linux/drivers/iommu/omap-iommu.h
Suman Anna 3846a3b951 iommu/omap: fix boot issue on remoteprocs with AMMU/Unicache
Support has been added to the OMAP IOMMU driver to fix a boot hang
issue on OMAP remoteprocs with AMMU/Unicache, caused by an improper
AMMU/Unicache state upon initial deassertion of the processor reset.
The issue is described in detail in the next three paragraphs.

All the Cortex M3/M4 IPU processor subsystems in OMAP SoCs have a
AMMU/Unicache IP that dictates the memory attributes for addresses
seen by the processor cores. The AMMU/Unicache is configured/enabled
by the SCACHE_CONFIG.BYPASS bit - a value of 1 enables the cache and
mandates all addresses accessed by M3/M4 be defined in the AMMU. This
bit is not programmable from the host processor. The M3/M4 boot
sequence starts out with the AMMU/Unicache in disabled state, and
SYS/BIOS programs the AMMU regions and enables the Unicache during
one of its initial boot steps. This SCACHE_CONFIG.BYPASS bit is
however enabled by default whenever a RET reset is applied to the IP,
irrespective of whether it was previously enabled or not. The AMMU
registers lose their context whenever this reset is applied. The reset
is effective as long as the MMU portion of the subsystem is enabled
and clocked. This behavior is common to all the IPU and DSP subsystems
that have an AMMU/Unicache.

The IPU boot sequence involves enabling and programming the MMU, and
loading the processor and releasing the reset(s) for the processor.
The PM setup code currently sets the target state for most of the
power domains to RET. The L2 MMU can be enabled, programmed and
accessed properly just fine with the domain in hardware supervised
mode, while the power domain goes through a RET->ON->RET transition
during the programming sequence. However, the ON->RET transition
asserts a RET reset, and the SCACHE_CONFIG.BYPASS bit gets auto-set.
An AMMU fault is thrown immediately when the M3/M4 core's reset is
released since the first instruction address itself will not be
defined in any valid AMMU regions. The ON->RET transition happens
automatically on the power domain after enabling the iommu due to
the hardware supervised mode.

This patch adds and invokes the .set_pwrdm_constraint pdata ops, if
present, during the OMAP IOMMU enable and disable functions to resolve
the above boot hang issue. The ops will allow to invoke a mach-omap2
layer API pwrdm_set_next_pwrst() in a multi-arch kernel environment.
The ops also returns the current power domain state while enforcing
the constraint so that the driver can store it and use it to set back
the power domain state while releasing the constraint. The pdata ops
implementation restricts the target power domain to ON during enable,
and back to the original power domain state during disable, and thereby
eliminating the conditions for the boot issue. The implementation is
effective only when the original power domain state is either RET or
OFF, and is a no-op when it is ON or INACTIVE.

The .set_pwrdm_constraint ops need to be plugged in pdata-quirks
for the affected remote processors to be able to boot properly.

Note that the current issue is seen only on kernels with the affected
power domains programmed to enter RET. For eg., IPU1 on DRA7xx is in a
separate domain and is susceptible to this bug, while the IPU2 subsystem
is within CORE power domain, and CORE RET is not supported on this SoC.
IPUs on OMAP4 and OMAP5 are also susceptible since they are in CORE power
domain, and CORE RET is a valid power target on these SoCs.

Signed-off-by: Suman Anna <s-anna@ti.com>
Signed-off-by: Joerg Roedel <jroedel@suse.de>
2019-08-09 17:37:09 +02:00

270 lines
6.9 KiB
C

/* SPDX-License-Identifier: GPL-2.0-only */
/*
* omap iommu: main structures
*
* Copyright (C) 2008-2009 Nokia Corporation
*
* Written by Hiroshi DOYU <Hiroshi.DOYU@nokia.com>
*/
#ifndef _OMAP_IOMMU_H
#define _OMAP_IOMMU_H
#include <linux/bitops.h>
#include <linux/iommu.h>
#define for_each_iotlb_cr(obj, n, __i, cr) \
for (__i = 0; \
(__i < (n)) && (cr = __iotlb_read_cr((obj), __i), true); \
__i++)
struct iotlb_entry {
u32 da;
u32 pa;
u32 pgsz, prsvd, valid;
u32 endian, elsz, mixed;
};
/**
* struct omap_iommu_device - omap iommu device data
* @pgtable: page table used by an omap iommu attached to a domain
* @iommu_dev: pointer to store an omap iommu instance attached to a domain
*/
struct omap_iommu_device {
u32 *pgtable;
struct omap_iommu *iommu_dev;
};
/**
* struct omap_iommu_domain - omap iommu domain
* @num_iommus: number of iommus in this domain
* @iommus: omap iommu device data for all iommus in this domain
* @dev: Device using this domain.
* @lock: domain lock, should be taken when attaching/detaching
* @domain: generic domain handle used by iommu core code
*/
struct omap_iommu_domain {
u32 num_iommus;
struct omap_iommu_device *iommus;
struct device *dev;
spinlock_t lock;
struct iommu_domain domain;
};
struct omap_iommu {
const char *name;
void __iomem *regbase;
struct regmap *syscfg;
struct device *dev;
struct iommu_domain *domain;
struct dentry *debug_dir;
spinlock_t iommu_lock; /* global for this whole object */
/*
* We don't change iopgd for a situation like pgd for a task,
* but share it globally for each iommu.
*/
u32 *iopgd;
spinlock_t page_table_lock; /* protect iopgd */
dma_addr_t pd_dma;
int nr_tlb_entries;
void *ctx; /* iommu context: registres saved area */
int has_bus_err_back;
u32 id;
struct iommu_device iommu;
struct iommu_group *group;
u8 pwrst;
};
/**
* struct omap_iommu_arch_data - omap iommu private data
* @iommu_dev: handle of the iommu device
*
* This is an omap iommu private data object, which binds an iommu user
* to its iommu device. This object should be placed at the iommu user's
* dev_archdata so generic IOMMU API can be used without having to
* utilize omap-specific plumbing anymore.
*/
struct omap_iommu_arch_data {
struct omap_iommu *iommu_dev;
};
struct cr_regs {
u32 cam;
u32 ram;
};
struct iotlb_lock {
short base;
short vict;
};
/*
* MMU Register offsets
*/
#define MMU_REVISION 0x00
#define MMU_IRQSTATUS 0x18
#define MMU_IRQENABLE 0x1c
#define MMU_WALKING_ST 0x40
#define MMU_CNTL 0x44
#define MMU_FAULT_AD 0x48
#define MMU_TTB 0x4c
#define MMU_LOCK 0x50
#define MMU_LD_TLB 0x54
#define MMU_CAM 0x58
#define MMU_RAM 0x5c
#define MMU_GFLUSH 0x60
#define MMU_FLUSH_ENTRY 0x64
#define MMU_READ_CAM 0x68
#define MMU_READ_RAM 0x6c
#define MMU_EMU_FAULT_AD 0x70
#define MMU_GP_REG 0x88
#define MMU_REG_SIZE 256
/*
* MMU Register bit definitions
*/
/* IRQSTATUS & IRQENABLE */
#define MMU_IRQ_MULTIHITFAULT BIT(4)
#define MMU_IRQ_TABLEWALKFAULT BIT(3)
#define MMU_IRQ_EMUMISS BIT(2)
#define MMU_IRQ_TRANSLATIONFAULT BIT(1)
#define MMU_IRQ_TLBMISS BIT(0)
#define __MMU_IRQ_FAULT \
(MMU_IRQ_MULTIHITFAULT | MMU_IRQ_EMUMISS | MMU_IRQ_TRANSLATIONFAULT)
#define MMU_IRQ_MASK \
(__MMU_IRQ_FAULT | MMU_IRQ_TABLEWALKFAULT | MMU_IRQ_TLBMISS)
#define MMU_IRQ_TWL_MASK (__MMU_IRQ_FAULT | MMU_IRQ_TABLEWALKFAULT)
#define MMU_IRQ_TLB_MISS_MASK (__MMU_IRQ_FAULT | MMU_IRQ_TLBMISS)
/* MMU_CNTL */
#define MMU_CNTL_SHIFT 1
#define MMU_CNTL_MASK (7 << MMU_CNTL_SHIFT)
#define MMU_CNTL_EML_TLB BIT(3)
#define MMU_CNTL_TWL_EN BIT(2)
#define MMU_CNTL_MMU_EN BIT(1)
/* CAM */
#define MMU_CAM_VATAG_SHIFT 12
#define MMU_CAM_VATAG_MASK \
((~0UL >> MMU_CAM_VATAG_SHIFT) << MMU_CAM_VATAG_SHIFT)
#define MMU_CAM_P BIT(3)
#define MMU_CAM_V BIT(2)
#define MMU_CAM_PGSZ_MASK 3
#define MMU_CAM_PGSZ_1M (0 << 0)
#define MMU_CAM_PGSZ_64K (1 << 0)
#define MMU_CAM_PGSZ_4K (2 << 0)
#define MMU_CAM_PGSZ_16M (3 << 0)
/* RAM */
#define MMU_RAM_PADDR_SHIFT 12
#define MMU_RAM_PADDR_MASK \
((~0UL >> MMU_RAM_PADDR_SHIFT) << MMU_RAM_PADDR_SHIFT)
#define MMU_RAM_ENDIAN_SHIFT 9
#define MMU_RAM_ENDIAN_MASK BIT(MMU_RAM_ENDIAN_SHIFT)
#define MMU_RAM_ENDIAN_LITTLE (0 << MMU_RAM_ENDIAN_SHIFT)
#define MMU_RAM_ENDIAN_BIG BIT(MMU_RAM_ENDIAN_SHIFT)
#define MMU_RAM_ELSZ_SHIFT 7
#define MMU_RAM_ELSZ_MASK (3 << MMU_RAM_ELSZ_SHIFT)
#define MMU_RAM_ELSZ_8 (0 << MMU_RAM_ELSZ_SHIFT)
#define MMU_RAM_ELSZ_16 (1 << MMU_RAM_ELSZ_SHIFT)
#define MMU_RAM_ELSZ_32 (2 << MMU_RAM_ELSZ_SHIFT)
#define MMU_RAM_ELSZ_NONE (3 << MMU_RAM_ELSZ_SHIFT)
#define MMU_RAM_MIXED_SHIFT 6
#define MMU_RAM_MIXED_MASK BIT(MMU_RAM_MIXED_SHIFT)
#define MMU_RAM_MIXED MMU_RAM_MIXED_MASK
#define MMU_GP_REG_BUS_ERR_BACK_EN 0x1
#define get_cam_va_mask(pgsz) \
(((pgsz) == MMU_CAM_PGSZ_16M) ? 0xff000000 : \
((pgsz) == MMU_CAM_PGSZ_1M) ? 0xfff00000 : \
((pgsz) == MMU_CAM_PGSZ_64K) ? 0xffff0000 : \
((pgsz) == MMU_CAM_PGSZ_4K) ? 0xfffff000 : 0)
/*
* DSP_SYSTEM registers and bit definitions (applicable only for DRA7xx DSP)
*/
#define DSP_SYS_REVISION 0x00
#define DSP_SYS_MMU_CONFIG 0x18
#define DSP_SYS_MMU_CONFIG_EN_SHIFT 4
/*
* utilities for super page(16MB, 1MB, 64KB and 4KB)
*/
#define iopgsz_max(bytes) \
(((bytes) >= SZ_16M) ? SZ_16M : \
((bytes) >= SZ_1M) ? SZ_1M : \
((bytes) >= SZ_64K) ? SZ_64K : \
((bytes) >= SZ_4K) ? SZ_4K : 0)
#define bytes_to_iopgsz(bytes) \
(((bytes) == SZ_16M) ? MMU_CAM_PGSZ_16M : \
((bytes) == SZ_1M) ? MMU_CAM_PGSZ_1M : \
((bytes) == SZ_64K) ? MMU_CAM_PGSZ_64K : \
((bytes) == SZ_4K) ? MMU_CAM_PGSZ_4K : -1)
#define iopgsz_to_bytes(iopgsz) \
(((iopgsz) == MMU_CAM_PGSZ_16M) ? SZ_16M : \
((iopgsz) == MMU_CAM_PGSZ_1M) ? SZ_1M : \
((iopgsz) == MMU_CAM_PGSZ_64K) ? SZ_64K : \
((iopgsz) == MMU_CAM_PGSZ_4K) ? SZ_4K : 0)
#define iopgsz_ok(bytes) (bytes_to_iopgsz(bytes) >= 0)
/*
* global functions
*/
struct cr_regs __iotlb_read_cr(struct omap_iommu *obj, int n);
void iotlb_lock_get(struct omap_iommu *obj, struct iotlb_lock *l);
void iotlb_lock_set(struct omap_iommu *obj, struct iotlb_lock *l);
#ifdef CONFIG_OMAP_IOMMU_DEBUG
void omap_iommu_debugfs_init(void);
void omap_iommu_debugfs_exit(void);
void omap_iommu_debugfs_add(struct omap_iommu *obj);
void omap_iommu_debugfs_remove(struct omap_iommu *obj);
#else
static inline void omap_iommu_debugfs_init(void) { }
static inline void omap_iommu_debugfs_exit(void) { }
static inline void omap_iommu_debugfs_add(struct omap_iommu *obj) { }
static inline void omap_iommu_debugfs_remove(struct omap_iommu *obj) { }
#endif
/*
* register accessors
*/
static inline u32 iommu_read_reg(struct omap_iommu *obj, size_t offs)
{
return __raw_readl(obj->regbase + offs);
}
static inline void iommu_write_reg(struct omap_iommu *obj, u32 val, size_t offs)
{
__raw_writel(val, obj->regbase + offs);
}
static inline int iotlb_cr_valid(struct cr_regs *cr)
{
if (!cr)
return -EINVAL;
return cr->cam & MMU_CAM_V;
}
#endif /* _OMAP_IOMMU_H */