> 8;
info.reason = (info1 & 0x0000001f);
nvkm_fifo_fault(device->fifo, &info);
}
nvkm_done(mem);
}
static void
gv100_fault_buffer_intr(struct nvkm_fault_buffer *buffer, bool enable)
{
struct nvkm_device *device = buffer->fault->subdev.device;
const u32 intr = buffer->id ? 0x08000000 : 0x20000000;
if (enable)
nvkm_mask(device, 0x100a2c, intr, intr);
else
nvkm_mask(device, 0x100a34, intr, intr);
}
static void
gv100_fault_buffer_fini(struct nvkm_fault_buffer *buffer)
{
struct nvkm_device *device = buffer->fault->subdev.device;
const u32 foff = buffer->id * 0x14;
nvkm_mask(device, 0x100e34 + foff, 0x80000000, 0x00000000);
}
static void
gv100_fault_buffer_init(struct nvkm_fault_buffer *buffer)
{
struct nvkm_device *device = buffer->fault->subdev.device;
const u32 foff = buffer->id * 0x14;
nvkm_mask(device, 0x100e34 + foff, 0xc0000000, 0x40000000);
nvkm_wr32(device, 0x100e28 + foff, upper_32_bits(buffer->addr));
nvkm_wr32(device, 0x100e24 + foff, lower_32_bits(buffer->addr));
nvkm_mask(device, 0x100e34 + foff, 0x80000000, 0x80000000);
}
static void
gv100_fault_buffer_info(struct nvkm_fault_buffer *buffer)
{
struct nvkm_device *device = buffer->fault->subdev.device;
const u32 foff = buffer->id * 0x14;
nvkm_mask(device, 0x100e34 + foff, 0x40000000, 0x40000000);
buffer->entries = nvkm_rd32(device, 0x100e34 + foff) & 0x000fffff;
buffer->get = 0x100e2c + foff;
buffer->put = 0x100e30 + foff;
}
static int
gv100_fault_ntfy_nrpfb(struct nvkm_notify *notify)
{
struct nvkm_fault *fault = container_of(notify, typeof(*fault), nrpfb);
gv100_fault_buffer_process(fault->buffer[0]);
return NVKM_NOTIFY_KEEP;
}
static void
gv100_fault_intr_fault(struct nvkm_fault *fault)
{
struct nvkm_subdev *subdev = &fault->subdev;
struct nvkm_device *device = subdev->device;
struct nvkm_fault_data info;
const u32 addrlo = nvkm_rd32(device, 0x100e4c);
const u32 addrhi = nvkm_rd32(device, 0x100e50);
const u32 info0 = nvkm_rd32(device, 0x100e54);
const u32 insthi = nvkm_rd32(device, 0x100e58);
const u32 info1 = nvkm_rd32(device, 0x100e5c);
info.addr = ((u64)addrhi << 32) | addrlo;
info.inst = ((u64)insthi << 32) | (info0 & 0xfffff000);
info.time = 0;
info.engine = (info0 & 0x000000ff);
info.valid = (info1 & 0x80000000) >> 31;
info.gpc = (info1 & 0x1f000000) >> 24;
info.hub = (info1 & 0x00100000) >> 20;
info.access = (info1 & 0x000f0000) >> 16;
info.client = (info1 & 0x00007f00) >> 8;
info.reason = (info1 & 0x0000001f);
nvkm_fifo_fault(device->fifo, &info);
}
static void
gv100_fault_intr(struct nvkm_fault *fault)
{
struct nvkm_subdev *subdev = &fault->subdev;
struct nvkm_device *device = subdev->device;
u32 stat = nvkm_rd32(device, 0x100a20);
if (stat & 0x80000000) {
gv100_fault_intr_fault(fault);
nvkm_wr32(device, 0x100e60, 0x80000000);
stat &= ~0x80000000;
}
if (stat & 0x20000000) {
if (fault->buffer[0]) {
nvkm_event_send(&fault->event, 1, 0, NULL, 0);
stat &= ~0x20000000;
}
}
if (stat & 0x08000000) {
if (fault->buffer[1]) {
nvkm_event_send(&fault->event, 1, 1, NULL, 0);
stat &= ~0x08000000;
}
}
if (stat) {
nvkm_debug(subdev, "intr %08x\n", stat);
}
}
static void
gv100_fault_fini(struct nvkm_fault *fault)
{
nvkm_notify_put(&fault->nrpfb);
if (fault->buffer[0])
fault->func->buffer.fini(fault->buffer[0]);
nvkm_mask(fault->subdev.device, 0x100a34, 0x80000000, 0x80000000);
}
static void
gv100_fault_init(struct nvkm_fault *fault)
{
nvkm_mask(fault->subdev.device, 0x100a2c, 0x80000000, 0x80000000);
fault->func->buffer.init(fault->buffer[0]);
nvkm_notify_get(&fault->nrpfb);
}
int
gv100_fault_oneinit(struct nvkm_fault *fault)
{
return nvkm_notify_init(&fault->buffer[0]->object, &fault->event,
gv100_fault_ntfy_nrpfb, true, NULL, 0, 0,
&fault->nrpfb);
}
static const struct nvkm_fault_func
gv100_fault = {
.oneinit = gv100_fault_oneinit,
.init = gv100_fault_init,
.fini = gv100_fault_fini,
.intr = gv100_fault_intr,
.buffer.nr = 2,
.buffer.entry_size = 32,
.buffer.info = gv100_fault_buffer_info,
.buffer.pin = gp100_fault_buffer_pin,
.buffer.init = gv100_fault_buffer_init,
.buffer.fini = gv100_fault_buffer_fini,
.buffer.intr = gv100_fault_buffer_intr,
/*TODO: Figure out how to expose non-replayable fault buffer, which,
* for some reason, is where recoverable CE faults appear...
*
* It's a bit tricky, as both NVKM and SVM will need access to
* the non-replayable fault buffer.
*/
.user = { { 0, 0, VOLTA_FAULT_BUFFER_A }, 1 },
};
int
gv100_fault_new(struct nvkm_device *device, int index,
struct nvkm_fault **pfault)
{
return nvkm_fault_new_(&gv100_fault, device, index, pfault);
}