983d8209c6
When replacing file extents, called during fallocate, hole punching, clone and deduplication, we may not be able to replace/drop all the target file extent items with a single transaction handle. We may get -ENOSPC while doing it, in which case we release the transaction handle, balance the dirty pages of the btree inode, flush delayed items and get a new transaction handle to operate on what's left of the target range. By dropping and replacing file extent items we have effectively modified the inode, so we should bump its iversion and update its mtime/ctime before we update the inode item. This is because if the transaction we used for partially modifying the inode gets committed by someone after we release it and before we finish the rest of the range, a power failure happens, then after mounting the filesystem our inode has an outdated iversion and mtime/ctime, corresponding to the values it had before we changed it. So add the missing iversion and mtime/ctime updates. Reviewed-by: Boris Burkov <boris@bur.io> Signed-off-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
926 lines
28 KiB
C
926 lines
28 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
|
|
#include <linux/blkdev.h>
|
|
#include <linux/iversion.h>
|
|
#include "compression.h"
|
|
#include "ctree.h"
|
|
#include "delalloc-space.h"
|
|
#include "reflink.h"
|
|
#include "transaction.h"
|
|
#include "subpage.h"
|
|
|
|
#define BTRFS_MAX_DEDUPE_LEN SZ_16M
|
|
|
|
static int clone_finish_inode_update(struct btrfs_trans_handle *trans,
|
|
struct inode *inode,
|
|
u64 endoff,
|
|
const u64 destoff,
|
|
const u64 olen,
|
|
int no_time_update)
|
|
{
|
|
struct btrfs_root *root = BTRFS_I(inode)->root;
|
|
int ret;
|
|
|
|
inode_inc_iversion(inode);
|
|
if (!no_time_update)
|
|
inode->i_mtime = inode->i_ctime = current_time(inode);
|
|
/*
|
|
* We round up to the block size at eof when determining which
|
|
* extents to clone above, but shouldn't round up the file size.
|
|
*/
|
|
if (endoff > destoff + olen)
|
|
endoff = destoff + olen;
|
|
if (endoff > inode->i_size) {
|
|
i_size_write(inode, endoff);
|
|
btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0);
|
|
}
|
|
|
|
ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
|
|
if (ret) {
|
|
btrfs_abort_transaction(trans, ret);
|
|
btrfs_end_transaction(trans);
|
|
goto out;
|
|
}
|
|
ret = btrfs_end_transaction(trans);
|
|
out:
|
|
return ret;
|
|
}
|
|
|
|
static int copy_inline_to_page(struct btrfs_inode *inode,
|
|
const u64 file_offset,
|
|
char *inline_data,
|
|
const u64 size,
|
|
const u64 datal,
|
|
const u8 comp_type)
|
|
{
|
|
struct btrfs_fs_info *fs_info = inode->root->fs_info;
|
|
const u32 block_size = fs_info->sectorsize;
|
|
const u64 range_end = file_offset + block_size - 1;
|
|
const size_t inline_size = size - btrfs_file_extent_calc_inline_size(0);
|
|
char *data_start = inline_data + btrfs_file_extent_calc_inline_size(0);
|
|
struct extent_changeset *data_reserved = NULL;
|
|
struct page *page = NULL;
|
|
struct address_space *mapping = inode->vfs_inode.i_mapping;
|
|
int ret;
|
|
|
|
ASSERT(IS_ALIGNED(file_offset, block_size));
|
|
|
|
/*
|
|
* We have flushed and locked the ranges of the source and destination
|
|
* inodes, we also have locked the inodes, so we are safe to do a
|
|
* reservation here. Also we must not do the reservation while holding
|
|
* a transaction open, otherwise we would deadlock.
|
|
*/
|
|
ret = btrfs_delalloc_reserve_space(inode, &data_reserved, file_offset,
|
|
block_size);
|
|
if (ret)
|
|
goto out;
|
|
|
|
page = find_or_create_page(mapping, file_offset >> PAGE_SHIFT,
|
|
btrfs_alloc_write_mask(mapping));
|
|
if (!page) {
|
|
ret = -ENOMEM;
|
|
goto out_unlock;
|
|
}
|
|
|
|
ret = set_page_extent_mapped(page);
|
|
if (ret < 0)
|
|
goto out_unlock;
|
|
|
|
clear_extent_bit(&inode->io_tree, file_offset, range_end,
|
|
EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
|
|
0, 0, NULL);
|
|
ret = btrfs_set_extent_delalloc(inode, file_offset, range_end, 0, NULL);
|
|
if (ret)
|
|
goto out_unlock;
|
|
|
|
/*
|
|
* After dirtying the page our caller will need to start a transaction,
|
|
* and if we are low on metadata free space, that can cause flushing of
|
|
* delalloc for all inodes in order to get metadata space released.
|
|
* However we are holding the range locked for the whole duration of
|
|
* the clone/dedupe operation, so we may deadlock if that happens and no
|
|
* other task releases enough space. So mark this inode as not being
|
|
* possible to flush to avoid such deadlock. We will clear that flag
|
|
* when we finish cloning all extents, since a transaction is started
|
|
* after finding each extent to clone.
|
|
*/
|
|
set_bit(BTRFS_INODE_NO_DELALLOC_FLUSH, &inode->runtime_flags);
|
|
|
|
if (comp_type == BTRFS_COMPRESS_NONE) {
|
|
memcpy_to_page(page, offset_in_page(file_offset), data_start,
|
|
datal);
|
|
flush_dcache_page(page);
|
|
} else {
|
|
ret = btrfs_decompress(comp_type, data_start, page,
|
|
offset_in_page(file_offset),
|
|
inline_size, datal);
|
|
if (ret)
|
|
goto out_unlock;
|
|
flush_dcache_page(page);
|
|
}
|
|
|
|
/*
|
|
* If our inline data is smaller then the block/page size, then the
|
|
* remaining of the block/page is equivalent to zeroes. We had something
|
|
* like the following done:
|
|
*
|
|
* $ xfs_io -f -c "pwrite -S 0xab 0 500" file
|
|
* $ sync # (or fsync)
|
|
* $ xfs_io -c "falloc 0 4K" file
|
|
* $ xfs_io -c "pwrite -S 0xcd 4K 4K"
|
|
*
|
|
* So what's in the range [500, 4095] corresponds to zeroes.
|
|
*/
|
|
if (datal < block_size) {
|
|
memzero_page(page, datal, block_size - datal);
|
|
flush_dcache_page(page);
|
|
}
|
|
|
|
btrfs_page_set_uptodate(fs_info, page, file_offset, block_size);
|
|
btrfs_page_clear_checked(fs_info, page, file_offset, block_size);
|
|
btrfs_page_set_dirty(fs_info, page, file_offset, block_size);
|
|
out_unlock:
|
|
if (page) {
|
|
unlock_page(page);
|
|
put_page(page);
|
|
}
|
|
if (ret)
|
|
btrfs_delalloc_release_space(inode, data_reserved, file_offset,
|
|
block_size, true);
|
|
btrfs_delalloc_release_extents(inode, block_size);
|
|
out:
|
|
extent_changeset_free(data_reserved);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Deal with cloning of inline extents. We try to copy the inline extent from
|
|
* the source inode to destination inode when possible. When not possible we
|
|
* copy the inline extent's data into the respective page of the inode.
|
|
*/
|
|
static int clone_copy_inline_extent(struct inode *dst,
|
|
struct btrfs_path *path,
|
|
struct btrfs_key *new_key,
|
|
const u64 drop_start,
|
|
const u64 datal,
|
|
const u64 size,
|
|
const u8 comp_type,
|
|
char *inline_data,
|
|
struct btrfs_trans_handle **trans_out)
|
|
{
|
|
struct btrfs_fs_info *fs_info = btrfs_sb(dst->i_sb);
|
|
struct btrfs_root *root = BTRFS_I(dst)->root;
|
|
const u64 aligned_end = ALIGN(new_key->offset + datal,
|
|
fs_info->sectorsize);
|
|
struct btrfs_trans_handle *trans = NULL;
|
|
struct btrfs_drop_extents_args drop_args = { 0 };
|
|
int ret;
|
|
struct btrfs_key key;
|
|
|
|
if (new_key->offset > 0) {
|
|
ret = copy_inline_to_page(BTRFS_I(dst), new_key->offset,
|
|
inline_data, size, datal, comp_type);
|
|
goto out;
|
|
}
|
|
|
|
key.objectid = btrfs_ino(BTRFS_I(dst));
|
|
key.type = BTRFS_EXTENT_DATA_KEY;
|
|
key.offset = 0;
|
|
ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
|
|
if (ret < 0) {
|
|
return ret;
|
|
} else if (ret > 0) {
|
|
if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
|
|
ret = btrfs_next_leaf(root, path);
|
|
if (ret < 0)
|
|
return ret;
|
|
else if (ret > 0)
|
|
goto copy_inline_extent;
|
|
}
|
|
btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
|
|
if (key.objectid == btrfs_ino(BTRFS_I(dst)) &&
|
|
key.type == BTRFS_EXTENT_DATA_KEY) {
|
|
/*
|
|
* There's an implicit hole at file offset 0, copy the
|
|
* inline extent's data to the page.
|
|
*/
|
|
ASSERT(key.offset > 0);
|
|
goto copy_to_page;
|
|
}
|
|
} else if (i_size_read(dst) <= datal) {
|
|
struct btrfs_file_extent_item *ei;
|
|
|
|
ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
|
|
struct btrfs_file_extent_item);
|
|
/*
|
|
* If it's an inline extent replace it with the source inline
|
|
* extent, otherwise copy the source inline extent data into
|
|
* the respective page at the destination inode.
|
|
*/
|
|
if (btrfs_file_extent_type(path->nodes[0], ei) ==
|
|
BTRFS_FILE_EXTENT_INLINE)
|
|
goto copy_inline_extent;
|
|
|
|
goto copy_to_page;
|
|
}
|
|
|
|
copy_inline_extent:
|
|
/*
|
|
* We have no extent items, or we have an extent at offset 0 which may
|
|
* or may not be inlined. All these cases are dealt the same way.
|
|
*/
|
|
if (i_size_read(dst) > datal) {
|
|
/*
|
|
* At the destination offset 0 we have either a hole, a regular
|
|
* extent or an inline extent larger then the one we want to
|
|
* clone. Deal with all these cases by copying the inline extent
|
|
* data into the respective page at the destination inode.
|
|
*/
|
|
goto copy_to_page;
|
|
}
|
|
|
|
/*
|
|
* Release path before starting a new transaction so we don't hold locks
|
|
* that would confuse lockdep.
|
|
*/
|
|
btrfs_release_path(path);
|
|
/*
|
|
* If we end up here it means were copy the inline extent into a leaf
|
|
* of the destination inode. We know we will drop or adjust at most one
|
|
* extent item in the destination root.
|
|
*
|
|
* 1 unit - adjusting old extent (we may have to split it)
|
|
* 1 unit - add new extent
|
|
* 1 unit - inode update
|
|
*/
|
|
trans = btrfs_start_transaction(root, 3);
|
|
if (IS_ERR(trans)) {
|
|
ret = PTR_ERR(trans);
|
|
trans = NULL;
|
|
goto out;
|
|
}
|
|
drop_args.path = path;
|
|
drop_args.start = drop_start;
|
|
drop_args.end = aligned_end;
|
|
drop_args.drop_cache = true;
|
|
ret = btrfs_drop_extents(trans, root, BTRFS_I(dst), &drop_args);
|
|
if (ret)
|
|
goto out;
|
|
ret = btrfs_insert_empty_item(trans, root, path, new_key, size);
|
|
if (ret)
|
|
goto out;
|
|
|
|
write_extent_buffer(path->nodes[0], inline_data,
|
|
btrfs_item_ptr_offset(path->nodes[0],
|
|
path->slots[0]),
|
|
size);
|
|
btrfs_update_inode_bytes(BTRFS_I(dst), datal, drop_args.bytes_found);
|
|
btrfs_set_inode_full_sync(BTRFS_I(dst));
|
|
ret = btrfs_inode_set_file_extent_range(BTRFS_I(dst), 0, aligned_end);
|
|
out:
|
|
if (!ret && !trans) {
|
|
/*
|
|
* No transaction here means we copied the inline extent into a
|
|
* page of the destination inode.
|
|
*
|
|
* 1 unit to update inode item
|
|
*/
|
|
trans = btrfs_start_transaction(root, 1);
|
|
if (IS_ERR(trans)) {
|
|
ret = PTR_ERR(trans);
|
|
trans = NULL;
|
|
}
|
|
}
|
|
if (ret && trans) {
|
|
btrfs_abort_transaction(trans, ret);
|
|
btrfs_end_transaction(trans);
|
|
}
|
|
if (!ret)
|
|
*trans_out = trans;
|
|
|
|
return ret;
|
|
|
|
copy_to_page:
|
|
/*
|
|
* Release our path because we don't need it anymore and also because
|
|
* copy_inline_to_page() needs to reserve data and metadata, which may
|
|
* need to flush delalloc when we are low on available space and
|
|
* therefore cause a deadlock if writeback of an inline extent needs to
|
|
* write to the same leaf or an ordered extent completion needs to write
|
|
* to the same leaf.
|
|
*/
|
|
btrfs_release_path(path);
|
|
|
|
ret = copy_inline_to_page(BTRFS_I(dst), new_key->offset,
|
|
inline_data, size, datal, comp_type);
|
|
goto out;
|
|
}
|
|
|
|
/**
|
|
* btrfs_clone() - clone a range from inode file to another
|
|
*
|
|
* @src: Inode to clone from
|
|
* @inode: Inode to clone to
|
|
* @off: Offset within source to start clone from
|
|
* @olen: Original length, passed by user, of range to clone
|
|
* @olen_aligned: Block-aligned value of olen
|
|
* @destoff: Offset within @inode to start clone
|
|
* @no_time_update: Whether to update mtime/ctime on the target inode
|
|
*/
|
|
static int btrfs_clone(struct inode *src, struct inode *inode,
|
|
const u64 off, const u64 olen, const u64 olen_aligned,
|
|
const u64 destoff, int no_time_update)
|
|
{
|
|
struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
|
|
struct btrfs_path *path = NULL;
|
|
struct extent_buffer *leaf;
|
|
struct btrfs_trans_handle *trans;
|
|
char *buf = NULL;
|
|
struct btrfs_key key;
|
|
u32 nritems;
|
|
int slot;
|
|
int ret;
|
|
const u64 len = olen_aligned;
|
|
u64 last_dest_end = destoff;
|
|
u64 prev_extent_end = off;
|
|
|
|
ret = -ENOMEM;
|
|
buf = kvmalloc(fs_info->nodesize, GFP_KERNEL);
|
|
if (!buf)
|
|
return ret;
|
|
|
|
path = btrfs_alloc_path();
|
|
if (!path) {
|
|
kvfree(buf);
|
|
return ret;
|
|
}
|
|
|
|
path->reada = READA_FORWARD;
|
|
/* Clone data */
|
|
key.objectid = btrfs_ino(BTRFS_I(src));
|
|
key.type = BTRFS_EXTENT_DATA_KEY;
|
|
key.offset = off;
|
|
|
|
while (1) {
|
|
struct btrfs_file_extent_item *extent;
|
|
u64 extent_gen;
|
|
int type;
|
|
u32 size;
|
|
struct btrfs_key new_key;
|
|
u64 disko = 0, diskl = 0;
|
|
u64 datao = 0, datal = 0;
|
|
u8 comp;
|
|
u64 drop_start;
|
|
|
|
/* Note the key will change type as we walk through the tree */
|
|
ret = btrfs_search_slot(NULL, BTRFS_I(src)->root, &key, path,
|
|
0, 0);
|
|
if (ret < 0)
|
|
goto out;
|
|
/*
|
|
* First search, if no extent item that starts at offset off was
|
|
* found but the previous item is an extent item, it's possible
|
|
* it might overlap our target range, therefore process it.
|
|
*/
|
|
if (key.offset == off && ret > 0 && path->slots[0] > 0) {
|
|
btrfs_item_key_to_cpu(path->nodes[0], &key,
|
|
path->slots[0] - 1);
|
|
if (key.type == BTRFS_EXTENT_DATA_KEY)
|
|
path->slots[0]--;
|
|
}
|
|
|
|
nritems = btrfs_header_nritems(path->nodes[0]);
|
|
process_slot:
|
|
if (path->slots[0] >= nritems) {
|
|
ret = btrfs_next_leaf(BTRFS_I(src)->root, path);
|
|
if (ret < 0)
|
|
goto out;
|
|
if (ret > 0)
|
|
break;
|
|
nritems = btrfs_header_nritems(path->nodes[0]);
|
|
}
|
|
leaf = path->nodes[0];
|
|
slot = path->slots[0];
|
|
|
|
btrfs_item_key_to_cpu(leaf, &key, slot);
|
|
if (key.type > BTRFS_EXTENT_DATA_KEY ||
|
|
key.objectid != btrfs_ino(BTRFS_I(src)))
|
|
break;
|
|
|
|
ASSERT(key.type == BTRFS_EXTENT_DATA_KEY);
|
|
|
|
extent = btrfs_item_ptr(leaf, slot,
|
|
struct btrfs_file_extent_item);
|
|
extent_gen = btrfs_file_extent_generation(leaf, extent);
|
|
comp = btrfs_file_extent_compression(leaf, extent);
|
|
type = btrfs_file_extent_type(leaf, extent);
|
|
if (type == BTRFS_FILE_EXTENT_REG ||
|
|
type == BTRFS_FILE_EXTENT_PREALLOC) {
|
|
disko = btrfs_file_extent_disk_bytenr(leaf, extent);
|
|
diskl = btrfs_file_extent_disk_num_bytes(leaf, extent);
|
|
datao = btrfs_file_extent_offset(leaf, extent);
|
|
datal = btrfs_file_extent_num_bytes(leaf, extent);
|
|
} else if (type == BTRFS_FILE_EXTENT_INLINE) {
|
|
/* Take upper bound, may be compressed */
|
|
datal = btrfs_file_extent_ram_bytes(leaf, extent);
|
|
}
|
|
|
|
/*
|
|
* The first search might have left us at an extent item that
|
|
* ends before our target range's start, can happen if we have
|
|
* holes and NO_HOLES feature enabled.
|
|
*
|
|
* Subsequent searches may leave us on a file range we have
|
|
* processed before - this happens due to a race with ordered
|
|
* extent completion for a file range that is outside our source
|
|
* range, but that range was part of a file extent item that
|
|
* also covered a leading part of our source range.
|
|
*/
|
|
if (key.offset + datal <= prev_extent_end) {
|
|
path->slots[0]++;
|
|
goto process_slot;
|
|
} else if (key.offset >= off + len) {
|
|
break;
|
|
}
|
|
|
|
prev_extent_end = key.offset + datal;
|
|
size = btrfs_item_size(leaf, slot);
|
|
read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf, slot),
|
|
size);
|
|
|
|
btrfs_release_path(path);
|
|
|
|
memcpy(&new_key, &key, sizeof(new_key));
|
|
new_key.objectid = btrfs_ino(BTRFS_I(inode));
|
|
if (off <= key.offset)
|
|
new_key.offset = key.offset + destoff - off;
|
|
else
|
|
new_key.offset = destoff;
|
|
|
|
/*
|
|
* Deal with a hole that doesn't have an extent item that
|
|
* represents it (NO_HOLES feature enabled).
|
|
* This hole is either in the middle of the cloning range or at
|
|
* the beginning (fully overlaps it or partially overlaps it).
|
|
*/
|
|
if (new_key.offset != last_dest_end)
|
|
drop_start = last_dest_end;
|
|
else
|
|
drop_start = new_key.offset;
|
|
|
|
if (type == BTRFS_FILE_EXTENT_REG ||
|
|
type == BTRFS_FILE_EXTENT_PREALLOC) {
|
|
struct btrfs_replace_extent_info clone_info;
|
|
|
|
/*
|
|
* a | --- range to clone ---| b
|
|
* | ------------- extent ------------- |
|
|
*/
|
|
|
|
/* Subtract range b */
|
|
if (key.offset + datal > off + len)
|
|
datal = off + len - key.offset;
|
|
|
|
/* Subtract range a */
|
|
if (off > key.offset) {
|
|
datao += off - key.offset;
|
|
datal -= off - key.offset;
|
|
}
|
|
|
|
clone_info.disk_offset = disko;
|
|
clone_info.disk_len = diskl;
|
|
clone_info.data_offset = datao;
|
|
clone_info.data_len = datal;
|
|
clone_info.file_offset = new_key.offset;
|
|
clone_info.extent_buf = buf;
|
|
clone_info.is_new_extent = false;
|
|
clone_info.update_times = !no_time_update;
|
|
ret = btrfs_replace_file_extents(BTRFS_I(inode), path,
|
|
drop_start, new_key.offset + datal - 1,
|
|
&clone_info, &trans);
|
|
if (ret)
|
|
goto out;
|
|
} else {
|
|
ASSERT(type == BTRFS_FILE_EXTENT_INLINE);
|
|
/*
|
|
* Inline extents always have to start at file offset 0
|
|
* and can never be bigger then the sector size. We can
|
|
* never clone only parts of an inline extent, since all
|
|
* reflink operations must start at a sector size aligned
|
|
* offset, and the length must be aligned too or end at
|
|
* the i_size (which implies the whole inlined data).
|
|
*/
|
|
ASSERT(key.offset == 0);
|
|
ASSERT(datal <= fs_info->sectorsize);
|
|
if (WARN_ON(type != BTRFS_FILE_EXTENT_INLINE) ||
|
|
WARN_ON(key.offset != 0) ||
|
|
WARN_ON(datal > fs_info->sectorsize)) {
|
|
ret = -EUCLEAN;
|
|
goto out;
|
|
}
|
|
|
|
ret = clone_copy_inline_extent(inode, path, &new_key,
|
|
drop_start, datal, size,
|
|
comp, buf, &trans);
|
|
if (ret)
|
|
goto out;
|
|
}
|
|
|
|
btrfs_release_path(path);
|
|
|
|
/*
|
|
* Whenever we share an extent we update the last_reflink_trans
|
|
* of each inode to the current transaction. This is needed to
|
|
* make sure fsync does not log multiple checksum items with
|
|
* overlapping ranges (because some extent items might refer
|
|
* only to sections of the original extent). For the destination
|
|
* inode we do this regardless of the generation of the extents
|
|
* or even if they are inline extents or explicit holes, to make
|
|
* sure a full fsync does not skip them. For the source inode,
|
|
* we only need to update last_reflink_trans in case it's a new
|
|
* extent that is not a hole or an inline extent, to deal with
|
|
* the checksums problem on fsync.
|
|
*/
|
|
if (extent_gen == trans->transid && disko > 0)
|
|
BTRFS_I(src)->last_reflink_trans = trans->transid;
|
|
|
|
BTRFS_I(inode)->last_reflink_trans = trans->transid;
|
|
|
|
last_dest_end = ALIGN(new_key.offset + datal,
|
|
fs_info->sectorsize);
|
|
ret = clone_finish_inode_update(trans, inode, last_dest_end,
|
|
destoff, olen, no_time_update);
|
|
if (ret)
|
|
goto out;
|
|
if (new_key.offset + datal >= destoff + len)
|
|
break;
|
|
|
|
btrfs_release_path(path);
|
|
key.offset = prev_extent_end;
|
|
|
|
if (fatal_signal_pending(current)) {
|
|
ret = -EINTR;
|
|
goto out;
|
|
}
|
|
|
|
cond_resched();
|
|
}
|
|
ret = 0;
|
|
|
|
if (last_dest_end < destoff + len) {
|
|
/*
|
|
* We have an implicit hole that fully or partially overlaps our
|
|
* cloning range at its end. This means that we either have the
|
|
* NO_HOLES feature enabled or the implicit hole happened due to
|
|
* mixing buffered and direct IO writes against this file.
|
|
*/
|
|
btrfs_release_path(path);
|
|
|
|
/*
|
|
* When using NO_HOLES and we are cloning a range that covers
|
|
* only a hole (no extents) into a range beyond the current
|
|
* i_size, punching a hole in the target range will not create
|
|
* an extent map defining a hole, because the range starts at or
|
|
* beyond current i_size. If the file previously had an i_size
|
|
* greater than the new i_size set by this clone operation, we
|
|
* need to make sure the next fsync is a full fsync, so that it
|
|
* detects and logs a hole covering a range from the current
|
|
* i_size to the new i_size. If the clone range covers extents,
|
|
* besides a hole, then we know the full sync flag was already
|
|
* set by previous calls to btrfs_replace_file_extents() that
|
|
* replaced file extent items.
|
|
*/
|
|
if (last_dest_end >= i_size_read(inode))
|
|
btrfs_set_inode_full_sync(BTRFS_I(inode));
|
|
|
|
ret = btrfs_replace_file_extents(BTRFS_I(inode), path,
|
|
last_dest_end, destoff + len - 1, NULL, &trans);
|
|
if (ret)
|
|
goto out;
|
|
|
|
ret = clone_finish_inode_update(trans, inode, destoff + len,
|
|
destoff, olen, no_time_update);
|
|
}
|
|
|
|
out:
|
|
btrfs_free_path(path);
|
|
kvfree(buf);
|
|
clear_bit(BTRFS_INODE_NO_DELALLOC_FLUSH, &BTRFS_I(inode)->runtime_flags);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void btrfs_double_extent_unlock(struct inode *inode1, u64 loff1,
|
|
struct inode *inode2, u64 loff2, u64 len)
|
|
{
|
|
unlock_extent(&BTRFS_I(inode1)->io_tree, loff1, loff1 + len - 1);
|
|
unlock_extent(&BTRFS_I(inode2)->io_tree, loff2, loff2 + len - 1);
|
|
}
|
|
|
|
static void btrfs_double_extent_lock(struct inode *inode1, u64 loff1,
|
|
struct inode *inode2, u64 loff2, u64 len)
|
|
{
|
|
u64 range1_end = loff1 + len - 1;
|
|
u64 range2_end = loff2 + len - 1;
|
|
|
|
if (inode1 < inode2) {
|
|
swap(inode1, inode2);
|
|
swap(loff1, loff2);
|
|
swap(range1_end, range2_end);
|
|
} else if (inode1 == inode2 && loff2 < loff1) {
|
|
swap(loff1, loff2);
|
|
swap(range1_end, range2_end);
|
|
}
|
|
|
|
lock_extent(&BTRFS_I(inode1)->io_tree, loff1, range1_end);
|
|
lock_extent(&BTRFS_I(inode2)->io_tree, loff2, range2_end);
|
|
|
|
btrfs_assert_inode_range_clean(BTRFS_I(inode1), loff1, range1_end);
|
|
btrfs_assert_inode_range_clean(BTRFS_I(inode2), loff2, range2_end);
|
|
}
|
|
|
|
static void btrfs_double_mmap_lock(struct inode *inode1, struct inode *inode2)
|
|
{
|
|
if (inode1 < inode2)
|
|
swap(inode1, inode2);
|
|
down_write(&BTRFS_I(inode1)->i_mmap_lock);
|
|
down_write_nested(&BTRFS_I(inode2)->i_mmap_lock, SINGLE_DEPTH_NESTING);
|
|
}
|
|
|
|
static void btrfs_double_mmap_unlock(struct inode *inode1, struct inode *inode2)
|
|
{
|
|
up_write(&BTRFS_I(inode1)->i_mmap_lock);
|
|
up_write(&BTRFS_I(inode2)->i_mmap_lock);
|
|
}
|
|
|
|
static int btrfs_extent_same_range(struct inode *src, u64 loff, u64 len,
|
|
struct inode *dst, u64 dst_loff)
|
|
{
|
|
const u64 bs = BTRFS_I(src)->root->fs_info->sb->s_blocksize;
|
|
int ret;
|
|
|
|
/*
|
|
* Lock destination range to serialize with concurrent readahead() and
|
|
* source range to serialize with relocation.
|
|
*/
|
|
btrfs_double_extent_lock(src, loff, dst, dst_loff, len);
|
|
ret = btrfs_clone(src, dst, loff, len, ALIGN(len, bs), dst_loff, 1);
|
|
btrfs_double_extent_unlock(src, loff, dst, dst_loff, len);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int btrfs_extent_same(struct inode *src, u64 loff, u64 olen,
|
|
struct inode *dst, u64 dst_loff)
|
|
{
|
|
int ret = 0;
|
|
u64 i, tail_len, chunk_count;
|
|
struct btrfs_root *root_dst = BTRFS_I(dst)->root;
|
|
|
|
spin_lock(&root_dst->root_item_lock);
|
|
if (root_dst->send_in_progress) {
|
|
btrfs_warn_rl(root_dst->fs_info,
|
|
"cannot deduplicate to root %llu while send operations are using it (%d in progress)",
|
|
root_dst->root_key.objectid,
|
|
root_dst->send_in_progress);
|
|
spin_unlock(&root_dst->root_item_lock);
|
|
return -EAGAIN;
|
|
}
|
|
root_dst->dedupe_in_progress++;
|
|
spin_unlock(&root_dst->root_item_lock);
|
|
|
|
tail_len = olen % BTRFS_MAX_DEDUPE_LEN;
|
|
chunk_count = div_u64(olen, BTRFS_MAX_DEDUPE_LEN);
|
|
|
|
for (i = 0; i < chunk_count; i++) {
|
|
ret = btrfs_extent_same_range(src, loff, BTRFS_MAX_DEDUPE_LEN,
|
|
dst, dst_loff);
|
|
if (ret)
|
|
goto out;
|
|
|
|
loff += BTRFS_MAX_DEDUPE_LEN;
|
|
dst_loff += BTRFS_MAX_DEDUPE_LEN;
|
|
}
|
|
|
|
if (tail_len > 0)
|
|
ret = btrfs_extent_same_range(src, loff, tail_len, dst, dst_loff);
|
|
out:
|
|
spin_lock(&root_dst->root_item_lock);
|
|
root_dst->dedupe_in_progress--;
|
|
spin_unlock(&root_dst->root_item_lock);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static noinline int btrfs_clone_files(struct file *file, struct file *file_src,
|
|
u64 off, u64 olen, u64 destoff)
|
|
{
|
|
struct inode *inode = file_inode(file);
|
|
struct inode *src = file_inode(file_src);
|
|
struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
|
|
int ret;
|
|
int wb_ret;
|
|
u64 len = olen;
|
|
u64 bs = fs_info->sb->s_blocksize;
|
|
|
|
/*
|
|
* VFS's generic_remap_file_range_prep() protects us from cloning the
|
|
* eof block into the middle of a file, which would result in corruption
|
|
* if the file size is not blocksize aligned. So we don't need to check
|
|
* for that case here.
|
|
*/
|
|
if (off + len == src->i_size)
|
|
len = ALIGN(src->i_size, bs) - off;
|
|
|
|
if (destoff > inode->i_size) {
|
|
const u64 wb_start = ALIGN_DOWN(inode->i_size, bs);
|
|
|
|
ret = btrfs_cont_expand(BTRFS_I(inode), inode->i_size, destoff);
|
|
if (ret)
|
|
return ret;
|
|
/*
|
|
* We may have truncated the last block if the inode's size is
|
|
* not sector size aligned, so we need to wait for writeback to
|
|
* complete before proceeding further, otherwise we can race
|
|
* with cloning and attempt to increment a reference to an
|
|
* extent that no longer exists (writeback completed right after
|
|
* we found the previous extent covering eof and before we
|
|
* attempted to increment its reference count).
|
|
*/
|
|
ret = btrfs_wait_ordered_range(inode, wb_start,
|
|
destoff - wb_start);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Lock destination range to serialize with concurrent readahead() and
|
|
* source range to serialize with relocation.
|
|
*/
|
|
btrfs_double_extent_lock(src, off, inode, destoff, len);
|
|
ret = btrfs_clone(src, inode, off, olen, len, destoff, 0);
|
|
btrfs_double_extent_unlock(src, off, inode, destoff, len);
|
|
|
|
/*
|
|
* We may have copied an inline extent into a page of the destination
|
|
* range, so wait for writeback to complete before truncating pages
|
|
* from the page cache. This is a rare case.
|
|
*/
|
|
wb_ret = btrfs_wait_ordered_range(inode, destoff, len);
|
|
ret = ret ? ret : wb_ret;
|
|
/*
|
|
* Truncate page cache pages so that future reads will see the cloned
|
|
* data immediately and not the previous data.
|
|
*/
|
|
truncate_inode_pages_range(&inode->i_data,
|
|
round_down(destoff, PAGE_SIZE),
|
|
round_up(destoff + len, PAGE_SIZE) - 1);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int btrfs_remap_file_range_prep(struct file *file_in, loff_t pos_in,
|
|
struct file *file_out, loff_t pos_out,
|
|
loff_t *len, unsigned int remap_flags)
|
|
{
|
|
struct inode *inode_in = file_inode(file_in);
|
|
struct inode *inode_out = file_inode(file_out);
|
|
u64 bs = BTRFS_I(inode_out)->root->fs_info->sb->s_blocksize;
|
|
u64 wb_len;
|
|
int ret;
|
|
|
|
if (!(remap_flags & REMAP_FILE_DEDUP)) {
|
|
struct btrfs_root *root_out = BTRFS_I(inode_out)->root;
|
|
|
|
if (btrfs_root_readonly(root_out))
|
|
return -EROFS;
|
|
|
|
ASSERT(inode_in->i_sb == inode_out->i_sb);
|
|
}
|
|
|
|
/* Don't make the dst file partly checksummed */
|
|
if ((BTRFS_I(inode_in)->flags & BTRFS_INODE_NODATASUM) !=
|
|
(BTRFS_I(inode_out)->flags & BTRFS_INODE_NODATASUM)) {
|
|
return -EINVAL;
|
|
}
|
|
|
|
/*
|
|
* Now that the inodes are locked, we need to start writeback ourselves
|
|
* and can not rely on the writeback from the VFS's generic helper
|
|
* generic_remap_file_range_prep() because:
|
|
*
|
|
* 1) For compression we must call filemap_fdatawrite_range() range
|
|
* twice (btrfs_fdatawrite_range() does it for us), and the generic
|
|
* helper only calls it once;
|
|
*
|
|
* 2) filemap_fdatawrite_range(), called by the generic helper only
|
|
* waits for the writeback to complete, i.e. for IO to be done, and
|
|
* not for the ordered extents to complete. We need to wait for them
|
|
* to complete so that new file extent items are in the fs tree.
|
|
*/
|
|
if (*len == 0 && !(remap_flags & REMAP_FILE_DEDUP))
|
|
wb_len = ALIGN(inode_in->i_size, bs) - ALIGN_DOWN(pos_in, bs);
|
|
else
|
|
wb_len = ALIGN(*len, bs);
|
|
|
|
/*
|
|
* Workaround to make sure NOCOW buffered write reach disk as NOCOW.
|
|
*
|
|
* Btrfs' back references do not have a block level granularity, they
|
|
* work at the whole extent level.
|
|
* NOCOW buffered write without data space reserved may not be able
|
|
* to fall back to CoW due to lack of data space, thus could cause
|
|
* data loss.
|
|
*
|
|
* Here we take a shortcut by flushing the whole inode, so that all
|
|
* nocow write should reach disk as nocow before we increase the
|
|
* reference of the extent. We could do better by only flushing NOCOW
|
|
* data, but that needs extra accounting.
|
|
*
|
|
* Also we don't need to check ASYNC_EXTENT, as async extent will be
|
|
* CoWed anyway, not affecting nocow part.
|
|
*/
|
|
ret = filemap_flush(inode_in->i_mapping);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
ret = btrfs_wait_ordered_range(inode_in, ALIGN_DOWN(pos_in, bs),
|
|
wb_len);
|
|
if (ret < 0)
|
|
return ret;
|
|
ret = btrfs_wait_ordered_range(inode_out, ALIGN_DOWN(pos_out, bs),
|
|
wb_len);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
return generic_remap_file_range_prep(file_in, pos_in, file_out, pos_out,
|
|
len, remap_flags);
|
|
}
|
|
|
|
static bool file_sync_write(const struct file *file)
|
|
{
|
|
if (file->f_flags & (__O_SYNC | O_DSYNC))
|
|
return true;
|
|
if (IS_SYNC(file_inode(file)))
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
loff_t btrfs_remap_file_range(struct file *src_file, loff_t off,
|
|
struct file *dst_file, loff_t destoff, loff_t len,
|
|
unsigned int remap_flags)
|
|
{
|
|
struct inode *src_inode = file_inode(src_file);
|
|
struct inode *dst_inode = file_inode(dst_file);
|
|
bool same_inode = dst_inode == src_inode;
|
|
int ret;
|
|
|
|
if (remap_flags & ~(REMAP_FILE_DEDUP | REMAP_FILE_ADVISORY))
|
|
return -EINVAL;
|
|
|
|
if (same_inode) {
|
|
btrfs_inode_lock(src_inode, BTRFS_ILOCK_MMAP);
|
|
} else {
|
|
lock_two_nondirectories(src_inode, dst_inode);
|
|
btrfs_double_mmap_lock(src_inode, dst_inode);
|
|
}
|
|
|
|
ret = btrfs_remap_file_range_prep(src_file, off, dst_file, destoff,
|
|
&len, remap_flags);
|
|
if (ret < 0 || len == 0)
|
|
goto out_unlock;
|
|
|
|
if (remap_flags & REMAP_FILE_DEDUP)
|
|
ret = btrfs_extent_same(src_inode, off, len, dst_inode, destoff);
|
|
else
|
|
ret = btrfs_clone_files(dst_file, src_file, off, len, destoff);
|
|
|
|
out_unlock:
|
|
if (same_inode) {
|
|
btrfs_inode_unlock(src_inode, BTRFS_ILOCK_MMAP);
|
|
} else {
|
|
btrfs_double_mmap_unlock(src_inode, dst_inode);
|
|
unlock_two_nondirectories(src_inode, dst_inode);
|
|
}
|
|
|
|
/*
|
|
* If either the source or the destination file was opened with O_SYNC,
|
|
* O_DSYNC or has the S_SYNC attribute, fsync both the destination and
|
|
* source files/ranges, so that after a successful return (0) followed
|
|
* by a power failure results in the reflinked data to be readable from
|
|
* both files/ranges.
|
|
*/
|
|
if (ret == 0 && len > 0 &&
|
|
(file_sync_write(src_file) || file_sync_write(dst_file))) {
|
|
ret = btrfs_sync_file(src_file, off, off + len - 1, 0);
|
|
if (ret == 0)
|
|
ret = btrfs_sync_file(dst_file, destoff,
|
|
destoff + len - 1, 0);
|
|
}
|
|
|
|
return ret < 0 ? ret : len;
|
|
}
|