c88ad30e3f
Users are having more success with amd-pstate since the introduction of EPP and Guided modes. To expose the driver to more users by default introduce a kernel configuration option for setting the default mode. Users can use an integer to map out which default mode they want to use in lieu of a kernel command line option. This will default to EPP, but only if: 1) The CPU supports an MSR. 2) The system profile is identified 3) The system profile is identified as a non-server by the FADT. Link: https://gitlab.freedesktop.org/hadess/power-profiles-daemon/-/merge_requests/121 Acked-by: Huang Rui <ray.huang@amd.com> Reviewed-by: Gautham R. Shenoy <gautham.shenoy@amd.com> Co-developed-by: Perry Yuan <perry.yuan@amd.com> Signed-off-by: Perry Yuan <perry.yuan@amd.com> Signed-off-by: Mario Limonciello <mario.limonciello@amd.com> Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
1534 lines
38 KiB
C
1534 lines
38 KiB
C
// SPDX-License-Identifier: GPL-2.0-or-later
|
|
/*
|
|
* amd-pstate.c - AMD Processor P-state Frequency Driver
|
|
*
|
|
* Copyright (C) 2021 Advanced Micro Devices, Inc. All Rights Reserved.
|
|
*
|
|
* Author: Huang Rui <ray.huang@amd.com>
|
|
*
|
|
* AMD P-State introduces a new CPU performance scaling design for AMD
|
|
* processors using the ACPI Collaborative Performance and Power Control (CPPC)
|
|
* feature which works with the AMD SMU firmware providing a finer grained
|
|
* frequency control range. It is to replace the legacy ACPI P-States control,
|
|
* allows a flexible, low-latency interface for the Linux kernel to directly
|
|
* communicate the performance hints to hardware.
|
|
*
|
|
* AMD P-State is supported on recent AMD Zen base CPU series include some of
|
|
* Zen2 and Zen3 processors. _CPC needs to be present in the ACPI tables of AMD
|
|
* P-State supported system. And there are two types of hardware implementations
|
|
* for AMD P-State: 1) Full MSR Solution and 2) Shared Memory Solution.
|
|
* X86_FEATURE_CPPC CPU feature flag is used to distinguish the different types.
|
|
*/
|
|
|
|
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
|
|
|
|
#include <linux/kernel.h>
|
|
#include <linux/module.h>
|
|
#include <linux/init.h>
|
|
#include <linux/smp.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/cpufreq.h>
|
|
#include <linux/compiler.h>
|
|
#include <linux/dmi.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/acpi.h>
|
|
#include <linux/io.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/uaccess.h>
|
|
#include <linux/static_call.h>
|
|
#include <linux/amd-pstate.h>
|
|
|
|
#include <acpi/processor.h>
|
|
#include <acpi/cppc_acpi.h>
|
|
|
|
#include <asm/msr.h>
|
|
#include <asm/processor.h>
|
|
#include <asm/cpufeature.h>
|
|
#include <asm/cpu_device_id.h>
|
|
#include "amd-pstate-trace.h"
|
|
|
|
#define AMD_PSTATE_TRANSITION_LATENCY 20000
|
|
#define AMD_PSTATE_TRANSITION_DELAY 1000
|
|
|
|
/*
|
|
* TODO: We need more time to fine tune processors with shared memory solution
|
|
* with community together.
|
|
*
|
|
* There are some performance drops on the CPU benchmarks which reports from
|
|
* Suse. We are co-working with them to fine tune the shared memory solution. So
|
|
* we disable it by default to go acpi-cpufreq on these processors and add a
|
|
* module parameter to be able to enable it manually for debugging.
|
|
*/
|
|
static struct cpufreq_driver *current_pstate_driver;
|
|
static struct cpufreq_driver amd_pstate_driver;
|
|
static struct cpufreq_driver amd_pstate_epp_driver;
|
|
static int cppc_state = AMD_PSTATE_UNDEFINED;
|
|
static bool cppc_enabled;
|
|
|
|
/*
|
|
* AMD Energy Preference Performance (EPP)
|
|
* The EPP is used in the CCLK DPM controller to drive
|
|
* the frequency that a core is going to operate during
|
|
* short periods of activity. EPP values will be utilized for
|
|
* different OS profiles (balanced, performance, power savings)
|
|
* display strings corresponding to EPP index in the
|
|
* energy_perf_strings[]
|
|
* index String
|
|
*-------------------------------------
|
|
* 0 default
|
|
* 1 performance
|
|
* 2 balance_performance
|
|
* 3 balance_power
|
|
* 4 power
|
|
*/
|
|
enum energy_perf_value_index {
|
|
EPP_INDEX_DEFAULT = 0,
|
|
EPP_INDEX_PERFORMANCE,
|
|
EPP_INDEX_BALANCE_PERFORMANCE,
|
|
EPP_INDEX_BALANCE_POWERSAVE,
|
|
EPP_INDEX_POWERSAVE,
|
|
};
|
|
|
|
static const char * const energy_perf_strings[] = {
|
|
[EPP_INDEX_DEFAULT] = "default",
|
|
[EPP_INDEX_PERFORMANCE] = "performance",
|
|
[EPP_INDEX_BALANCE_PERFORMANCE] = "balance_performance",
|
|
[EPP_INDEX_BALANCE_POWERSAVE] = "balance_power",
|
|
[EPP_INDEX_POWERSAVE] = "power",
|
|
NULL
|
|
};
|
|
|
|
static unsigned int epp_values[] = {
|
|
[EPP_INDEX_DEFAULT] = 0,
|
|
[EPP_INDEX_PERFORMANCE] = AMD_CPPC_EPP_PERFORMANCE,
|
|
[EPP_INDEX_BALANCE_PERFORMANCE] = AMD_CPPC_EPP_BALANCE_PERFORMANCE,
|
|
[EPP_INDEX_BALANCE_POWERSAVE] = AMD_CPPC_EPP_BALANCE_POWERSAVE,
|
|
[EPP_INDEX_POWERSAVE] = AMD_CPPC_EPP_POWERSAVE,
|
|
};
|
|
|
|
typedef int (*cppc_mode_transition_fn)(int);
|
|
|
|
static inline int get_mode_idx_from_str(const char *str, size_t size)
|
|
{
|
|
int i;
|
|
|
|
for (i=0; i < AMD_PSTATE_MAX; i++) {
|
|
if (!strncmp(str, amd_pstate_mode_string[i], size))
|
|
return i;
|
|
}
|
|
return -EINVAL;
|
|
}
|
|
|
|
static DEFINE_MUTEX(amd_pstate_limits_lock);
|
|
static DEFINE_MUTEX(amd_pstate_driver_lock);
|
|
|
|
static s16 amd_pstate_get_epp(struct amd_cpudata *cpudata, u64 cppc_req_cached)
|
|
{
|
|
u64 epp;
|
|
int ret;
|
|
|
|
if (boot_cpu_has(X86_FEATURE_CPPC)) {
|
|
if (!cppc_req_cached) {
|
|
epp = rdmsrl_on_cpu(cpudata->cpu, MSR_AMD_CPPC_REQ,
|
|
&cppc_req_cached);
|
|
if (epp)
|
|
return epp;
|
|
}
|
|
epp = (cppc_req_cached >> 24) & 0xFF;
|
|
} else {
|
|
ret = cppc_get_epp_perf(cpudata->cpu, &epp);
|
|
if (ret < 0) {
|
|
pr_debug("Could not retrieve energy perf value (%d)\n", ret);
|
|
return -EIO;
|
|
}
|
|
}
|
|
|
|
return (s16)(epp & 0xff);
|
|
}
|
|
|
|
static int amd_pstate_get_energy_pref_index(struct amd_cpudata *cpudata)
|
|
{
|
|
s16 epp;
|
|
int index = -EINVAL;
|
|
|
|
epp = amd_pstate_get_epp(cpudata, 0);
|
|
if (epp < 0)
|
|
return epp;
|
|
|
|
switch (epp) {
|
|
case AMD_CPPC_EPP_PERFORMANCE:
|
|
index = EPP_INDEX_PERFORMANCE;
|
|
break;
|
|
case AMD_CPPC_EPP_BALANCE_PERFORMANCE:
|
|
index = EPP_INDEX_BALANCE_PERFORMANCE;
|
|
break;
|
|
case AMD_CPPC_EPP_BALANCE_POWERSAVE:
|
|
index = EPP_INDEX_BALANCE_POWERSAVE;
|
|
break;
|
|
case AMD_CPPC_EPP_POWERSAVE:
|
|
index = EPP_INDEX_POWERSAVE;
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
return index;
|
|
}
|
|
|
|
static int amd_pstate_set_epp(struct amd_cpudata *cpudata, u32 epp)
|
|
{
|
|
int ret;
|
|
struct cppc_perf_ctrls perf_ctrls;
|
|
|
|
if (boot_cpu_has(X86_FEATURE_CPPC)) {
|
|
u64 value = READ_ONCE(cpudata->cppc_req_cached);
|
|
|
|
value &= ~GENMASK_ULL(31, 24);
|
|
value |= (u64)epp << 24;
|
|
WRITE_ONCE(cpudata->cppc_req_cached, value);
|
|
|
|
ret = wrmsrl_on_cpu(cpudata->cpu, MSR_AMD_CPPC_REQ, value);
|
|
if (!ret)
|
|
cpudata->epp_cached = epp;
|
|
} else {
|
|
perf_ctrls.energy_perf = epp;
|
|
ret = cppc_set_epp_perf(cpudata->cpu, &perf_ctrls, 1);
|
|
if (ret) {
|
|
pr_debug("failed to set energy perf value (%d)\n", ret);
|
|
return ret;
|
|
}
|
|
cpudata->epp_cached = epp;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int amd_pstate_set_energy_pref_index(struct amd_cpudata *cpudata,
|
|
int pref_index)
|
|
{
|
|
int epp = -EINVAL;
|
|
int ret;
|
|
|
|
if (!pref_index) {
|
|
pr_debug("EPP pref_index is invalid\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (epp == -EINVAL)
|
|
epp = epp_values[pref_index];
|
|
|
|
if (epp > 0 && cpudata->policy == CPUFREQ_POLICY_PERFORMANCE) {
|
|
pr_debug("EPP cannot be set under performance policy\n");
|
|
return -EBUSY;
|
|
}
|
|
|
|
ret = amd_pstate_set_epp(cpudata, epp);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static inline int pstate_enable(bool enable)
|
|
{
|
|
int ret, cpu;
|
|
unsigned long logical_proc_id_mask = 0;
|
|
|
|
if (enable == cppc_enabled)
|
|
return 0;
|
|
|
|
for_each_present_cpu(cpu) {
|
|
unsigned long logical_id = topology_logical_die_id(cpu);
|
|
|
|
if (test_bit(logical_id, &logical_proc_id_mask))
|
|
continue;
|
|
|
|
set_bit(logical_id, &logical_proc_id_mask);
|
|
|
|
ret = wrmsrl_safe_on_cpu(cpu, MSR_AMD_CPPC_ENABLE,
|
|
enable);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
|
|
cppc_enabled = enable;
|
|
return 0;
|
|
}
|
|
|
|
static int cppc_enable(bool enable)
|
|
{
|
|
int cpu, ret = 0;
|
|
struct cppc_perf_ctrls perf_ctrls;
|
|
|
|
if (enable == cppc_enabled)
|
|
return 0;
|
|
|
|
for_each_present_cpu(cpu) {
|
|
ret = cppc_set_enable(cpu, enable);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/* Enable autonomous mode for EPP */
|
|
if (cppc_state == AMD_PSTATE_ACTIVE) {
|
|
/* Set desired perf as zero to allow EPP firmware control */
|
|
perf_ctrls.desired_perf = 0;
|
|
ret = cppc_set_perf(cpu, &perf_ctrls);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
}
|
|
|
|
cppc_enabled = enable;
|
|
return ret;
|
|
}
|
|
|
|
DEFINE_STATIC_CALL(amd_pstate_enable, pstate_enable);
|
|
|
|
static inline int amd_pstate_enable(bool enable)
|
|
{
|
|
return static_call(amd_pstate_enable)(enable);
|
|
}
|
|
|
|
static int pstate_init_perf(struct amd_cpudata *cpudata)
|
|
{
|
|
u64 cap1;
|
|
u32 highest_perf;
|
|
|
|
int ret = rdmsrl_safe_on_cpu(cpudata->cpu, MSR_AMD_CPPC_CAP1,
|
|
&cap1);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/*
|
|
* TODO: Introduce AMD specific power feature.
|
|
*
|
|
* CPPC entry doesn't indicate the highest performance in some ASICs.
|
|
*/
|
|
highest_perf = amd_get_highest_perf();
|
|
if (highest_perf > AMD_CPPC_HIGHEST_PERF(cap1))
|
|
highest_perf = AMD_CPPC_HIGHEST_PERF(cap1);
|
|
|
|
WRITE_ONCE(cpudata->highest_perf, highest_perf);
|
|
|
|
WRITE_ONCE(cpudata->nominal_perf, AMD_CPPC_NOMINAL_PERF(cap1));
|
|
WRITE_ONCE(cpudata->lowest_nonlinear_perf, AMD_CPPC_LOWNONLIN_PERF(cap1));
|
|
WRITE_ONCE(cpudata->lowest_perf, AMD_CPPC_LOWEST_PERF(cap1));
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int cppc_init_perf(struct amd_cpudata *cpudata)
|
|
{
|
|
struct cppc_perf_caps cppc_perf;
|
|
u32 highest_perf;
|
|
|
|
int ret = cppc_get_perf_caps(cpudata->cpu, &cppc_perf);
|
|
if (ret)
|
|
return ret;
|
|
|
|
highest_perf = amd_get_highest_perf();
|
|
if (highest_perf > cppc_perf.highest_perf)
|
|
highest_perf = cppc_perf.highest_perf;
|
|
|
|
WRITE_ONCE(cpudata->highest_perf, highest_perf);
|
|
|
|
WRITE_ONCE(cpudata->nominal_perf, cppc_perf.nominal_perf);
|
|
WRITE_ONCE(cpudata->lowest_nonlinear_perf,
|
|
cppc_perf.lowest_nonlinear_perf);
|
|
WRITE_ONCE(cpudata->lowest_perf, cppc_perf.lowest_perf);
|
|
|
|
if (cppc_state == AMD_PSTATE_ACTIVE)
|
|
return 0;
|
|
|
|
ret = cppc_get_auto_sel_caps(cpudata->cpu, &cppc_perf);
|
|
if (ret) {
|
|
pr_warn("failed to get auto_sel, ret: %d\n", ret);
|
|
return 0;
|
|
}
|
|
|
|
ret = cppc_set_auto_sel(cpudata->cpu,
|
|
(cppc_state == AMD_PSTATE_PASSIVE) ? 0 : 1);
|
|
|
|
if (ret)
|
|
pr_warn("failed to set auto_sel, ret: %d\n", ret);
|
|
|
|
return ret;
|
|
}
|
|
|
|
DEFINE_STATIC_CALL(amd_pstate_init_perf, pstate_init_perf);
|
|
|
|
static inline int amd_pstate_init_perf(struct amd_cpudata *cpudata)
|
|
{
|
|
return static_call(amd_pstate_init_perf)(cpudata);
|
|
}
|
|
|
|
static void pstate_update_perf(struct amd_cpudata *cpudata, u32 min_perf,
|
|
u32 des_perf, u32 max_perf, bool fast_switch)
|
|
{
|
|
if (fast_switch)
|
|
wrmsrl(MSR_AMD_CPPC_REQ, READ_ONCE(cpudata->cppc_req_cached));
|
|
else
|
|
wrmsrl_on_cpu(cpudata->cpu, MSR_AMD_CPPC_REQ,
|
|
READ_ONCE(cpudata->cppc_req_cached));
|
|
}
|
|
|
|
static void cppc_update_perf(struct amd_cpudata *cpudata,
|
|
u32 min_perf, u32 des_perf,
|
|
u32 max_perf, bool fast_switch)
|
|
{
|
|
struct cppc_perf_ctrls perf_ctrls;
|
|
|
|
perf_ctrls.max_perf = max_perf;
|
|
perf_ctrls.min_perf = min_perf;
|
|
perf_ctrls.desired_perf = des_perf;
|
|
|
|
cppc_set_perf(cpudata->cpu, &perf_ctrls);
|
|
}
|
|
|
|
DEFINE_STATIC_CALL(amd_pstate_update_perf, pstate_update_perf);
|
|
|
|
static inline void amd_pstate_update_perf(struct amd_cpudata *cpudata,
|
|
u32 min_perf, u32 des_perf,
|
|
u32 max_perf, bool fast_switch)
|
|
{
|
|
static_call(amd_pstate_update_perf)(cpudata, min_perf, des_perf,
|
|
max_perf, fast_switch);
|
|
}
|
|
|
|
static inline bool amd_pstate_sample(struct amd_cpudata *cpudata)
|
|
{
|
|
u64 aperf, mperf, tsc;
|
|
unsigned long flags;
|
|
|
|
local_irq_save(flags);
|
|
rdmsrl(MSR_IA32_APERF, aperf);
|
|
rdmsrl(MSR_IA32_MPERF, mperf);
|
|
tsc = rdtsc();
|
|
|
|
if (cpudata->prev.mperf == mperf || cpudata->prev.tsc == tsc) {
|
|
local_irq_restore(flags);
|
|
return false;
|
|
}
|
|
|
|
local_irq_restore(flags);
|
|
|
|
cpudata->cur.aperf = aperf;
|
|
cpudata->cur.mperf = mperf;
|
|
cpudata->cur.tsc = tsc;
|
|
cpudata->cur.aperf -= cpudata->prev.aperf;
|
|
cpudata->cur.mperf -= cpudata->prev.mperf;
|
|
cpudata->cur.tsc -= cpudata->prev.tsc;
|
|
|
|
cpudata->prev.aperf = aperf;
|
|
cpudata->prev.mperf = mperf;
|
|
cpudata->prev.tsc = tsc;
|
|
|
|
cpudata->freq = div64_u64((cpudata->cur.aperf * cpu_khz), cpudata->cur.mperf);
|
|
|
|
return true;
|
|
}
|
|
|
|
static void amd_pstate_update(struct amd_cpudata *cpudata, u32 min_perf,
|
|
u32 des_perf, u32 max_perf, bool fast_switch, int gov_flags)
|
|
{
|
|
u64 prev = READ_ONCE(cpudata->cppc_req_cached);
|
|
u64 value = prev;
|
|
|
|
des_perf = clamp_t(unsigned long, des_perf, min_perf, max_perf);
|
|
|
|
if ((cppc_state == AMD_PSTATE_GUIDED) && (gov_flags & CPUFREQ_GOV_DYNAMIC_SWITCHING)) {
|
|
min_perf = des_perf;
|
|
des_perf = 0;
|
|
}
|
|
|
|
value &= ~AMD_CPPC_MIN_PERF(~0L);
|
|
value |= AMD_CPPC_MIN_PERF(min_perf);
|
|
|
|
value &= ~AMD_CPPC_DES_PERF(~0L);
|
|
value |= AMD_CPPC_DES_PERF(des_perf);
|
|
|
|
value &= ~AMD_CPPC_MAX_PERF(~0L);
|
|
value |= AMD_CPPC_MAX_PERF(max_perf);
|
|
|
|
if (trace_amd_pstate_perf_enabled() && amd_pstate_sample(cpudata)) {
|
|
trace_amd_pstate_perf(min_perf, des_perf, max_perf, cpudata->freq,
|
|
cpudata->cur.mperf, cpudata->cur.aperf, cpudata->cur.tsc,
|
|
cpudata->cpu, (value != prev), fast_switch);
|
|
}
|
|
|
|
if (value == prev)
|
|
return;
|
|
|
|
WRITE_ONCE(cpudata->cppc_req_cached, value);
|
|
|
|
amd_pstate_update_perf(cpudata, min_perf, des_perf,
|
|
max_perf, fast_switch);
|
|
}
|
|
|
|
static int amd_pstate_verify(struct cpufreq_policy_data *policy)
|
|
{
|
|
cpufreq_verify_within_cpu_limits(policy);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int amd_pstate_update_freq(struct cpufreq_policy *policy,
|
|
unsigned int target_freq, bool fast_switch)
|
|
{
|
|
struct cpufreq_freqs freqs;
|
|
struct amd_cpudata *cpudata = policy->driver_data;
|
|
unsigned long max_perf, min_perf, des_perf, cap_perf;
|
|
|
|
if (!cpudata->max_freq)
|
|
return -ENODEV;
|
|
|
|
cap_perf = READ_ONCE(cpudata->highest_perf);
|
|
min_perf = READ_ONCE(cpudata->lowest_perf);
|
|
max_perf = cap_perf;
|
|
|
|
freqs.old = policy->cur;
|
|
freqs.new = target_freq;
|
|
|
|
des_perf = DIV_ROUND_CLOSEST(target_freq * cap_perf,
|
|
cpudata->max_freq);
|
|
|
|
WARN_ON(fast_switch && !policy->fast_switch_enabled);
|
|
/*
|
|
* If fast_switch is desired, then there aren't any registered
|
|
* transition notifiers. See comment for
|
|
* cpufreq_enable_fast_switch().
|
|
*/
|
|
if (!fast_switch)
|
|
cpufreq_freq_transition_begin(policy, &freqs);
|
|
|
|
amd_pstate_update(cpudata, min_perf, des_perf,
|
|
max_perf, fast_switch, policy->governor->flags);
|
|
|
|
if (!fast_switch)
|
|
cpufreq_freq_transition_end(policy, &freqs, false);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int amd_pstate_target(struct cpufreq_policy *policy,
|
|
unsigned int target_freq,
|
|
unsigned int relation)
|
|
{
|
|
return amd_pstate_update_freq(policy, target_freq, false);
|
|
}
|
|
|
|
static unsigned int amd_pstate_fast_switch(struct cpufreq_policy *policy,
|
|
unsigned int target_freq)
|
|
{
|
|
return amd_pstate_update_freq(policy, target_freq, true);
|
|
}
|
|
|
|
static void amd_pstate_adjust_perf(unsigned int cpu,
|
|
unsigned long _min_perf,
|
|
unsigned long target_perf,
|
|
unsigned long capacity)
|
|
{
|
|
unsigned long max_perf, min_perf, des_perf,
|
|
cap_perf, lowest_nonlinear_perf, max_freq;
|
|
struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
|
|
struct amd_cpudata *cpudata = policy->driver_data;
|
|
unsigned int target_freq;
|
|
|
|
cap_perf = READ_ONCE(cpudata->highest_perf);
|
|
lowest_nonlinear_perf = READ_ONCE(cpudata->lowest_nonlinear_perf);
|
|
max_freq = READ_ONCE(cpudata->max_freq);
|
|
|
|
des_perf = cap_perf;
|
|
if (target_perf < capacity)
|
|
des_perf = DIV_ROUND_UP(cap_perf * target_perf, capacity);
|
|
|
|
min_perf = READ_ONCE(cpudata->highest_perf);
|
|
if (_min_perf < capacity)
|
|
min_perf = DIV_ROUND_UP(cap_perf * _min_perf, capacity);
|
|
|
|
if (min_perf < lowest_nonlinear_perf)
|
|
min_perf = lowest_nonlinear_perf;
|
|
|
|
max_perf = cap_perf;
|
|
if (max_perf < min_perf)
|
|
max_perf = min_perf;
|
|
|
|
des_perf = clamp_t(unsigned long, des_perf, min_perf, max_perf);
|
|
target_freq = div_u64(des_perf * max_freq, max_perf);
|
|
policy->cur = target_freq;
|
|
|
|
amd_pstate_update(cpudata, min_perf, des_perf, max_perf, true,
|
|
policy->governor->flags);
|
|
cpufreq_cpu_put(policy);
|
|
}
|
|
|
|
static int amd_get_min_freq(struct amd_cpudata *cpudata)
|
|
{
|
|
struct cppc_perf_caps cppc_perf;
|
|
|
|
int ret = cppc_get_perf_caps(cpudata->cpu, &cppc_perf);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/* Switch to khz */
|
|
return cppc_perf.lowest_freq * 1000;
|
|
}
|
|
|
|
static int amd_get_max_freq(struct amd_cpudata *cpudata)
|
|
{
|
|
struct cppc_perf_caps cppc_perf;
|
|
u32 max_perf, max_freq, nominal_freq, nominal_perf;
|
|
u64 boost_ratio;
|
|
|
|
int ret = cppc_get_perf_caps(cpudata->cpu, &cppc_perf);
|
|
if (ret)
|
|
return ret;
|
|
|
|
nominal_freq = cppc_perf.nominal_freq;
|
|
nominal_perf = READ_ONCE(cpudata->nominal_perf);
|
|
max_perf = READ_ONCE(cpudata->highest_perf);
|
|
|
|
boost_ratio = div_u64(max_perf << SCHED_CAPACITY_SHIFT,
|
|
nominal_perf);
|
|
|
|
max_freq = nominal_freq * boost_ratio >> SCHED_CAPACITY_SHIFT;
|
|
|
|
/* Switch to khz */
|
|
return max_freq * 1000;
|
|
}
|
|
|
|
static int amd_get_nominal_freq(struct amd_cpudata *cpudata)
|
|
{
|
|
struct cppc_perf_caps cppc_perf;
|
|
|
|
int ret = cppc_get_perf_caps(cpudata->cpu, &cppc_perf);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/* Switch to khz */
|
|
return cppc_perf.nominal_freq * 1000;
|
|
}
|
|
|
|
static int amd_get_lowest_nonlinear_freq(struct amd_cpudata *cpudata)
|
|
{
|
|
struct cppc_perf_caps cppc_perf;
|
|
u32 lowest_nonlinear_freq, lowest_nonlinear_perf,
|
|
nominal_freq, nominal_perf;
|
|
u64 lowest_nonlinear_ratio;
|
|
|
|
int ret = cppc_get_perf_caps(cpudata->cpu, &cppc_perf);
|
|
if (ret)
|
|
return ret;
|
|
|
|
nominal_freq = cppc_perf.nominal_freq;
|
|
nominal_perf = READ_ONCE(cpudata->nominal_perf);
|
|
|
|
lowest_nonlinear_perf = cppc_perf.lowest_nonlinear_perf;
|
|
|
|
lowest_nonlinear_ratio = div_u64(lowest_nonlinear_perf << SCHED_CAPACITY_SHIFT,
|
|
nominal_perf);
|
|
|
|
lowest_nonlinear_freq = nominal_freq * lowest_nonlinear_ratio >> SCHED_CAPACITY_SHIFT;
|
|
|
|
/* Switch to khz */
|
|
return lowest_nonlinear_freq * 1000;
|
|
}
|
|
|
|
static int amd_pstate_set_boost(struct cpufreq_policy *policy, int state)
|
|
{
|
|
struct amd_cpudata *cpudata = policy->driver_data;
|
|
int ret;
|
|
|
|
if (!cpudata->boost_supported) {
|
|
pr_err("Boost mode is not supported by this processor or SBIOS\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (state)
|
|
policy->cpuinfo.max_freq = cpudata->max_freq;
|
|
else
|
|
policy->cpuinfo.max_freq = cpudata->nominal_freq;
|
|
|
|
policy->max = policy->cpuinfo.max_freq;
|
|
|
|
ret = freq_qos_update_request(&cpudata->req[1],
|
|
policy->cpuinfo.max_freq);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void amd_pstate_boost_init(struct amd_cpudata *cpudata)
|
|
{
|
|
u32 highest_perf, nominal_perf;
|
|
|
|
highest_perf = READ_ONCE(cpudata->highest_perf);
|
|
nominal_perf = READ_ONCE(cpudata->nominal_perf);
|
|
|
|
if (highest_perf <= nominal_perf)
|
|
return;
|
|
|
|
cpudata->boost_supported = true;
|
|
current_pstate_driver->boost_enabled = true;
|
|
}
|
|
|
|
static void amd_perf_ctl_reset(unsigned int cpu)
|
|
{
|
|
wrmsrl_on_cpu(cpu, MSR_AMD_PERF_CTL, 0);
|
|
}
|
|
|
|
static int amd_pstate_cpu_init(struct cpufreq_policy *policy)
|
|
{
|
|
int min_freq, max_freq, nominal_freq, lowest_nonlinear_freq, ret;
|
|
struct device *dev;
|
|
struct amd_cpudata *cpudata;
|
|
|
|
/*
|
|
* Resetting PERF_CTL_MSR will put the CPU in P0 frequency,
|
|
* which is ideal for initialization process.
|
|
*/
|
|
amd_perf_ctl_reset(policy->cpu);
|
|
dev = get_cpu_device(policy->cpu);
|
|
if (!dev)
|
|
return -ENODEV;
|
|
|
|
cpudata = kzalloc(sizeof(*cpudata), GFP_KERNEL);
|
|
if (!cpudata)
|
|
return -ENOMEM;
|
|
|
|
cpudata->cpu = policy->cpu;
|
|
|
|
ret = amd_pstate_init_perf(cpudata);
|
|
if (ret)
|
|
goto free_cpudata1;
|
|
|
|
min_freq = amd_get_min_freq(cpudata);
|
|
max_freq = amd_get_max_freq(cpudata);
|
|
nominal_freq = amd_get_nominal_freq(cpudata);
|
|
lowest_nonlinear_freq = amd_get_lowest_nonlinear_freq(cpudata);
|
|
|
|
if (min_freq < 0 || max_freq < 0 || min_freq > max_freq) {
|
|
dev_err(dev, "min_freq(%d) or max_freq(%d) value is incorrect\n",
|
|
min_freq, max_freq);
|
|
ret = -EINVAL;
|
|
goto free_cpudata1;
|
|
}
|
|
|
|
policy->cpuinfo.transition_latency = AMD_PSTATE_TRANSITION_LATENCY;
|
|
policy->transition_delay_us = AMD_PSTATE_TRANSITION_DELAY;
|
|
|
|
policy->min = min_freq;
|
|
policy->max = max_freq;
|
|
|
|
policy->cpuinfo.min_freq = min_freq;
|
|
policy->cpuinfo.max_freq = max_freq;
|
|
|
|
/* It will be updated by governor */
|
|
policy->cur = policy->cpuinfo.min_freq;
|
|
|
|
if (boot_cpu_has(X86_FEATURE_CPPC))
|
|
policy->fast_switch_possible = true;
|
|
|
|
ret = freq_qos_add_request(&policy->constraints, &cpudata->req[0],
|
|
FREQ_QOS_MIN, policy->cpuinfo.min_freq);
|
|
if (ret < 0) {
|
|
dev_err(dev, "Failed to add min-freq constraint (%d)\n", ret);
|
|
goto free_cpudata1;
|
|
}
|
|
|
|
ret = freq_qos_add_request(&policy->constraints, &cpudata->req[1],
|
|
FREQ_QOS_MAX, policy->cpuinfo.max_freq);
|
|
if (ret < 0) {
|
|
dev_err(dev, "Failed to add max-freq constraint (%d)\n", ret);
|
|
goto free_cpudata2;
|
|
}
|
|
|
|
/* Initial processor data capability frequencies */
|
|
cpudata->max_freq = max_freq;
|
|
cpudata->min_freq = min_freq;
|
|
cpudata->nominal_freq = nominal_freq;
|
|
cpudata->lowest_nonlinear_freq = lowest_nonlinear_freq;
|
|
|
|
policy->driver_data = cpudata;
|
|
|
|
amd_pstate_boost_init(cpudata);
|
|
if (!current_pstate_driver->adjust_perf)
|
|
current_pstate_driver->adjust_perf = amd_pstate_adjust_perf;
|
|
|
|
return 0;
|
|
|
|
free_cpudata2:
|
|
freq_qos_remove_request(&cpudata->req[0]);
|
|
free_cpudata1:
|
|
kfree(cpudata);
|
|
return ret;
|
|
}
|
|
|
|
static int amd_pstate_cpu_exit(struct cpufreq_policy *policy)
|
|
{
|
|
struct amd_cpudata *cpudata = policy->driver_data;
|
|
|
|
freq_qos_remove_request(&cpudata->req[1]);
|
|
freq_qos_remove_request(&cpudata->req[0]);
|
|
policy->fast_switch_possible = false;
|
|
kfree(cpudata);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int amd_pstate_cpu_resume(struct cpufreq_policy *policy)
|
|
{
|
|
int ret;
|
|
|
|
ret = amd_pstate_enable(true);
|
|
if (ret)
|
|
pr_err("failed to enable amd-pstate during resume, return %d\n", ret);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int amd_pstate_cpu_suspend(struct cpufreq_policy *policy)
|
|
{
|
|
int ret;
|
|
|
|
ret = amd_pstate_enable(false);
|
|
if (ret)
|
|
pr_err("failed to disable amd-pstate during suspend, return %d\n", ret);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/* Sysfs attributes */
|
|
|
|
/*
|
|
* This frequency is to indicate the maximum hardware frequency.
|
|
* If boost is not active but supported, the frequency will be larger than the
|
|
* one in cpuinfo.
|
|
*/
|
|
static ssize_t show_amd_pstate_max_freq(struct cpufreq_policy *policy,
|
|
char *buf)
|
|
{
|
|
int max_freq;
|
|
struct amd_cpudata *cpudata = policy->driver_data;
|
|
|
|
max_freq = amd_get_max_freq(cpudata);
|
|
if (max_freq < 0)
|
|
return max_freq;
|
|
|
|
return sysfs_emit(buf, "%u\n", max_freq);
|
|
}
|
|
|
|
static ssize_t show_amd_pstate_lowest_nonlinear_freq(struct cpufreq_policy *policy,
|
|
char *buf)
|
|
{
|
|
int freq;
|
|
struct amd_cpudata *cpudata = policy->driver_data;
|
|
|
|
freq = amd_get_lowest_nonlinear_freq(cpudata);
|
|
if (freq < 0)
|
|
return freq;
|
|
|
|
return sysfs_emit(buf, "%u\n", freq);
|
|
}
|
|
|
|
/*
|
|
* In some of ASICs, the highest_perf is not the one in the _CPC table, so we
|
|
* need to expose it to sysfs.
|
|
*/
|
|
static ssize_t show_amd_pstate_highest_perf(struct cpufreq_policy *policy,
|
|
char *buf)
|
|
{
|
|
u32 perf;
|
|
struct amd_cpudata *cpudata = policy->driver_data;
|
|
|
|
perf = READ_ONCE(cpudata->highest_perf);
|
|
|
|
return sysfs_emit(buf, "%u\n", perf);
|
|
}
|
|
|
|
static ssize_t show_energy_performance_available_preferences(
|
|
struct cpufreq_policy *policy, char *buf)
|
|
{
|
|
int i = 0;
|
|
int offset = 0;
|
|
|
|
while (energy_perf_strings[i] != NULL)
|
|
offset += sysfs_emit_at(buf, offset, "%s ", energy_perf_strings[i++]);
|
|
|
|
sysfs_emit_at(buf, offset, "\n");
|
|
|
|
return offset;
|
|
}
|
|
|
|
static ssize_t store_energy_performance_preference(
|
|
struct cpufreq_policy *policy, const char *buf, size_t count)
|
|
{
|
|
struct amd_cpudata *cpudata = policy->driver_data;
|
|
char str_preference[21];
|
|
ssize_t ret;
|
|
|
|
ret = sscanf(buf, "%20s", str_preference);
|
|
if (ret != 1)
|
|
return -EINVAL;
|
|
|
|
ret = match_string(energy_perf_strings, -1, str_preference);
|
|
if (ret < 0)
|
|
return -EINVAL;
|
|
|
|
mutex_lock(&amd_pstate_limits_lock);
|
|
ret = amd_pstate_set_energy_pref_index(cpudata, ret);
|
|
mutex_unlock(&amd_pstate_limits_lock);
|
|
|
|
return ret ?: count;
|
|
}
|
|
|
|
static ssize_t show_energy_performance_preference(
|
|
struct cpufreq_policy *policy, char *buf)
|
|
{
|
|
struct amd_cpudata *cpudata = policy->driver_data;
|
|
int preference;
|
|
|
|
preference = amd_pstate_get_energy_pref_index(cpudata);
|
|
if (preference < 0)
|
|
return preference;
|
|
|
|
return sysfs_emit(buf, "%s\n", energy_perf_strings[preference]);
|
|
}
|
|
|
|
static void amd_pstate_driver_cleanup(void)
|
|
{
|
|
amd_pstate_enable(false);
|
|
cppc_state = AMD_PSTATE_DISABLE;
|
|
current_pstate_driver = NULL;
|
|
}
|
|
|
|
static int amd_pstate_register_driver(int mode)
|
|
{
|
|
int ret;
|
|
|
|
if (mode == AMD_PSTATE_PASSIVE || mode == AMD_PSTATE_GUIDED)
|
|
current_pstate_driver = &amd_pstate_driver;
|
|
else if (mode == AMD_PSTATE_ACTIVE)
|
|
current_pstate_driver = &amd_pstate_epp_driver;
|
|
else
|
|
return -EINVAL;
|
|
|
|
cppc_state = mode;
|
|
ret = cpufreq_register_driver(current_pstate_driver);
|
|
if (ret) {
|
|
amd_pstate_driver_cleanup();
|
|
return ret;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int amd_pstate_unregister_driver(int dummy)
|
|
{
|
|
cpufreq_unregister_driver(current_pstate_driver);
|
|
amd_pstate_driver_cleanup();
|
|
return 0;
|
|
}
|
|
|
|
static int amd_pstate_change_mode_without_dvr_change(int mode)
|
|
{
|
|
int cpu = 0;
|
|
|
|
cppc_state = mode;
|
|
|
|
if (boot_cpu_has(X86_FEATURE_CPPC) || cppc_state == AMD_PSTATE_ACTIVE)
|
|
return 0;
|
|
|
|
for_each_present_cpu(cpu) {
|
|
cppc_set_auto_sel(cpu, (cppc_state == AMD_PSTATE_PASSIVE) ? 0 : 1);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int amd_pstate_change_driver_mode(int mode)
|
|
{
|
|
int ret;
|
|
|
|
ret = amd_pstate_unregister_driver(0);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ret = amd_pstate_register_driver(mode);
|
|
if (ret)
|
|
return ret;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static cppc_mode_transition_fn mode_state_machine[AMD_PSTATE_MAX][AMD_PSTATE_MAX] = {
|
|
[AMD_PSTATE_DISABLE] = {
|
|
[AMD_PSTATE_DISABLE] = NULL,
|
|
[AMD_PSTATE_PASSIVE] = amd_pstate_register_driver,
|
|
[AMD_PSTATE_ACTIVE] = amd_pstate_register_driver,
|
|
[AMD_PSTATE_GUIDED] = amd_pstate_register_driver,
|
|
},
|
|
[AMD_PSTATE_PASSIVE] = {
|
|
[AMD_PSTATE_DISABLE] = amd_pstate_unregister_driver,
|
|
[AMD_PSTATE_PASSIVE] = NULL,
|
|
[AMD_PSTATE_ACTIVE] = amd_pstate_change_driver_mode,
|
|
[AMD_PSTATE_GUIDED] = amd_pstate_change_mode_without_dvr_change,
|
|
},
|
|
[AMD_PSTATE_ACTIVE] = {
|
|
[AMD_PSTATE_DISABLE] = amd_pstate_unregister_driver,
|
|
[AMD_PSTATE_PASSIVE] = amd_pstate_change_driver_mode,
|
|
[AMD_PSTATE_ACTIVE] = NULL,
|
|
[AMD_PSTATE_GUIDED] = amd_pstate_change_driver_mode,
|
|
},
|
|
[AMD_PSTATE_GUIDED] = {
|
|
[AMD_PSTATE_DISABLE] = amd_pstate_unregister_driver,
|
|
[AMD_PSTATE_PASSIVE] = amd_pstate_change_mode_without_dvr_change,
|
|
[AMD_PSTATE_ACTIVE] = amd_pstate_change_driver_mode,
|
|
[AMD_PSTATE_GUIDED] = NULL,
|
|
},
|
|
};
|
|
|
|
static ssize_t amd_pstate_show_status(char *buf)
|
|
{
|
|
if (!current_pstate_driver)
|
|
return sysfs_emit(buf, "disable\n");
|
|
|
|
return sysfs_emit(buf, "%s\n", amd_pstate_mode_string[cppc_state]);
|
|
}
|
|
|
|
static int amd_pstate_update_status(const char *buf, size_t size)
|
|
{
|
|
int mode_idx;
|
|
|
|
if (size > strlen("passive") || size < strlen("active"))
|
|
return -EINVAL;
|
|
|
|
mode_idx = get_mode_idx_from_str(buf, size);
|
|
|
|
if (mode_idx < 0 || mode_idx >= AMD_PSTATE_MAX)
|
|
return -EINVAL;
|
|
|
|
if (mode_state_machine[cppc_state][mode_idx])
|
|
return mode_state_machine[cppc_state][mode_idx](mode_idx);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static ssize_t show_status(struct kobject *kobj,
|
|
struct kobj_attribute *attr, char *buf)
|
|
{
|
|
ssize_t ret;
|
|
|
|
mutex_lock(&amd_pstate_driver_lock);
|
|
ret = amd_pstate_show_status(buf);
|
|
mutex_unlock(&amd_pstate_driver_lock);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static ssize_t store_status(struct kobject *a, struct kobj_attribute *b,
|
|
const char *buf, size_t count)
|
|
{
|
|
char *p = memchr(buf, '\n', count);
|
|
int ret;
|
|
|
|
mutex_lock(&amd_pstate_driver_lock);
|
|
ret = amd_pstate_update_status(buf, p ? p - buf : count);
|
|
mutex_unlock(&amd_pstate_driver_lock);
|
|
|
|
return ret < 0 ? ret : count;
|
|
}
|
|
|
|
cpufreq_freq_attr_ro(amd_pstate_max_freq);
|
|
cpufreq_freq_attr_ro(amd_pstate_lowest_nonlinear_freq);
|
|
|
|
cpufreq_freq_attr_ro(amd_pstate_highest_perf);
|
|
cpufreq_freq_attr_rw(energy_performance_preference);
|
|
cpufreq_freq_attr_ro(energy_performance_available_preferences);
|
|
define_one_global_rw(status);
|
|
|
|
static struct freq_attr *amd_pstate_attr[] = {
|
|
&amd_pstate_max_freq,
|
|
&amd_pstate_lowest_nonlinear_freq,
|
|
&amd_pstate_highest_perf,
|
|
NULL,
|
|
};
|
|
|
|
static struct freq_attr *amd_pstate_epp_attr[] = {
|
|
&amd_pstate_max_freq,
|
|
&amd_pstate_lowest_nonlinear_freq,
|
|
&amd_pstate_highest_perf,
|
|
&energy_performance_preference,
|
|
&energy_performance_available_preferences,
|
|
NULL,
|
|
};
|
|
|
|
static struct attribute *pstate_global_attributes[] = {
|
|
&status.attr,
|
|
NULL
|
|
};
|
|
|
|
static const struct attribute_group amd_pstate_global_attr_group = {
|
|
.name = "amd_pstate",
|
|
.attrs = pstate_global_attributes,
|
|
};
|
|
|
|
static bool amd_pstate_acpi_pm_profile_server(void)
|
|
{
|
|
switch (acpi_gbl_FADT.preferred_profile) {
|
|
case PM_ENTERPRISE_SERVER:
|
|
case PM_SOHO_SERVER:
|
|
case PM_PERFORMANCE_SERVER:
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
static bool amd_pstate_acpi_pm_profile_undefined(void)
|
|
{
|
|
if (acpi_gbl_FADT.preferred_profile == PM_UNSPECIFIED)
|
|
return true;
|
|
if (acpi_gbl_FADT.preferred_profile >= NR_PM_PROFILES)
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
static int amd_pstate_epp_cpu_init(struct cpufreq_policy *policy)
|
|
{
|
|
int min_freq, max_freq, nominal_freq, lowest_nonlinear_freq, ret;
|
|
struct amd_cpudata *cpudata;
|
|
struct device *dev;
|
|
u64 value;
|
|
|
|
/*
|
|
* Resetting PERF_CTL_MSR will put the CPU in P0 frequency,
|
|
* which is ideal for initialization process.
|
|
*/
|
|
amd_perf_ctl_reset(policy->cpu);
|
|
dev = get_cpu_device(policy->cpu);
|
|
if (!dev)
|
|
return -ENODEV;
|
|
|
|
cpudata = kzalloc(sizeof(*cpudata), GFP_KERNEL);
|
|
if (!cpudata)
|
|
return -ENOMEM;
|
|
|
|
cpudata->cpu = policy->cpu;
|
|
cpudata->epp_policy = 0;
|
|
|
|
ret = amd_pstate_init_perf(cpudata);
|
|
if (ret)
|
|
goto free_cpudata1;
|
|
|
|
min_freq = amd_get_min_freq(cpudata);
|
|
max_freq = amd_get_max_freq(cpudata);
|
|
nominal_freq = amd_get_nominal_freq(cpudata);
|
|
lowest_nonlinear_freq = amd_get_lowest_nonlinear_freq(cpudata);
|
|
if (min_freq < 0 || max_freq < 0 || min_freq > max_freq) {
|
|
dev_err(dev, "min_freq(%d) or max_freq(%d) value is incorrect\n",
|
|
min_freq, max_freq);
|
|
ret = -EINVAL;
|
|
goto free_cpudata1;
|
|
}
|
|
|
|
policy->cpuinfo.min_freq = min_freq;
|
|
policy->cpuinfo.max_freq = max_freq;
|
|
/* It will be updated by governor */
|
|
policy->cur = policy->cpuinfo.min_freq;
|
|
|
|
/* Initial processor data capability frequencies */
|
|
cpudata->max_freq = max_freq;
|
|
cpudata->min_freq = min_freq;
|
|
cpudata->nominal_freq = nominal_freq;
|
|
cpudata->lowest_nonlinear_freq = lowest_nonlinear_freq;
|
|
|
|
policy->driver_data = cpudata;
|
|
|
|
cpudata->epp_cached = amd_pstate_get_epp(cpudata, 0);
|
|
|
|
policy->min = policy->cpuinfo.min_freq;
|
|
policy->max = policy->cpuinfo.max_freq;
|
|
|
|
/*
|
|
* Set the policy to provide a valid fallback value in case
|
|
* the default cpufreq governor is neither powersave nor performance.
|
|
*/
|
|
if (amd_pstate_acpi_pm_profile_server() ||
|
|
amd_pstate_acpi_pm_profile_undefined())
|
|
policy->policy = CPUFREQ_POLICY_PERFORMANCE;
|
|
else
|
|
policy->policy = CPUFREQ_POLICY_POWERSAVE;
|
|
|
|
if (boot_cpu_has(X86_FEATURE_CPPC)) {
|
|
ret = rdmsrl_on_cpu(cpudata->cpu, MSR_AMD_CPPC_REQ, &value);
|
|
if (ret)
|
|
return ret;
|
|
WRITE_ONCE(cpudata->cppc_req_cached, value);
|
|
|
|
ret = rdmsrl_on_cpu(cpudata->cpu, MSR_AMD_CPPC_CAP1, &value);
|
|
if (ret)
|
|
return ret;
|
|
WRITE_ONCE(cpudata->cppc_cap1_cached, value);
|
|
}
|
|
amd_pstate_boost_init(cpudata);
|
|
|
|
return 0;
|
|
|
|
free_cpudata1:
|
|
kfree(cpudata);
|
|
return ret;
|
|
}
|
|
|
|
static int amd_pstate_epp_cpu_exit(struct cpufreq_policy *policy)
|
|
{
|
|
pr_debug("CPU %d exiting\n", policy->cpu);
|
|
return 0;
|
|
}
|
|
|
|
static void amd_pstate_epp_init(unsigned int cpu)
|
|
{
|
|
struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
|
|
struct amd_cpudata *cpudata = policy->driver_data;
|
|
u32 max_perf, min_perf;
|
|
u64 value;
|
|
s16 epp;
|
|
|
|
max_perf = READ_ONCE(cpudata->highest_perf);
|
|
min_perf = READ_ONCE(cpudata->lowest_perf);
|
|
|
|
value = READ_ONCE(cpudata->cppc_req_cached);
|
|
|
|
if (cpudata->policy == CPUFREQ_POLICY_PERFORMANCE)
|
|
min_perf = max_perf;
|
|
|
|
/* Initial min/max values for CPPC Performance Controls Register */
|
|
value &= ~AMD_CPPC_MIN_PERF(~0L);
|
|
value |= AMD_CPPC_MIN_PERF(min_perf);
|
|
|
|
value &= ~AMD_CPPC_MAX_PERF(~0L);
|
|
value |= AMD_CPPC_MAX_PERF(max_perf);
|
|
|
|
/* CPPC EPP feature require to set zero to the desire perf bit */
|
|
value &= ~AMD_CPPC_DES_PERF(~0L);
|
|
value |= AMD_CPPC_DES_PERF(0);
|
|
|
|
if (cpudata->epp_policy == cpudata->policy)
|
|
goto skip_epp;
|
|
|
|
cpudata->epp_policy = cpudata->policy;
|
|
|
|
/* Get BIOS pre-defined epp value */
|
|
epp = amd_pstate_get_epp(cpudata, value);
|
|
if (epp < 0) {
|
|
/**
|
|
* This return value can only be negative for shared_memory
|
|
* systems where EPP register read/write not supported.
|
|
*/
|
|
goto skip_epp;
|
|
}
|
|
|
|
if (cpudata->policy == CPUFREQ_POLICY_PERFORMANCE)
|
|
epp = 0;
|
|
|
|
/* Set initial EPP value */
|
|
if (boot_cpu_has(X86_FEATURE_CPPC)) {
|
|
value &= ~GENMASK_ULL(31, 24);
|
|
value |= (u64)epp << 24;
|
|
}
|
|
|
|
WRITE_ONCE(cpudata->cppc_req_cached, value);
|
|
amd_pstate_set_epp(cpudata, epp);
|
|
skip_epp:
|
|
cpufreq_cpu_put(policy);
|
|
}
|
|
|
|
static int amd_pstate_epp_set_policy(struct cpufreq_policy *policy)
|
|
{
|
|
struct amd_cpudata *cpudata = policy->driver_data;
|
|
|
|
if (!policy->cpuinfo.max_freq)
|
|
return -ENODEV;
|
|
|
|
pr_debug("set_policy: cpuinfo.max %u policy->max %u\n",
|
|
policy->cpuinfo.max_freq, policy->max);
|
|
|
|
cpudata->policy = policy->policy;
|
|
|
|
amd_pstate_epp_init(policy->cpu);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void amd_pstate_epp_reenable(struct amd_cpudata *cpudata)
|
|
{
|
|
struct cppc_perf_ctrls perf_ctrls;
|
|
u64 value, max_perf;
|
|
int ret;
|
|
|
|
ret = amd_pstate_enable(true);
|
|
if (ret)
|
|
pr_err("failed to enable amd pstate during resume, return %d\n", ret);
|
|
|
|
value = READ_ONCE(cpudata->cppc_req_cached);
|
|
max_perf = READ_ONCE(cpudata->highest_perf);
|
|
|
|
if (boot_cpu_has(X86_FEATURE_CPPC)) {
|
|
wrmsrl_on_cpu(cpudata->cpu, MSR_AMD_CPPC_REQ, value);
|
|
} else {
|
|
perf_ctrls.max_perf = max_perf;
|
|
perf_ctrls.energy_perf = AMD_CPPC_ENERGY_PERF_PREF(cpudata->epp_cached);
|
|
cppc_set_perf(cpudata->cpu, &perf_ctrls);
|
|
}
|
|
}
|
|
|
|
static int amd_pstate_epp_cpu_online(struct cpufreq_policy *policy)
|
|
{
|
|
struct amd_cpudata *cpudata = policy->driver_data;
|
|
|
|
pr_debug("AMD CPU Core %d going online\n", cpudata->cpu);
|
|
|
|
if (cppc_state == AMD_PSTATE_ACTIVE) {
|
|
amd_pstate_epp_reenable(cpudata);
|
|
cpudata->suspended = false;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void amd_pstate_epp_offline(struct cpufreq_policy *policy)
|
|
{
|
|
struct amd_cpudata *cpudata = policy->driver_data;
|
|
struct cppc_perf_ctrls perf_ctrls;
|
|
int min_perf;
|
|
u64 value;
|
|
|
|
min_perf = READ_ONCE(cpudata->lowest_perf);
|
|
value = READ_ONCE(cpudata->cppc_req_cached);
|
|
|
|
mutex_lock(&amd_pstate_limits_lock);
|
|
if (boot_cpu_has(X86_FEATURE_CPPC)) {
|
|
cpudata->epp_policy = CPUFREQ_POLICY_UNKNOWN;
|
|
|
|
/* Set max perf same as min perf */
|
|
value &= ~AMD_CPPC_MAX_PERF(~0L);
|
|
value |= AMD_CPPC_MAX_PERF(min_perf);
|
|
value &= ~AMD_CPPC_MIN_PERF(~0L);
|
|
value |= AMD_CPPC_MIN_PERF(min_perf);
|
|
wrmsrl_on_cpu(cpudata->cpu, MSR_AMD_CPPC_REQ, value);
|
|
} else {
|
|
perf_ctrls.desired_perf = 0;
|
|
perf_ctrls.max_perf = min_perf;
|
|
perf_ctrls.energy_perf = AMD_CPPC_ENERGY_PERF_PREF(HWP_EPP_BALANCE_POWERSAVE);
|
|
cppc_set_perf(cpudata->cpu, &perf_ctrls);
|
|
}
|
|
mutex_unlock(&amd_pstate_limits_lock);
|
|
}
|
|
|
|
static int amd_pstate_epp_cpu_offline(struct cpufreq_policy *policy)
|
|
{
|
|
struct amd_cpudata *cpudata = policy->driver_data;
|
|
|
|
pr_debug("AMD CPU Core %d going offline\n", cpudata->cpu);
|
|
|
|
if (cpudata->suspended)
|
|
return 0;
|
|
|
|
if (cppc_state == AMD_PSTATE_ACTIVE)
|
|
amd_pstate_epp_offline(policy);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int amd_pstate_epp_verify_policy(struct cpufreq_policy_data *policy)
|
|
{
|
|
cpufreq_verify_within_cpu_limits(policy);
|
|
pr_debug("policy_max =%d, policy_min=%d\n", policy->max, policy->min);
|
|
return 0;
|
|
}
|
|
|
|
static int amd_pstate_epp_suspend(struct cpufreq_policy *policy)
|
|
{
|
|
struct amd_cpudata *cpudata = policy->driver_data;
|
|
int ret;
|
|
|
|
/* avoid suspending when EPP is not enabled */
|
|
if (cppc_state != AMD_PSTATE_ACTIVE)
|
|
return 0;
|
|
|
|
/* set this flag to avoid setting core offline*/
|
|
cpudata->suspended = true;
|
|
|
|
/* disable CPPC in lowlevel firmware */
|
|
ret = amd_pstate_enable(false);
|
|
if (ret)
|
|
pr_err("failed to suspend, return %d\n", ret);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int amd_pstate_epp_resume(struct cpufreq_policy *policy)
|
|
{
|
|
struct amd_cpudata *cpudata = policy->driver_data;
|
|
|
|
if (cpudata->suspended) {
|
|
mutex_lock(&amd_pstate_limits_lock);
|
|
|
|
/* enable amd pstate from suspend state*/
|
|
amd_pstate_epp_reenable(cpudata);
|
|
|
|
mutex_unlock(&amd_pstate_limits_lock);
|
|
|
|
cpudata->suspended = false;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static struct cpufreq_driver amd_pstate_driver = {
|
|
.flags = CPUFREQ_CONST_LOOPS | CPUFREQ_NEED_UPDATE_LIMITS,
|
|
.verify = amd_pstate_verify,
|
|
.target = amd_pstate_target,
|
|
.fast_switch = amd_pstate_fast_switch,
|
|
.init = amd_pstate_cpu_init,
|
|
.exit = amd_pstate_cpu_exit,
|
|
.suspend = amd_pstate_cpu_suspend,
|
|
.resume = amd_pstate_cpu_resume,
|
|
.set_boost = amd_pstate_set_boost,
|
|
.name = "amd-pstate",
|
|
.attr = amd_pstate_attr,
|
|
};
|
|
|
|
static struct cpufreq_driver amd_pstate_epp_driver = {
|
|
.flags = CPUFREQ_CONST_LOOPS,
|
|
.verify = amd_pstate_epp_verify_policy,
|
|
.setpolicy = amd_pstate_epp_set_policy,
|
|
.init = amd_pstate_epp_cpu_init,
|
|
.exit = amd_pstate_epp_cpu_exit,
|
|
.offline = amd_pstate_epp_cpu_offline,
|
|
.online = amd_pstate_epp_cpu_online,
|
|
.suspend = amd_pstate_epp_suspend,
|
|
.resume = amd_pstate_epp_resume,
|
|
.name = "amd-pstate-epp",
|
|
.attr = amd_pstate_epp_attr,
|
|
};
|
|
|
|
static int __init amd_pstate_set_driver(int mode_idx)
|
|
{
|
|
if (mode_idx >= AMD_PSTATE_DISABLE && mode_idx < AMD_PSTATE_MAX) {
|
|
cppc_state = mode_idx;
|
|
if (cppc_state == AMD_PSTATE_DISABLE)
|
|
pr_info("driver is explicitly disabled\n");
|
|
|
|
if (cppc_state == AMD_PSTATE_ACTIVE)
|
|
current_pstate_driver = &amd_pstate_epp_driver;
|
|
|
|
if (cppc_state == AMD_PSTATE_PASSIVE || cppc_state == AMD_PSTATE_GUIDED)
|
|
current_pstate_driver = &amd_pstate_driver;
|
|
|
|
return 0;
|
|
}
|
|
|
|
return -EINVAL;
|
|
}
|
|
|
|
static int __init amd_pstate_init(void)
|
|
{
|
|
struct device *dev_root;
|
|
int ret;
|
|
|
|
if (boot_cpu_data.x86_vendor != X86_VENDOR_AMD)
|
|
return -ENODEV;
|
|
|
|
if (!acpi_cpc_valid()) {
|
|
pr_warn_once("the _CPC object is not present in SBIOS or ACPI disabled\n");
|
|
return -ENODEV;
|
|
}
|
|
|
|
/* don't keep reloading if cpufreq_driver exists */
|
|
if (cpufreq_get_current_driver())
|
|
return -EEXIST;
|
|
|
|
switch (cppc_state) {
|
|
case AMD_PSTATE_UNDEFINED:
|
|
/* Disable on the following configs by default:
|
|
* 1. Undefined platforms
|
|
* 2. Server platforms
|
|
* 3. Shared memory designs
|
|
*/
|
|
if (amd_pstate_acpi_pm_profile_undefined() ||
|
|
amd_pstate_acpi_pm_profile_server() ||
|
|
!boot_cpu_has(X86_FEATURE_CPPC)) {
|
|
pr_info("driver load is disabled, boot with specific mode to enable this\n");
|
|
return -ENODEV;
|
|
}
|
|
ret = amd_pstate_set_driver(CONFIG_X86_AMD_PSTATE_DEFAULT_MODE);
|
|
if (ret)
|
|
return ret;
|
|
break;
|
|
case AMD_PSTATE_DISABLE:
|
|
return -ENODEV;
|
|
case AMD_PSTATE_PASSIVE:
|
|
case AMD_PSTATE_ACTIVE:
|
|
case AMD_PSTATE_GUIDED:
|
|
break;
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* capability check */
|
|
if (boot_cpu_has(X86_FEATURE_CPPC)) {
|
|
pr_debug("AMD CPPC MSR based functionality is supported\n");
|
|
if (cppc_state != AMD_PSTATE_ACTIVE)
|
|
current_pstate_driver->adjust_perf = amd_pstate_adjust_perf;
|
|
} else {
|
|
pr_debug("AMD CPPC shared memory based functionality is supported\n");
|
|
static_call_update(amd_pstate_enable, cppc_enable);
|
|
static_call_update(amd_pstate_init_perf, cppc_init_perf);
|
|
static_call_update(amd_pstate_update_perf, cppc_update_perf);
|
|
}
|
|
|
|
/* enable amd pstate feature */
|
|
ret = amd_pstate_enable(true);
|
|
if (ret) {
|
|
pr_err("failed to enable with return %d\n", ret);
|
|
return ret;
|
|
}
|
|
|
|
ret = cpufreq_register_driver(current_pstate_driver);
|
|
if (ret)
|
|
pr_err("failed to register with return %d\n", ret);
|
|
|
|
dev_root = bus_get_dev_root(&cpu_subsys);
|
|
if (dev_root) {
|
|
ret = sysfs_create_group(&dev_root->kobj, &amd_pstate_global_attr_group);
|
|
put_device(dev_root);
|
|
if (ret) {
|
|
pr_err("sysfs attribute export failed with error %d.\n", ret);
|
|
goto global_attr_free;
|
|
}
|
|
}
|
|
|
|
return ret;
|
|
|
|
global_attr_free:
|
|
cpufreq_unregister_driver(current_pstate_driver);
|
|
return ret;
|
|
}
|
|
device_initcall(amd_pstate_init);
|
|
|
|
static int __init amd_pstate_param(char *str)
|
|
{
|
|
size_t size;
|
|
int mode_idx;
|
|
|
|
if (!str)
|
|
return -EINVAL;
|
|
|
|
size = strlen(str);
|
|
mode_idx = get_mode_idx_from_str(str, size);
|
|
|
|
return amd_pstate_set_driver(mode_idx);
|
|
}
|
|
early_param("amd_pstate", amd_pstate_param);
|
|
|
|
MODULE_AUTHOR("Huang Rui <ray.huang@amd.com>");
|
|
MODULE_DESCRIPTION("AMD Processor P-state Frequency Driver");
|