Geert Uytterhoeven 3a611e26e9 net/smsc911x: Add minimal runtime PM support
Add minimal runtime PM support (enable on probe, disable on remove), to
ensure proper operation with a parent device that uses runtime PM.

This is needed on systems where the external bus controller module of
the SoC is contained in a PM domain and/or has a gateable functional
clock. In such cases, before accessing any device connected to the
external bus, the PM domain must be powered up, and/or the functional
clock must be enabled, which is typically handled through runtime PM by
the bus controller driver.

An example of this is the kzm9g development board, where an smsc9220
Ethernet controller is connected to the Bus State Controller (BSC) of a
Renesas sh73a0 SoC.

Signed-off-by: Geert Uytterhoeven <geert+renesas@glider.be>
Signed-off-by: David S. Miller <davem@davemloft.net>
2014-11-24 16:41:50 -05:00

2683 lines
70 KiB
C

/***************************************************************************
*
* Copyright (C) 2004-2008 SMSC
* Copyright (C) 2005-2008 ARM
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, see <http://www.gnu.org/licenses/>.
*
***************************************************************************
* Rewritten, heavily based on smsc911x simple driver by SMSC.
* Partly uses io macros from smc91x.c by Nicolas Pitre
*
* Supported devices:
* LAN9115, LAN9116, LAN9117, LAN9118
* LAN9215, LAN9216, LAN9217, LAN9218
* LAN9210, LAN9211
* LAN9220, LAN9221
* LAN89218
*
*/
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <linux/crc32.h>
#include <linux/clk.h>
#include <linux/delay.h>
#include <linux/errno.h>
#include <linux/etherdevice.h>
#include <linux/ethtool.h>
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/ioport.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/netdevice.h>
#include <linux/platform_device.h>
#include <linux/regulator/consumer.h>
#include <linux/sched.h>
#include <linux/timer.h>
#include <linux/bug.h>
#include <linux/bitops.h>
#include <linux/irq.h>
#include <linux/io.h>
#include <linux/swab.h>
#include <linux/phy.h>
#include <linux/smsc911x.h>
#include <linux/device.h>
#include <linux/of.h>
#include <linux/of_device.h>
#include <linux/of_gpio.h>
#include <linux/of_net.h>
#include <linux/pm_runtime.h>
#include "smsc911x.h"
#define SMSC_CHIPNAME "smsc911x"
#define SMSC_MDIONAME "smsc911x-mdio"
#define SMSC_DRV_VERSION "2008-10-21"
MODULE_LICENSE("GPL");
MODULE_VERSION(SMSC_DRV_VERSION);
MODULE_ALIAS("platform:smsc911x");
#if USE_DEBUG > 0
static int debug = 16;
#else
static int debug = 3;
#endif
module_param(debug, int, 0);
MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
struct smsc911x_data;
struct smsc911x_ops {
u32 (*reg_read)(struct smsc911x_data *pdata, u32 reg);
void (*reg_write)(struct smsc911x_data *pdata, u32 reg, u32 val);
void (*rx_readfifo)(struct smsc911x_data *pdata,
unsigned int *buf, unsigned int wordcount);
void (*tx_writefifo)(struct smsc911x_data *pdata,
unsigned int *buf, unsigned int wordcount);
};
#define SMSC911X_NUM_SUPPLIES 2
struct smsc911x_data {
void __iomem *ioaddr;
unsigned int idrev;
/* used to decide which workarounds apply */
unsigned int generation;
/* device configuration (copied from platform_data during probe) */
struct smsc911x_platform_config config;
/* This needs to be acquired before calling any of below:
* smsc911x_mac_read(), smsc911x_mac_write()
*/
spinlock_t mac_lock;
/* spinlock to ensure register accesses are serialised */
spinlock_t dev_lock;
struct phy_device *phy_dev;
struct mii_bus *mii_bus;
int phy_irq[PHY_MAX_ADDR];
unsigned int using_extphy;
int last_duplex;
int last_carrier;
u32 msg_enable;
unsigned int gpio_setting;
unsigned int gpio_orig_setting;
struct net_device *dev;
struct napi_struct napi;
unsigned int software_irq_signal;
#ifdef USE_PHY_WORK_AROUND
#define MIN_PACKET_SIZE (64)
char loopback_tx_pkt[MIN_PACKET_SIZE];
char loopback_rx_pkt[MIN_PACKET_SIZE];
unsigned int resetcount;
#endif
/* Members for Multicast filter workaround */
unsigned int multicast_update_pending;
unsigned int set_bits_mask;
unsigned int clear_bits_mask;
unsigned int hashhi;
unsigned int hashlo;
/* register access functions */
const struct smsc911x_ops *ops;
/* regulators */
struct regulator_bulk_data supplies[SMSC911X_NUM_SUPPLIES];
/* clock */
struct clk *clk;
};
/* Easy access to information */
#define __smsc_shift(pdata, reg) ((reg) << ((pdata)->config.shift))
static inline u32 __smsc911x_reg_read(struct smsc911x_data *pdata, u32 reg)
{
if (pdata->config.flags & SMSC911X_USE_32BIT)
return readl(pdata->ioaddr + reg);
if (pdata->config.flags & SMSC911X_USE_16BIT)
return ((readw(pdata->ioaddr + reg) & 0xFFFF) |
((readw(pdata->ioaddr + reg + 2) & 0xFFFF) << 16));
BUG();
return 0;
}
static inline u32
__smsc911x_reg_read_shift(struct smsc911x_data *pdata, u32 reg)
{
if (pdata->config.flags & SMSC911X_USE_32BIT)
return readl(pdata->ioaddr + __smsc_shift(pdata, reg));
if (pdata->config.flags & SMSC911X_USE_16BIT)
return (readw(pdata->ioaddr +
__smsc_shift(pdata, reg)) & 0xFFFF) |
((readw(pdata->ioaddr +
__smsc_shift(pdata, reg + 2)) & 0xFFFF) << 16);
BUG();
return 0;
}
static inline u32 smsc911x_reg_read(struct smsc911x_data *pdata, u32 reg)
{
u32 data;
unsigned long flags;
spin_lock_irqsave(&pdata->dev_lock, flags);
data = pdata->ops->reg_read(pdata, reg);
spin_unlock_irqrestore(&pdata->dev_lock, flags);
return data;
}
static inline void __smsc911x_reg_write(struct smsc911x_data *pdata, u32 reg,
u32 val)
{
if (pdata->config.flags & SMSC911X_USE_32BIT) {
writel(val, pdata->ioaddr + reg);
return;
}
if (pdata->config.flags & SMSC911X_USE_16BIT) {
writew(val & 0xFFFF, pdata->ioaddr + reg);
writew((val >> 16) & 0xFFFF, pdata->ioaddr + reg + 2);
return;
}
BUG();
}
static inline void
__smsc911x_reg_write_shift(struct smsc911x_data *pdata, u32 reg, u32 val)
{
if (pdata->config.flags & SMSC911X_USE_32BIT) {
writel(val, pdata->ioaddr + __smsc_shift(pdata, reg));
return;
}
if (pdata->config.flags & SMSC911X_USE_16BIT) {
writew(val & 0xFFFF,
pdata->ioaddr + __smsc_shift(pdata, reg));
writew((val >> 16) & 0xFFFF,
pdata->ioaddr + __smsc_shift(pdata, reg + 2));
return;
}
BUG();
}
static inline void smsc911x_reg_write(struct smsc911x_data *pdata, u32 reg,
u32 val)
{
unsigned long flags;
spin_lock_irqsave(&pdata->dev_lock, flags);
pdata->ops->reg_write(pdata, reg, val);
spin_unlock_irqrestore(&pdata->dev_lock, flags);
}
/* Writes a packet to the TX_DATA_FIFO */
static inline void
smsc911x_tx_writefifo(struct smsc911x_data *pdata, unsigned int *buf,
unsigned int wordcount)
{
unsigned long flags;
spin_lock_irqsave(&pdata->dev_lock, flags);
if (pdata->config.flags & SMSC911X_SWAP_FIFO) {
while (wordcount--)
__smsc911x_reg_write(pdata, TX_DATA_FIFO,
swab32(*buf++));
goto out;
}
if (pdata->config.flags & SMSC911X_USE_32BIT) {
iowrite32_rep(pdata->ioaddr + TX_DATA_FIFO, buf, wordcount);
goto out;
}
if (pdata->config.flags & SMSC911X_USE_16BIT) {
while (wordcount--)
__smsc911x_reg_write(pdata, TX_DATA_FIFO, *buf++);
goto out;
}
BUG();
out:
spin_unlock_irqrestore(&pdata->dev_lock, flags);
}
/* Writes a packet to the TX_DATA_FIFO - shifted version */
static inline void
smsc911x_tx_writefifo_shift(struct smsc911x_data *pdata, unsigned int *buf,
unsigned int wordcount)
{
unsigned long flags;
spin_lock_irqsave(&pdata->dev_lock, flags);
if (pdata->config.flags & SMSC911X_SWAP_FIFO) {
while (wordcount--)
__smsc911x_reg_write_shift(pdata, TX_DATA_FIFO,
swab32(*buf++));
goto out;
}
if (pdata->config.flags & SMSC911X_USE_32BIT) {
iowrite32_rep(pdata->ioaddr + __smsc_shift(pdata,
TX_DATA_FIFO), buf, wordcount);
goto out;
}
if (pdata->config.flags & SMSC911X_USE_16BIT) {
while (wordcount--)
__smsc911x_reg_write_shift(pdata,
TX_DATA_FIFO, *buf++);
goto out;
}
BUG();
out:
spin_unlock_irqrestore(&pdata->dev_lock, flags);
}
/* Reads a packet out of the RX_DATA_FIFO */
static inline void
smsc911x_rx_readfifo(struct smsc911x_data *pdata, unsigned int *buf,
unsigned int wordcount)
{
unsigned long flags;
spin_lock_irqsave(&pdata->dev_lock, flags);
if (pdata->config.flags & SMSC911X_SWAP_FIFO) {
while (wordcount--)
*buf++ = swab32(__smsc911x_reg_read(pdata,
RX_DATA_FIFO));
goto out;
}
if (pdata->config.flags & SMSC911X_USE_32BIT) {
ioread32_rep(pdata->ioaddr + RX_DATA_FIFO, buf, wordcount);
goto out;
}
if (pdata->config.flags & SMSC911X_USE_16BIT) {
while (wordcount--)
*buf++ = __smsc911x_reg_read(pdata, RX_DATA_FIFO);
goto out;
}
BUG();
out:
spin_unlock_irqrestore(&pdata->dev_lock, flags);
}
/* Reads a packet out of the RX_DATA_FIFO - shifted version */
static inline void
smsc911x_rx_readfifo_shift(struct smsc911x_data *pdata, unsigned int *buf,
unsigned int wordcount)
{
unsigned long flags;
spin_lock_irqsave(&pdata->dev_lock, flags);
if (pdata->config.flags & SMSC911X_SWAP_FIFO) {
while (wordcount--)
*buf++ = swab32(__smsc911x_reg_read_shift(pdata,
RX_DATA_FIFO));
goto out;
}
if (pdata->config.flags & SMSC911X_USE_32BIT) {
ioread32_rep(pdata->ioaddr + __smsc_shift(pdata,
RX_DATA_FIFO), buf, wordcount);
goto out;
}
if (pdata->config.flags & SMSC911X_USE_16BIT) {
while (wordcount--)
*buf++ = __smsc911x_reg_read_shift(pdata,
RX_DATA_FIFO);
goto out;
}
BUG();
out:
spin_unlock_irqrestore(&pdata->dev_lock, flags);
}
/*
* enable regulator and clock resources.
*/
static int smsc911x_enable_resources(struct platform_device *pdev)
{
struct net_device *ndev = platform_get_drvdata(pdev);
struct smsc911x_data *pdata = netdev_priv(ndev);
int ret = 0;
ret = regulator_bulk_enable(ARRAY_SIZE(pdata->supplies),
pdata->supplies);
if (ret)
netdev_err(ndev, "failed to enable regulators %d\n",
ret);
if (!IS_ERR(pdata->clk)) {
ret = clk_prepare_enable(pdata->clk);
if (ret < 0)
netdev_err(ndev, "failed to enable clock %d\n", ret);
}
return ret;
}
/*
* disable resources, currently just regulators.
*/
static int smsc911x_disable_resources(struct platform_device *pdev)
{
struct net_device *ndev = platform_get_drvdata(pdev);
struct smsc911x_data *pdata = netdev_priv(ndev);
int ret = 0;
ret = regulator_bulk_disable(ARRAY_SIZE(pdata->supplies),
pdata->supplies);
if (!IS_ERR(pdata->clk))
clk_disable_unprepare(pdata->clk);
return ret;
}
/*
* Request resources, currently just regulators.
*
* The SMSC911x has two power pins: vddvario and vdd33a, in designs where
* these are not always-on we need to request regulators to be turned on
* before we can try to access the device registers.
*/
static int smsc911x_request_resources(struct platform_device *pdev)
{
struct net_device *ndev = platform_get_drvdata(pdev);
struct smsc911x_data *pdata = netdev_priv(ndev);
int ret = 0;
/* Request regulators */
pdata->supplies[0].supply = "vdd33a";
pdata->supplies[1].supply = "vddvario";
ret = regulator_bulk_get(&pdev->dev,
ARRAY_SIZE(pdata->supplies),
pdata->supplies);
if (ret)
netdev_err(ndev, "couldn't get regulators %d\n",
ret);
/* Request clock */
pdata->clk = clk_get(&pdev->dev, NULL);
if (IS_ERR(pdata->clk))
dev_dbg(&pdev->dev, "couldn't get clock %li\n",
PTR_ERR(pdata->clk));
return ret;
}
/*
* Free resources, currently just regulators.
*
*/
static void smsc911x_free_resources(struct platform_device *pdev)
{
struct net_device *ndev = platform_get_drvdata(pdev);
struct smsc911x_data *pdata = netdev_priv(ndev);
/* Free regulators */
regulator_bulk_free(ARRAY_SIZE(pdata->supplies),
pdata->supplies);
/* Free clock */
if (!IS_ERR(pdata->clk)) {
clk_put(pdata->clk);
pdata->clk = NULL;
}
}
/* waits for MAC not busy, with timeout. Only called by smsc911x_mac_read
* and smsc911x_mac_write, so assumes mac_lock is held */
static int smsc911x_mac_complete(struct smsc911x_data *pdata)
{
int i;
u32 val;
SMSC_ASSERT_MAC_LOCK(pdata);
for (i = 0; i < 40; i++) {
val = smsc911x_reg_read(pdata, MAC_CSR_CMD);
if (!(val & MAC_CSR_CMD_CSR_BUSY_))
return 0;
}
SMSC_WARN(pdata, hw, "Timed out waiting for MAC not BUSY. "
"MAC_CSR_CMD: 0x%08X", val);
return -EIO;
}
/* Fetches a MAC register value. Assumes mac_lock is acquired */
static u32 smsc911x_mac_read(struct smsc911x_data *pdata, unsigned int offset)
{
unsigned int temp;
SMSC_ASSERT_MAC_LOCK(pdata);
temp = smsc911x_reg_read(pdata, MAC_CSR_CMD);
if (unlikely(temp & MAC_CSR_CMD_CSR_BUSY_)) {
SMSC_WARN(pdata, hw, "MAC busy at entry");
return 0xFFFFFFFF;
}
/* Send the MAC cmd */
smsc911x_reg_write(pdata, MAC_CSR_CMD, ((offset & 0xFF) |
MAC_CSR_CMD_CSR_BUSY_ | MAC_CSR_CMD_R_NOT_W_));
/* Workaround for hardware read-after-write restriction */
temp = smsc911x_reg_read(pdata, BYTE_TEST);
/* Wait for the read to complete */
if (likely(smsc911x_mac_complete(pdata) == 0))
return smsc911x_reg_read(pdata, MAC_CSR_DATA);
SMSC_WARN(pdata, hw, "MAC busy after read");
return 0xFFFFFFFF;
}
/* Set a mac register, mac_lock must be acquired before calling */
static void smsc911x_mac_write(struct smsc911x_data *pdata,
unsigned int offset, u32 val)
{
unsigned int temp;
SMSC_ASSERT_MAC_LOCK(pdata);
temp = smsc911x_reg_read(pdata, MAC_CSR_CMD);
if (unlikely(temp & MAC_CSR_CMD_CSR_BUSY_)) {
SMSC_WARN(pdata, hw,
"smsc911x_mac_write failed, MAC busy at entry");
return;
}
/* Send data to write */
smsc911x_reg_write(pdata, MAC_CSR_DATA, val);
/* Write the actual data */
smsc911x_reg_write(pdata, MAC_CSR_CMD, ((offset & 0xFF) |
MAC_CSR_CMD_CSR_BUSY_));
/* Workaround for hardware read-after-write restriction */
temp = smsc911x_reg_read(pdata, BYTE_TEST);
/* Wait for the write to complete */
if (likely(smsc911x_mac_complete(pdata) == 0))
return;
SMSC_WARN(pdata, hw, "smsc911x_mac_write failed, MAC busy after write");
}
/* Get a phy register */
static int smsc911x_mii_read(struct mii_bus *bus, int phyaddr, int regidx)
{
struct smsc911x_data *pdata = (struct smsc911x_data *)bus->priv;
unsigned long flags;
unsigned int addr;
int i, reg;
spin_lock_irqsave(&pdata->mac_lock, flags);
/* Confirm MII not busy */
if (unlikely(smsc911x_mac_read(pdata, MII_ACC) & MII_ACC_MII_BUSY_)) {
SMSC_WARN(pdata, hw, "MII is busy in smsc911x_mii_read???");
reg = -EIO;
goto out;
}
/* Set the address, index & direction (read from PHY) */
addr = ((phyaddr & 0x1F) << 11) | ((regidx & 0x1F) << 6);
smsc911x_mac_write(pdata, MII_ACC, addr);
/* Wait for read to complete w/ timeout */
for (i = 0; i < 100; i++)
if (!(smsc911x_mac_read(pdata, MII_ACC) & MII_ACC_MII_BUSY_)) {
reg = smsc911x_mac_read(pdata, MII_DATA);
goto out;
}
SMSC_WARN(pdata, hw, "Timed out waiting for MII read to finish");
reg = -EIO;
out:
spin_unlock_irqrestore(&pdata->mac_lock, flags);
return reg;
}
/* Set a phy register */
static int smsc911x_mii_write(struct mii_bus *bus, int phyaddr, int regidx,
u16 val)
{
struct smsc911x_data *pdata = (struct smsc911x_data *)bus->priv;
unsigned long flags;
unsigned int addr;
int i, reg;
spin_lock_irqsave(&pdata->mac_lock, flags);
/* Confirm MII not busy */
if (unlikely(smsc911x_mac_read(pdata, MII_ACC) & MII_ACC_MII_BUSY_)) {
SMSC_WARN(pdata, hw, "MII is busy in smsc911x_mii_write???");
reg = -EIO;
goto out;
}
/* Put the data to write in the MAC */
smsc911x_mac_write(pdata, MII_DATA, val);
/* Set the address, index & direction (write to PHY) */
addr = ((phyaddr & 0x1F) << 11) | ((regidx & 0x1F) << 6) |
MII_ACC_MII_WRITE_;
smsc911x_mac_write(pdata, MII_ACC, addr);
/* Wait for write to complete w/ timeout */
for (i = 0; i < 100; i++)
if (!(smsc911x_mac_read(pdata, MII_ACC) & MII_ACC_MII_BUSY_)) {
reg = 0;
goto out;
}
SMSC_WARN(pdata, hw, "Timed out waiting for MII write to finish");
reg = -EIO;
out:
spin_unlock_irqrestore(&pdata->mac_lock, flags);
return reg;
}
/* Switch to external phy. Assumes tx and rx are stopped. */
static void smsc911x_phy_enable_external(struct smsc911x_data *pdata)
{
unsigned int hwcfg = smsc911x_reg_read(pdata, HW_CFG);
/* Disable phy clocks to the MAC */
hwcfg &= (~HW_CFG_PHY_CLK_SEL_);
hwcfg |= HW_CFG_PHY_CLK_SEL_CLK_DIS_;
smsc911x_reg_write(pdata, HW_CFG, hwcfg);
udelay(10); /* Enough time for clocks to stop */
/* Switch to external phy */
hwcfg |= HW_CFG_EXT_PHY_EN_;
smsc911x_reg_write(pdata, HW_CFG, hwcfg);
/* Enable phy clocks to the MAC */
hwcfg &= (~HW_CFG_PHY_CLK_SEL_);
hwcfg |= HW_CFG_PHY_CLK_SEL_EXT_PHY_;
smsc911x_reg_write(pdata, HW_CFG, hwcfg);
udelay(10); /* Enough time for clocks to restart */
hwcfg |= HW_CFG_SMI_SEL_;
smsc911x_reg_write(pdata, HW_CFG, hwcfg);
}
/* Autodetects and enables external phy if present on supported chips.
* autodetection can be overridden by specifying SMSC911X_FORCE_INTERNAL_PHY
* or SMSC911X_FORCE_EXTERNAL_PHY in the platform_data flags. */
static void smsc911x_phy_initialise_external(struct smsc911x_data *pdata)
{
unsigned int hwcfg = smsc911x_reg_read(pdata, HW_CFG);
if (pdata->config.flags & SMSC911X_FORCE_INTERNAL_PHY) {
SMSC_TRACE(pdata, hw, "Forcing internal PHY");
pdata->using_extphy = 0;
} else if (pdata->config.flags & SMSC911X_FORCE_EXTERNAL_PHY) {
SMSC_TRACE(pdata, hw, "Forcing external PHY");
smsc911x_phy_enable_external(pdata);
pdata->using_extphy = 1;
} else if (hwcfg & HW_CFG_EXT_PHY_DET_) {
SMSC_TRACE(pdata, hw,
"HW_CFG EXT_PHY_DET set, using external PHY");
smsc911x_phy_enable_external(pdata);
pdata->using_extphy = 1;
} else {
SMSC_TRACE(pdata, hw,
"HW_CFG EXT_PHY_DET clear, using internal PHY");
pdata->using_extphy = 0;
}
}
/* Fetches a tx status out of the status fifo */
static unsigned int smsc911x_tx_get_txstatus(struct smsc911x_data *pdata)
{
unsigned int result =
smsc911x_reg_read(pdata, TX_FIFO_INF) & TX_FIFO_INF_TSUSED_;
if (result != 0)
result = smsc911x_reg_read(pdata, TX_STATUS_FIFO);
return result;
}
/* Fetches the next rx status */
static unsigned int smsc911x_rx_get_rxstatus(struct smsc911x_data *pdata)
{
unsigned int result =
smsc911x_reg_read(pdata, RX_FIFO_INF) & RX_FIFO_INF_RXSUSED_;
if (result != 0)
result = smsc911x_reg_read(pdata, RX_STATUS_FIFO);
return result;
}
#ifdef USE_PHY_WORK_AROUND
static int smsc911x_phy_check_loopbackpkt(struct smsc911x_data *pdata)
{
unsigned int tries;
u32 wrsz;
u32 rdsz;
ulong bufp;
for (tries = 0; tries < 10; tries++) {
unsigned int txcmd_a;
unsigned int txcmd_b;
unsigned int status;
unsigned int pktlength;
unsigned int i;
/* Zero-out rx packet memory */
memset(pdata->loopback_rx_pkt, 0, MIN_PACKET_SIZE);
/* Write tx packet to 118 */
txcmd_a = (u32)((ulong)pdata->loopback_tx_pkt & 0x03) << 16;
txcmd_a |= TX_CMD_A_FIRST_SEG_ | TX_CMD_A_LAST_SEG_;
txcmd_a |= MIN_PACKET_SIZE;
txcmd_b = MIN_PACKET_SIZE << 16 | MIN_PACKET_SIZE;
smsc911x_reg_write(pdata, TX_DATA_FIFO, txcmd_a);
smsc911x_reg_write(pdata, TX_DATA_FIFO, txcmd_b);
bufp = (ulong)pdata->loopback_tx_pkt & (~0x3);
wrsz = MIN_PACKET_SIZE + 3;
wrsz += (u32)((ulong)pdata->loopback_tx_pkt & 0x3);
wrsz >>= 2;
pdata->ops->tx_writefifo(pdata, (unsigned int *)bufp, wrsz);
/* Wait till transmit is done */
i = 60;
do {
udelay(5);
status = smsc911x_tx_get_txstatus(pdata);
} while ((i--) && (!status));
if (!status) {
SMSC_WARN(pdata, hw,
"Failed to transmit during loopback test");
continue;
}
if (status & TX_STS_ES_) {
SMSC_WARN(pdata, hw,
"Transmit encountered errors during loopback test");
continue;
}
/* Wait till receive is done */
i = 60;
do {
udelay(5);
status = smsc911x_rx_get_rxstatus(pdata);
} while ((i--) && (!status));
if (!status) {
SMSC_WARN(pdata, hw,
"Failed to receive during loopback test");
continue;
}
if (status & RX_STS_ES_) {
SMSC_WARN(pdata, hw,
"Receive encountered errors during loopback test");
continue;
}
pktlength = ((status & 0x3FFF0000UL) >> 16);
bufp = (ulong)pdata->loopback_rx_pkt;
rdsz = pktlength + 3;
rdsz += (u32)((ulong)pdata->loopback_rx_pkt & 0x3);
rdsz >>= 2;
pdata->ops->rx_readfifo(pdata, (unsigned int *)bufp, rdsz);
if (pktlength != (MIN_PACKET_SIZE + 4)) {
SMSC_WARN(pdata, hw, "Unexpected packet size "
"during loop back test, size=%d, will retry",
pktlength);
} else {
unsigned int j;
int mismatch = 0;
for (j = 0; j < MIN_PACKET_SIZE; j++) {
if (pdata->loopback_tx_pkt[j]
!= pdata->loopback_rx_pkt[j]) {
mismatch = 1;
break;
}
}
if (!mismatch) {
SMSC_TRACE(pdata, hw, "Successfully verified "
"loopback packet");
return 0;
} else {
SMSC_WARN(pdata, hw, "Data mismatch "
"during loop back test, will retry");
}
}
}
return -EIO;
}
static int smsc911x_phy_reset(struct smsc911x_data *pdata)
{
struct phy_device *phy_dev = pdata->phy_dev;
unsigned int temp;
unsigned int i = 100000;
BUG_ON(!phy_dev);
BUG_ON(!phy_dev->bus);
SMSC_TRACE(pdata, hw, "Performing PHY BCR Reset");
smsc911x_mii_write(phy_dev->bus, phy_dev->addr, MII_BMCR, BMCR_RESET);
do {
msleep(1);
temp = smsc911x_mii_read(phy_dev->bus, phy_dev->addr,
MII_BMCR);
} while ((i--) && (temp & BMCR_RESET));
if (temp & BMCR_RESET) {
SMSC_WARN(pdata, hw, "PHY reset failed to complete");
return -EIO;
}
/* Extra delay required because the phy may not be completed with
* its reset when BMCR_RESET is cleared. Specs say 256 uS is
* enough delay but using 1ms here to be safe */
msleep(1);
return 0;
}
static int smsc911x_phy_loopbacktest(struct net_device *dev)
{
struct smsc911x_data *pdata = netdev_priv(dev);
struct phy_device *phy_dev = pdata->phy_dev;
int result = -EIO;
unsigned int i, val;
unsigned long flags;
/* Initialise tx packet using broadcast destination address */
memset(pdata->loopback_tx_pkt, 0xff, ETH_ALEN);
/* Use incrementing source address */
for (i = 6; i < 12; i++)
pdata->loopback_tx_pkt[i] = (char)i;
/* Set length type field */
pdata->loopback_tx_pkt[12] = 0x00;
pdata->loopback_tx_pkt[13] = 0x00;
for (i = 14; i < MIN_PACKET_SIZE; i++)
pdata->loopback_tx_pkt[i] = (char)i;
val = smsc911x_reg_read(pdata, HW_CFG);
val &= HW_CFG_TX_FIF_SZ_;
val |= HW_CFG_SF_;
smsc911x_reg_write(pdata, HW_CFG, val);
smsc911x_reg_write(pdata, TX_CFG, TX_CFG_TX_ON_);
smsc911x_reg_write(pdata, RX_CFG,
(u32)((ulong)pdata->loopback_rx_pkt & 0x03) << 8);
for (i = 0; i < 10; i++) {
/* Set PHY to 10/FD, no ANEG, and loopback mode */
smsc911x_mii_write(phy_dev->bus, phy_dev->addr, MII_BMCR,
BMCR_LOOPBACK | BMCR_FULLDPLX);
/* Enable MAC tx/rx, FD */
spin_lock_irqsave(&pdata->mac_lock, flags);
smsc911x_mac_write(pdata, MAC_CR, MAC_CR_FDPX_
| MAC_CR_TXEN_ | MAC_CR_RXEN_);
spin_unlock_irqrestore(&pdata->mac_lock, flags);
if (smsc911x_phy_check_loopbackpkt(pdata) == 0) {
result = 0;
break;
}
pdata->resetcount++;
/* Disable MAC rx */
spin_lock_irqsave(&pdata->mac_lock, flags);
smsc911x_mac_write(pdata, MAC_CR, 0);
spin_unlock_irqrestore(&pdata->mac_lock, flags);
smsc911x_phy_reset(pdata);
}
/* Disable MAC */
spin_lock_irqsave(&pdata->mac_lock, flags);
smsc911x_mac_write(pdata, MAC_CR, 0);
spin_unlock_irqrestore(&pdata->mac_lock, flags);
/* Cancel PHY loopback mode */
smsc911x_mii_write(phy_dev->bus, phy_dev->addr, MII_BMCR, 0);
smsc911x_reg_write(pdata, TX_CFG, 0);
smsc911x_reg_write(pdata, RX_CFG, 0);
return result;
}
#endif /* USE_PHY_WORK_AROUND */
static void smsc911x_phy_update_flowcontrol(struct smsc911x_data *pdata)
{
struct phy_device *phy_dev = pdata->phy_dev;
u32 afc = smsc911x_reg_read(pdata, AFC_CFG);
u32 flow;
unsigned long flags;
if (phy_dev->duplex == DUPLEX_FULL) {
u16 lcladv = phy_read(phy_dev, MII_ADVERTISE);
u16 rmtadv = phy_read(phy_dev, MII_LPA);
u8 cap = mii_resolve_flowctrl_fdx(lcladv, rmtadv);
if (cap & FLOW_CTRL_RX)
flow = 0xFFFF0002;
else
flow = 0;
if (cap & FLOW_CTRL_TX)
afc |= 0xF;
else
afc &= ~0xF;
SMSC_TRACE(pdata, hw, "rx pause %s, tx pause %s",
(cap & FLOW_CTRL_RX ? "enabled" : "disabled"),
(cap & FLOW_CTRL_TX ? "enabled" : "disabled"));
} else {
SMSC_TRACE(pdata, hw, "half duplex");
flow = 0;
afc |= 0xF;
}
spin_lock_irqsave(&pdata->mac_lock, flags);
smsc911x_mac_write(pdata, FLOW, flow);
spin_unlock_irqrestore(&pdata->mac_lock, flags);
smsc911x_reg_write(pdata, AFC_CFG, afc);
}
/* Update link mode if anything has changed. Called periodically when the
* PHY is in polling mode, even if nothing has changed. */
static void smsc911x_phy_adjust_link(struct net_device *dev)
{
struct smsc911x_data *pdata = netdev_priv(dev);
struct phy_device *phy_dev = pdata->phy_dev;
unsigned long flags;
int carrier;
if (phy_dev->duplex != pdata->last_duplex) {
unsigned int mac_cr;
SMSC_TRACE(pdata, hw, "duplex state has changed");
spin_lock_irqsave(&pdata->mac_lock, flags);
mac_cr = smsc911x_mac_read(pdata, MAC_CR);
if (phy_dev->duplex) {
SMSC_TRACE(pdata, hw,
"configuring for full duplex mode");
mac_cr |= MAC_CR_FDPX_;
} else {
SMSC_TRACE(pdata, hw,
"configuring for half duplex mode");
mac_cr &= ~MAC_CR_FDPX_;
}
smsc911x_mac_write(pdata, MAC_CR, mac_cr);
spin_unlock_irqrestore(&pdata->mac_lock, flags);
smsc911x_phy_update_flowcontrol(pdata);
pdata->last_duplex = phy_dev->duplex;
}
carrier = netif_carrier_ok(dev);
if (carrier != pdata->last_carrier) {
SMSC_TRACE(pdata, hw, "carrier state has changed");
if (carrier) {
SMSC_TRACE(pdata, hw, "configuring for carrier OK");
if ((pdata->gpio_orig_setting & GPIO_CFG_LED1_EN_) &&
(!pdata->using_extphy)) {
/* Restore original GPIO configuration */
pdata->gpio_setting = pdata->gpio_orig_setting;
smsc911x_reg_write(pdata, GPIO_CFG,
pdata->gpio_setting);
}
} else {
SMSC_TRACE(pdata, hw, "configuring for no carrier");
/* Check global setting that LED1
* usage is 10/100 indicator */
pdata->gpio_setting = smsc911x_reg_read(pdata,
GPIO_CFG);
if ((pdata->gpio_setting & GPIO_CFG_LED1_EN_) &&
(!pdata->using_extphy)) {
/* Force 10/100 LED off, after saving
* original GPIO configuration */
pdata->gpio_orig_setting = pdata->gpio_setting;
pdata->gpio_setting &= ~GPIO_CFG_LED1_EN_;
pdata->gpio_setting |= (GPIO_CFG_GPIOBUF0_
| GPIO_CFG_GPIODIR0_
| GPIO_CFG_GPIOD0_);
smsc911x_reg_write(pdata, GPIO_CFG,
pdata->gpio_setting);
}
}
pdata->last_carrier = carrier;
}
}
static int smsc911x_mii_probe(struct net_device *dev)
{
struct smsc911x_data *pdata = netdev_priv(dev);
struct phy_device *phydev = NULL;
int ret;
/* find the first phy */
phydev = phy_find_first(pdata->mii_bus);
if (!phydev) {
netdev_err(dev, "no PHY found\n");
return -ENODEV;
}
SMSC_TRACE(pdata, probe, "PHY: addr %d, phy_id 0x%08X",
phydev->addr, phydev->phy_id);
ret = phy_connect_direct(dev, phydev, &smsc911x_phy_adjust_link,
pdata->config.phy_interface);
if (ret) {
netdev_err(dev, "Could not attach to PHY\n");
return ret;
}
netdev_info(dev,
"attached PHY driver [%s] (mii_bus:phy_addr=%s, irq=%d)\n",
phydev->drv->name, dev_name(&phydev->dev), phydev->irq);
/* mask with MAC supported features */
phydev->supported &= (PHY_BASIC_FEATURES | SUPPORTED_Pause |
SUPPORTED_Asym_Pause);
phydev->advertising = phydev->supported;
pdata->phy_dev = phydev;
pdata->last_duplex = -1;
pdata->last_carrier = -1;
#ifdef USE_PHY_WORK_AROUND
if (smsc911x_phy_loopbacktest(dev) < 0) {
SMSC_WARN(pdata, hw, "Failed Loop Back Test");
return -ENODEV;
}
SMSC_TRACE(pdata, hw, "Passed Loop Back Test");
#endif /* USE_PHY_WORK_AROUND */
SMSC_TRACE(pdata, hw, "phy initialised successfully");
return 0;
}
static int smsc911x_mii_init(struct platform_device *pdev,
struct net_device *dev)
{
struct smsc911x_data *pdata = netdev_priv(dev);
int err = -ENXIO, i;
pdata->mii_bus = mdiobus_alloc();
if (!pdata->mii_bus) {
err = -ENOMEM;
goto err_out_1;
}
pdata->mii_bus->name = SMSC_MDIONAME;
snprintf(pdata->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x",
pdev->name, pdev->id);
pdata->mii_bus->priv = pdata;
pdata->mii_bus->read = smsc911x_mii_read;
pdata->mii_bus->write = smsc911x_mii_write;
pdata->mii_bus->irq = pdata->phy_irq;
for (i = 0; i < PHY_MAX_ADDR; ++i)
pdata->mii_bus->irq[i] = PHY_POLL;
pdata->mii_bus->parent = &pdev->dev;
switch (pdata->idrev & 0xFFFF0000) {
case 0x01170000:
case 0x01150000:
case 0x117A0000:
case 0x115A0000:
/* External PHY supported, try to autodetect */
smsc911x_phy_initialise_external(pdata);
break;
default:
SMSC_TRACE(pdata, hw, "External PHY is not supported, "
"using internal PHY");
pdata->using_extphy = 0;
break;
}
if (!pdata->using_extphy) {
/* Mask all PHYs except ID 1 (internal) */
pdata->mii_bus->phy_mask = ~(1 << 1);
}
if (mdiobus_register(pdata->mii_bus)) {
SMSC_WARN(pdata, probe, "Error registering mii bus");
goto err_out_free_bus_2;
}
if (smsc911x_mii_probe(dev) < 0) {
SMSC_WARN(pdata, probe, "Error registering mii bus");
goto err_out_unregister_bus_3;
}
return 0;
err_out_unregister_bus_3:
mdiobus_unregister(pdata->mii_bus);
err_out_free_bus_2:
mdiobus_free(pdata->mii_bus);
err_out_1:
return err;
}
/* Gets the number of tx statuses in the fifo */
static unsigned int smsc911x_tx_get_txstatcount(struct smsc911x_data *pdata)
{
return (smsc911x_reg_read(pdata, TX_FIFO_INF)
& TX_FIFO_INF_TSUSED_) >> 16;
}
/* Reads tx statuses and increments counters where necessary */
static void smsc911x_tx_update_txcounters(struct net_device *dev)
{
struct smsc911x_data *pdata = netdev_priv(dev);
unsigned int tx_stat;
while ((tx_stat = smsc911x_tx_get_txstatus(pdata)) != 0) {
if (unlikely(tx_stat & 0x80000000)) {
/* In this driver the packet tag is used as the packet
* length. Since a packet length can never reach the
* size of 0x8000, this bit is reserved. It is worth
* noting that the "reserved bit" in the warning above
* does not reference a hardware defined reserved bit
* but rather a driver defined one.
*/
SMSC_WARN(pdata, hw, "Packet tag reserved bit is high");
} else {
if (unlikely(tx_stat & TX_STS_ES_)) {
dev->stats.tx_errors++;
} else {
dev->stats.tx_packets++;
dev->stats.tx_bytes += (tx_stat >> 16);
}
if (unlikely(tx_stat & TX_STS_EXCESS_COL_)) {
dev->stats.collisions += 16;
dev->stats.tx_aborted_errors += 1;
} else {
dev->stats.collisions +=
((tx_stat >> 3) & 0xF);
}
if (unlikely(tx_stat & TX_STS_LOST_CARRIER_))
dev->stats.tx_carrier_errors += 1;
if (unlikely(tx_stat & TX_STS_LATE_COL_)) {
dev->stats.collisions++;
dev->stats.tx_aborted_errors++;
}
}
}
}
/* Increments the Rx error counters */
static void
smsc911x_rx_counterrors(struct net_device *dev, unsigned int rxstat)
{
int crc_err = 0;
if (unlikely(rxstat & RX_STS_ES_)) {
dev->stats.rx_errors++;
if (unlikely(rxstat & RX_STS_CRC_ERR_)) {
dev->stats.rx_crc_errors++;
crc_err = 1;
}
}
if (likely(!crc_err)) {
if (unlikely((rxstat & RX_STS_FRAME_TYPE_) &&
(rxstat & RX_STS_LENGTH_ERR_)))
dev->stats.rx_length_errors++;
if (rxstat & RX_STS_MCAST_)
dev->stats.multicast++;
}
}
/* Quickly dumps bad packets */
static void
smsc911x_rx_fastforward(struct smsc911x_data *pdata, unsigned int pktwords)
{
if (likely(pktwords >= 4)) {
unsigned int timeout = 500;
unsigned int val;
smsc911x_reg_write(pdata, RX_DP_CTRL, RX_DP_CTRL_RX_FFWD_);
do {
udelay(1);
val = smsc911x_reg_read(pdata, RX_DP_CTRL);
} while ((val & RX_DP_CTRL_RX_FFWD_) && --timeout);
if (unlikely(timeout == 0))
SMSC_WARN(pdata, hw, "Timed out waiting for "
"RX FFWD to finish, RX_DP_CTRL: 0x%08X", val);
} else {
unsigned int temp;
while (pktwords--)
temp = smsc911x_reg_read(pdata, RX_DATA_FIFO);
}
}
/* NAPI poll function */
static int smsc911x_poll(struct napi_struct *napi, int budget)
{
struct smsc911x_data *pdata =
container_of(napi, struct smsc911x_data, napi);
struct net_device *dev = pdata->dev;
int npackets = 0;
while (npackets < budget) {
unsigned int pktlength;
unsigned int pktwords;
struct sk_buff *skb;
unsigned int rxstat = smsc911x_rx_get_rxstatus(pdata);
if (!rxstat) {
unsigned int temp;
/* We processed all packets available. Tell NAPI it can
* stop polling then re-enable rx interrupts */
smsc911x_reg_write(pdata, INT_STS, INT_STS_RSFL_);
napi_complete(napi);
temp = smsc911x_reg_read(pdata, INT_EN);
temp |= INT_EN_RSFL_EN_;
smsc911x_reg_write(pdata, INT_EN, temp);
break;
}
/* Count packet for NAPI scheduling, even if it has an error.
* Error packets still require cycles to discard */
npackets++;
pktlength = ((rxstat & 0x3FFF0000) >> 16);
pktwords = (pktlength + NET_IP_ALIGN + 3) >> 2;
smsc911x_rx_counterrors(dev, rxstat);
if (unlikely(rxstat & RX_STS_ES_)) {
SMSC_WARN(pdata, rx_err,
"Discarding packet with error bit set");
/* Packet has an error, discard it and continue with
* the next */
smsc911x_rx_fastforward(pdata, pktwords);
dev->stats.rx_dropped++;
continue;
}
skb = netdev_alloc_skb(dev, pktwords << 2);
if (unlikely(!skb)) {
SMSC_WARN(pdata, rx_err,
"Unable to allocate skb for rx packet");
/* Drop the packet and stop this polling iteration */
smsc911x_rx_fastforward(pdata, pktwords);
dev->stats.rx_dropped++;
break;
}
pdata->ops->rx_readfifo(pdata,
(unsigned int *)skb->data, pktwords);
/* Align IP on 16B boundary */
skb_reserve(skb, NET_IP_ALIGN);
skb_put(skb, pktlength - 4);
skb->protocol = eth_type_trans(skb, dev);
skb_checksum_none_assert(skb);
netif_receive_skb(skb);
/* Update counters */
dev->stats.rx_packets++;
dev->stats.rx_bytes += (pktlength - 4);
}
/* Return total received packets */
return npackets;
}
/* Returns hash bit number for given MAC address
* Example:
* 01 00 5E 00 00 01 -> returns bit number 31 */
static unsigned int smsc911x_hash(char addr[ETH_ALEN])
{
return (ether_crc(ETH_ALEN, addr) >> 26) & 0x3f;
}
static void smsc911x_rx_multicast_update(struct smsc911x_data *pdata)
{
/* Performs the multicast & mac_cr update. This is called when
* safe on the current hardware, and with the mac_lock held */
unsigned int mac_cr;
SMSC_ASSERT_MAC_LOCK(pdata);
mac_cr = smsc911x_mac_read(pdata, MAC_CR);
mac_cr |= pdata->set_bits_mask;
mac_cr &= ~(pdata->clear_bits_mask);
smsc911x_mac_write(pdata, MAC_CR, mac_cr);
smsc911x_mac_write(pdata, HASHH, pdata->hashhi);
smsc911x_mac_write(pdata, HASHL, pdata->hashlo);
SMSC_TRACE(pdata, hw, "maccr 0x%08X, HASHH 0x%08X, HASHL 0x%08X",
mac_cr, pdata->hashhi, pdata->hashlo);
}
static void smsc911x_rx_multicast_update_workaround(struct smsc911x_data *pdata)
{
unsigned int mac_cr;
/* This function is only called for older LAN911x devices
* (revA or revB), where MAC_CR, HASHH and HASHL should not
* be modified during Rx - newer devices immediately update the
* registers.
*
* This is called from interrupt context */
spin_lock(&pdata->mac_lock);
/* Check Rx has stopped */
if (smsc911x_mac_read(pdata, MAC_CR) & MAC_CR_RXEN_)
SMSC_WARN(pdata, drv, "Rx not stopped");
/* Perform the update - safe to do now Rx has stopped */
smsc911x_rx_multicast_update(pdata);
/* Re-enable Rx */
mac_cr = smsc911x_mac_read(pdata, MAC_CR);
mac_cr |= MAC_CR_RXEN_;
smsc911x_mac_write(pdata, MAC_CR, mac_cr);
pdata->multicast_update_pending = 0;
spin_unlock(&pdata->mac_lock);
}
static int smsc911x_phy_general_power_up(struct smsc911x_data *pdata)
{
int rc = 0;
if (!pdata->phy_dev)
return rc;
/* If the internal PHY is in General Power-Down mode, all, except the
* management interface, is powered-down and stays in that condition as
* long as Phy register bit 0.11 is HIGH.
*
* In that case, clear the bit 0.11, so the PHY powers up and we can
* access to the phy registers.
*/
rc = phy_read(pdata->phy_dev, MII_BMCR);
if (rc < 0) {
SMSC_WARN(pdata, drv, "Failed reading PHY control reg");
return rc;
}
/* If the PHY general power-down bit is not set is not necessary to
* disable the general power down-mode.
*/
if (rc & BMCR_PDOWN) {
rc = phy_write(pdata->phy_dev, MII_BMCR, rc & ~BMCR_PDOWN);
if (rc < 0) {
SMSC_WARN(pdata, drv, "Failed writing PHY control reg");
return rc;
}
usleep_range(1000, 1500);
}
return 0;
}
static int smsc911x_phy_disable_energy_detect(struct smsc911x_data *pdata)
{
int rc = 0;
if (!pdata->phy_dev)
return rc;
rc = phy_read(pdata->phy_dev, MII_LAN83C185_CTRL_STATUS);
if (rc < 0) {
SMSC_WARN(pdata, drv, "Failed reading PHY control reg");
return rc;
}
/* Only disable if energy detect mode is already enabled */
if (rc & MII_LAN83C185_EDPWRDOWN) {
/* Disable energy detect mode for this SMSC Transceivers */
rc = phy_write(pdata->phy_dev, MII_LAN83C185_CTRL_STATUS,
rc & (~MII_LAN83C185_EDPWRDOWN));
if (rc < 0) {
SMSC_WARN(pdata, drv, "Failed writing PHY control reg");
return rc;
}
/* Allow PHY to wakeup */
mdelay(2);
}
return 0;
}
static int smsc911x_phy_enable_energy_detect(struct smsc911x_data *pdata)
{
int rc = 0;
if (!pdata->phy_dev)
return rc;
rc = phy_read(pdata->phy_dev, MII_LAN83C185_CTRL_STATUS);
if (rc < 0) {
SMSC_WARN(pdata, drv, "Failed reading PHY control reg");
return rc;
}
/* Only enable if energy detect mode is already disabled */
if (!(rc & MII_LAN83C185_EDPWRDOWN)) {
/* Enable energy detect mode for this SMSC Transceivers */
rc = phy_write(pdata->phy_dev, MII_LAN83C185_CTRL_STATUS,
rc | MII_LAN83C185_EDPWRDOWN);
if (rc < 0) {
SMSC_WARN(pdata, drv, "Failed writing PHY control reg");
return rc;
}
}
return 0;
}
static int smsc911x_soft_reset(struct smsc911x_data *pdata)
{
unsigned int timeout;
unsigned int temp;
int ret;
/*
* Make sure to power-up the PHY chip before doing a reset, otherwise
* the reset fails.
*/
ret = smsc911x_phy_general_power_up(pdata);
if (ret) {
SMSC_WARN(pdata, drv, "Failed to power-up the PHY chip");
return ret;
}
/*
* LAN9210/LAN9211/LAN9220/LAN9221 chips have an internal PHY that
* are initialized in a Energy Detect Power-Down mode that prevents
* the MAC chip to be software reseted. So we have to wakeup the PHY
* before.
*/
if (pdata->generation == 4) {
ret = smsc911x_phy_disable_energy_detect(pdata);
if (ret) {
SMSC_WARN(pdata, drv, "Failed to wakeup the PHY chip");
return ret;
}
}
/* Reset the LAN911x */
smsc911x_reg_write(pdata, HW_CFG, HW_CFG_SRST_);
timeout = 10;
do {
udelay(10);
temp = smsc911x_reg_read(pdata, HW_CFG);
} while ((--timeout) && (temp & HW_CFG_SRST_));
if (unlikely(temp & HW_CFG_SRST_)) {
SMSC_WARN(pdata, drv, "Failed to complete reset");
return -EIO;
}
if (pdata->generation == 4) {
ret = smsc911x_phy_enable_energy_detect(pdata);
if (ret) {
SMSC_WARN(pdata, drv, "Failed to wakeup the PHY chip");
return ret;
}
}
return 0;
}
/* Sets the device MAC address to dev_addr, called with mac_lock held */
static void
smsc911x_set_hw_mac_address(struct smsc911x_data *pdata, u8 dev_addr[6])
{
u32 mac_high16 = (dev_addr[5] << 8) | dev_addr[4];
u32 mac_low32 = (dev_addr[3] << 24) | (dev_addr[2] << 16) |
(dev_addr[1] << 8) | dev_addr[0];
SMSC_ASSERT_MAC_LOCK(pdata);
smsc911x_mac_write(pdata, ADDRH, mac_high16);
smsc911x_mac_write(pdata, ADDRL, mac_low32);
}
static void smsc911x_disable_irq_chip(struct net_device *dev)
{
struct smsc911x_data *pdata = netdev_priv(dev);
smsc911x_reg_write(pdata, INT_EN, 0);
smsc911x_reg_write(pdata, INT_STS, 0xFFFFFFFF);
}
static int smsc911x_open(struct net_device *dev)
{
struct smsc911x_data *pdata = netdev_priv(dev);
unsigned int timeout;
unsigned int temp;
unsigned int intcfg;
/* if the phy is not yet registered, retry later*/
if (!pdata->phy_dev) {
SMSC_WARN(pdata, hw, "phy_dev is NULL");
return -EAGAIN;
}
/* Reset the LAN911x */
if (smsc911x_soft_reset(pdata)) {
SMSC_WARN(pdata, hw, "soft reset failed");
return -EIO;
}
smsc911x_reg_write(pdata, HW_CFG, 0x00050000);
smsc911x_reg_write(pdata, AFC_CFG, 0x006E3740);
/* Increase the legal frame size of VLAN tagged frames to 1522 bytes */
spin_lock_irq(&pdata->mac_lock);
smsc911x_mac_write(pdata, VLAN1, ETH_P_8021Q);
spin_unlock_irq(&pdata->mac_lock);
/* Make sure EEPROM has finished loading before setting GPIO_CFG */
timeout = 50;
while ((smsc911x_reg_read(pdata, E2P_CMD) & E2P_CMD_EPC_BUSY_) &&
--timeout) {
udelay(10);
}
if (unlikely(timeout == 0))
SMSC_WARN(pdata, ifup,
"Timed out waiting for EEPROM busy bit to clear");
smsc911x_reg_write(pdata, GPIO_CFG, 0x70070000);
/* The soft reset above cleared the device's MAC address,
* restore it from local copy (set in probe) */
spin_lock_irq(&pdata->mac_lock);
smsc911x_set_hw_mac_address(pdata, dev->dev_addr);
spin_unlock_irq(&pdata->mac_lock);
/* Initialise irqs, but leave all sources disabled */
smsc911x_disable_irq_chip(dev);
/* Set interrupt deassertion to 100uS */
intcfg = ((10 << 24) | INT_CFG_IRQ_EN_);
if (pdata->config.irq_polarity) {
SMSC_TRACE(pdata, ifup, "irq polarity: active high");
intcfg |= INT_CFG_IRQ_POL_;
} else {
SMSC_TRACE(pdata, ifup, "irq polarity: active low");
}
if (pdata->config.irq_type) {
SMSC_TRACE(pdata, ifup, "irq type: push-pull");
intcfg |= INT_CFG_IRQ_TYPE_;
} else {
SMSC_TRACE(pdata, ifup, "irq type: open drain");
}
smsc911x_reg_write(pdata, INT_CFG, intcfg);
SMSC_TRACE(pdata, ifup, "Testing irq handler using IRQ %d", dev->irq);
pdata->software_irq_signal = 0;
smp_wmb();
temp = smsc911x_reg_read(pdata, INT_EN);
temp |= INT_EN_SW_INT_EN_;
smsc911x_reg_write(pdata, INT_EN, temp);
timeout = 1000;
while (timeout--) {
if (pdata->software_irq_signal)
break;
msleep(1);
}
if (!pdata->software_irq_signal) {
netdev_warn(dev, "ISR failed signaling test (IRQ %d)\n",
dev->irq);
return -ENODEV;
}
SMSC_TRACE(pdata, ifup, "IRQ handler passed test using IRQ %d",
dev->irq);
netdev_info(dev, "SMSC911x/921x identified at %#08lx, IRQ: %d\n",
(unsigned long)pdata->ioaddr, dev->irq);
/* Reset the last known duplex and carrier */
pdata->last_duplex = -1;
pdata->last_carrier = -1;
/* Bring the PHY up */
phy_start(pdata->phy_dev);
temp = smsc911x_reg_read(pdata, HW_CFG);
/* Preserve TX FIFO size and external PHY configuration */
temp &= (HW_CFG_TX_FIF_SZ_|0x00000FFF);
temp |= HW_CFG_SF_;
smsc911x_reg_write(pdata, HW_CFG, temp);
temp = smsc911x_reg_read(pdata, FIFO_INT);
temp |= FIFO_INT_TX_AVAIL_LEVEL_;
temp &= ~(FIFO_INT_RX_STS_LEVEL_);
smsc911x_reg_write(pdata, FIFO_INT, temp);
/* set RX Data offset to 2 bytes for alignment */
smsc911x_reg_write(pdata, RX_CFG, (NET_IP_ALIGN << 8));
/* enable NAPI polling before enabling RX interrupts */
napi_enable(&pdata->napi);
temp = smsc911x_reg_read(pdata, INT_EN);
temp |= (INT_EN_TDFA_EN_ | INT_EN_RSFL_EN_ | INT_EN_RXSTOP_INT_EN_);
smsc911x_reg_write(pdata, INT_EN, temp);
spin_lock_irq(&pdata->mac_lock);
temp = smsc911x_mac_read(pdata, MAC_CR);
temp |= (MAC_CR_TXEN_ | MAC_CR_RXEN_ | MAC_CR_HBDIS_);
smsc911x_mac_write(pdata, MAC_CR, temp);
spin_unlock_irq(&pdata->mac_lock);
smsc911x_reg_write(pdata, TX_CFG, TX_CFG_TX_ON_);
netif_start_queue(dev);
return 0;
}
/* Entry point for stopping the interface */
static int smsc911x_stop(struct net_device *dev)
{
struct smsc911x_data *pdata = netdev_priv(dev);
unsigned int temp;
/* Disable all device interrupts */
temp = smsc911x_reg_read(pdata, INT_CFG);
temp &= ~INT_CFG_IRQ_EN_;
smsc911x_reg_write(pdata, INT_CFG, temp);
/* Stop Tx and Rx polling */
netif_stop_queue(dev);
napi_disable(&pdata->napi);
/* At this point all Rx and Tx activity is stopped */
dev->stats.rx_dropped += smsc911x_reg_read(pdata, RX_DROP);
smsc911x_tx_update_txcounters(dev);
/* Bring the PHY down */
if (pdata->phy_dev)
phy_stop(pdata->phy_dev);
SMSC_TRACE(pdata, ifdown, "Interface stopped");
return 0;
}
/* Entry point for transmitting a packet */
static int smsc911x_hard_start_xmit(struct sk_buff *skb, struct net_device *dev)
{
struct smsc911x_data *pdata = netdev_priv(dev);
unsigned int freespace;
unsigned int tx_cmd_a;
unsigned int tx_cmd_b;
unsigned int temp;
u32 wrsz;
ulong bufp;
freespace = smsc911x_reg_read(pdata, TX_FIFO_INF) & TX_FIFO_INF_TDFREE_;
if (unlikely(freespace < TX_FIFO_LOW_THRESHOLD))
SMSC_WARN(pdata, tx_err,
"Tx data fifo low, space available: %d", freespace);
/* Word alignment adjustment */
tx_cmd_a = (u32)((ulong)skb->data & 0x03) << 16;
tx_cmd_a |= TX_CMD_A_FIRST_SEG_ | TX_CMD_A_LAST_SEG_;
tx_cmd_a |= (unsigned int)skb->len;
tx_cmd_b = ((unsigned int)skb->len) << 16;
tx_cmd_b |= (unsigned int)skb->len;
smsc911x_reg_write(pdata, TX_DATA_FIFO, tx_cmd_a);
smsc911x_reg_write(pdata, TX_DATA_FIFO, tx_cmd_b);
bufp = (ulong)skb->data & (~0x3);
wrsz = (u32)skb->len + 3;
wrsz += (u32)((ulong)skb->data & 0x3);
wrsz >>= 2;
pdata->ops->tx_writefifo(pdata, (unsigned int *)bufp, wrsz);
freespace -= (skb->len + 32);
skb_tx_timestamp(skb);
dev_consume_skb_any(skb);
if (unlikely(smsc911x_tx_get_txstatcount(pdata) >= 30))
smsc911x_tx_update_txcounters(dev);
if (freespace < TX_FIFO_LOW_THRESHOLD) {
netif_stop_queue(dev);
temp = smsc911x_reg_read(pdata, FIFO_INT);
temp &= 0x00FFFFFF;
temp |= 0x32000000;
smsc911x_reg_write(pdata, FIFO_INT, temp);
}
return NETDEV_TX_OK;
}
/* Entry point for getting status counters */
static struct net_device_stats *smsc911x_get_stats(struct net_device *dev)
{
struct smsc911x_data *pdata = netdev_priv(dev);
smsc911x_tx_update_txcounters(dev);
dev->stats.rx_dropped += smsc911x_reg_read(pdata, RX_DROP);
return &dev->stats;
}
/* Entry point for setting addressing modes */
static void smsc911x_set_multicast_list(struct net_device *dev)
{
struct smsc911x_data *pdata = netdev_priv(dev);
unsigned long flags;
if (dev->flags & IFF_PROMISC) {
/* Enabling promiscuous mode */
pdata->set_bits_mask = MAC_CR_PRMS_;
pdata->clear_bits_mask = (MAC_CR_MCPAS_ | MAC_CR_HPFILT_);
pdata->hashhi = 0;
pdata->hashlo = 0;
} else if (dev->flags & IFF_ALLMULTI) {
/* Enabling all multicast mode */
pdata->set_bits_mask = MAC_CR_MCPAS_;
pdata->clear_bits_mask = (MAC_CR_PRMS_ | MAC_CR_HPFILT_);
pdata->hashhi = 0;
pdata->hashlo = 0;
} else if (!netdev_mc_empty(dev)) {
/* Enabling specific multicast addresses */
unsigned int hash_high = 0;
unsigned int hash_low = 0;
struct netdev_hw_addr *ha;
pdata->set_bits_mask = MAC_CR_HPFILT_;
pdata->clear_bits_mask = (MAC_CR_PRMS_ | MAC_CR_MCPAS_);
netdev_for_each_mc_addr(ha, dev) {
unsigned int bitnum = smsc911x_hash(ha->addr);
unsigned int mask = 0x01 << (bitnum & 0x1F);
if (bitnum & 0x20)
hash_high |= mask;
else
hash_low |= mask;
}
pdata->hashhi = hash_high;
pdata->hashlo = hash_low;
} else {
/* Enabling local MAC address only */
pdata->set_bits_mask = 0;
pdata->clear_bits_mask =
(MAC_CR_PRMS_ | MAC_CR_MCPAS_ | MAC_CR_HPFILT_);
pdata->hashhi = 0;
pdata->hashlo = 0;
}
spin_lock_irqsave(&pdata->mac_lock, flags);
if (pdata->generation <= 1) {
/* Older hardware revision - cannot change these flags while
* receiving data */
if (!pdata->multicast_update_pending) {
unsigned int temp;
SMSC_TRACE(pdata, hw, "scheduling mcast update");
pdata->multicast_update_pending = 1;
/* Request the hardware to stop, then perform the
* update when we get an RX_STOP interrupt */
temp = smsc911x_mac_read(pdata, MAC_CR);
temp &= ~(MAC_CR_RXEN_);
smsc911x_mac_write(pdata, MAC_CR, temp);
} else {
/* There is another update pending, this should now
* use the newer values */
}
} else {
/* Newer hardware revision - can write immediately */
smsc911x_rx_multicast_update(pdata);
}
spin_unlock_irqrestore(&pdata->mac_lock, flags);
}
static irqreturn_t smsc911x_irqhandler(int irq, void *dev_id)
{
struct net_device *dev = dev_id;
struct smsc911x_data *pdata = netdev_priv(dev);
u32 intsts = smsc911x_reg_read(pdata, INT_STS);
u32 inten = smsc911x_reg_read(pdata, INT_EN);
int serviced = IRQ_NONE;
u32 temp;
if (unlikely(intsts & inten & INT_STS_SW_INT_)) {
temp = smsc911x_reg_read(pdata, INT_EN);
temp &= (~INT_EN_SW_INT_EN_);
smsc911x_reg_write(pdata, INT_EN, temp);
smsc911x_reg_write(pdata, INT_STS, INT_STS_SW_INT_);
pdata->software_irq_signal = 1;
smp_wmb();
serviced = IRQ_HANDLED;
}
if (unlikely(intsts & inten & INT_STS_RXSTOP_INT_)) {
/* Called when there is a multicast update scheduled and
* it is now safe to complete the update */
SMSC_TRACE(pdata, intr, "RX Stop interrupt");
smsc911x_reg_write(pdata, INT_STS, INT_STS_RXSTOP_INT_);
if (pdata->multicast_update_pending)
smsc911x_rx_multicast_update_workaround(pdata);
serviced = IRQ_HANDLED;
}
if (intsts & inten & INT_STS_TDFA_) {
temp = smsc911x_reg_read(pdata, FIFO_INT);
temp |= FIFO_INT_TX_AVAIL_LEVEL_;
smsc911x_reg_write(pdata, FIFO_INT, temp);
smsc911x_reg_write(pdata, INT_STS, INT_STS_TDFA_);
netif_wake_queue(dev);
serviced = IRQ_HANDLED;
}
if (unlikely(intsts & inten & INT_STS_RXE_)) {
SMSC_TRACE(pdata, intr, "RX Error interrupt");
smsc911x_reg_write(pdata, INT_STS, INT_STS_RXE_);
serviced = IRQ_HANDLED;
}
if (likely(intsts & inten & INT_STS_RSFL_)) {
if (likely(napi_schedule_prep(&pdata->napi))) {
/* Disable Rx interrupts */
temp = smsc911x_reg_read(pdata, INT_EN);
temp &= (~INT_EN_RSFL_EN_);
smsc911x_reg_write(pdata, INT_EN, temp);
/* Schedule a NAPI poll */
__napi_schedule(&pdata->napi);
} else {
SMSC_WARN(pdata, rx_err, "napi_schedule_prep failed");
}
serviced = IRQ_HANDLED;
}
return serviced;
}
#ifdef CONFIG_NET_POLL_CONTROLLER
static void smsc911x_poll_controller(struct net_device *dev)
{
disable_irq(dev->irq);
smsc911x_irqhandler(0, dev);
enable_irq(dev->irq);
}
#endif /* CONFIG_NET_POLL_CONTROLLER */
static int smsc911x_set_mac_address(struct net_device *dev, void *p)
{
struct smsc911x_data *pdata = netdev_priv(dev);
struct sockaddr *addr = p;
/* On older hardware revisions we cannot change the mac address
* registers while receiving data. Newer devices can safely change
* this at any time. */
if (pdata->generation <= 1 && netif_running(dev))
return -EBUSY;
if (!is_valid_ether_addr(addr->sa_data))
return -EADDRNOTAVAIL;
memcpy(dev->dev_addr, addr->sa_data, ETH_ALEN);
spin_lock_irq(&pdata->mac_lock);
smsc911x_set_hw_mac_address(pdata, dev->dev_addr);
spin_unlock_irq(&pdata->mac_lock);
netdev_info(dev, "MAC Address: %pM\n", dev->dev_addr);
return 0;
}
/* Standard ioctls for mii-tool */
static int smsc911x_do_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
{
struct smsc911x_data *pdata = netdev_priv(dev);
if (!netif_running(dev) || !pdata->phy_dev)
return -EINVAL;
return phy_mii_ioctl(pdata->phy_dev, ifr, cmd);
}
static int
smsc911x_ethtool_getsettings(struct net_device *dev, struct ethtool_cmd *cmd)
{
struct smsc911x_data *pdata = netdev_priv(dev);
cmd->maxtxpkt = 1;
cmd->maxrxpkt = 1;
return phy_ethtool_gset(pdata->phy_dev, cmd);
}
static int
smsc911x_ethtool_setsettings(struct net_device *dev, struct ethtool_cmd *cmd)
{
struct smsc911x_data *pdata = netdev_priv(dev);
return phy_ethtool_sset(pdata->phy_dev, cmd);
}
static void smsc911x_ethtool_getdrvinfo(struct net_device *dev,
struct ethtool_drvinfo *info)
{
strlcpy(info->driver, SMSC_CHIPNAME, sizeof(info->driver));
strlcpy(info->version, SMSC_DRV_VERSION, sizeof(info->version));
strlcpy(info->bus_info, dev_name(dev->dev.parent),
sizeof(info->bus_info));
}
static int smsc911x_ethtool_nwayreset(struct net_device *dev)
{
struct smsc911x_data *pdata = netdev_priv(dev);
return phy_start_aneg(pdata->phy_dev);
}
static u32 smsc911x_ethtool_getmsglevel(struct net_device *dev)
{
struct smsc911x_data *pdata = netdev_priv(dev);
return pdata->msg_enable;
}
static void smsc911x_ethtool_setmsglevel(struct net_device *dev, u32 level)
{
struct smsc911x_data *pdata = netdev_priv(dev);
pdata->msg_enable = level;
}
static int smsc911x_ethtool_getregslen(struct net_device *dev)
{
return (((E2P_DATA - ID_REV) / 4 + 1) + (WUCSR - MAC_CR) + 1 + 32) *
sizeof(u32);
}
static void
smsc911x_ethtool_getregs(struct net_device *dev, struct ethtool_regs *regs,
void *buf)
{
struct smsc911x_data *pdata = netdev_priv(dev);
struct phy_device *phy_dev = pdata->phy_dev;
unsigned long flags;
unsigned int i;
unsigned int j = 0;
u32 *data = buf;
regs->version = pdata->idrev;
for (i = ID_REV; i <= E2P_DATA; i += (sizeof(u32)))
data[j++] = smsc911x_reg_read(pdata, i);
for (i = MAC_CR; i <= WUCSR; i++) {
spin_lock_irqsave(&pdata->mac_lock, flags);
data[j++] = smsc911x_mac_read(pdata, i);
spin_unlock_irqrestore(&pdata->mac_lock, flags);
}
for (i = 0; i <= 31; i++)
data[j++] = smsc911x_mii_read(phy_dev->bus, phy_dev->addr, i);
}
static void smsc911x_eeprom_enable_access(struct smsc911x_data *pdata)
{
unsigned int temp = smsc911x_reg_read(pdata, GPIO_CFG);
temp &= ~GPIO_CFG_EEPR_EN_;
smsc911x_reg_write(pdata, GPIO_CFG, temp);
msleep(1);
}
static int smsc911x_eeprom_send_cmd(struct smsc911x_data *pdata, u32 op)
{
int timeout = 100;
u32 e2cmd;
SMSC_TRACE(pdata, drv, "op 0x%08x", op);
if (smsc911x_reg_read(pdata, E2P_CMD) & E2P_CMD_EPC_BUSY_) {
SMSC_WARN(pdata, drv, "Busy at start");
return -EBUSY;
}
e2cmd = op | E2P_CMD_EPC_BUSY_;
smsc911x_reg_write(pdata, E2P_CMD, e2cmd);
do {
msleep(1);
e2cmd = smsc911x_reg_read(pdata, E2P_CMD);
} while ((e2cmd & E2P_CMD_EPC_BUSY_) && (--timeout));
if (!timeout) {
SMSC_TRACE(pdata, drv, "TIMED OUT");
return -EAGAIN;
}
if (e2cmd & E2P_CMD_EPC_TIMEOUT_) {
SMSC_TRACE(pdata, drv, "Error occurred during eeprom operation");
return -EINVAL;
}
return 0;
}
static int smsc911x_eeprom_read_location(struct smsc911x_data *pdata,
u8 address, u8 *data)
{
u32 op = E2P_CMD_EPC_CMD_READ_ | address;
int ret;
SMSC_TRACE(pdata, drv, "address 0x%x", address);
ret = smsc911x_eeprom_send_cmd(pdata, op);
if (!ret)
data[address] = smsc911x_reg_read(pdata, E2P_DATA);
return ret;
}
static int smsc911x_eeprom_write_location(struct smsc911x_data *pdata,
u8 address, u8 data)
{
u32 op = E2P_CMD_EPC_CMD_ERASE_ | address;
u32 temp;
int ret;
SMSC_TRACE(pdata, drv, "address 0x%x, data 0x%x", address, data);
ret = smsc911x_eeprom_send_cmd(pdata, op);
if (!ret) {
op = E2P_CMD_EPC_CMD_WRITE_ | address;
smsc911x_reg_write(pdata, E2P_DATA, (u32)data);
/* Workaround for hardware read-after-write restriction */
temp = smsc911x_reg_read(pdata, BYTE_TEST);
ret = smsc911x_eeprom_send_cmd(pdata, op);
}
return ret;
}
static int smsc911x_ethtool_get_eeprom_len(struct net_device *dev)
{
return SMSC911X_EEPROM_SIZE;
}
static int smsc911x_ethtool_get_eeprom(struct net_device *dev,
struct ethtool_eeprom *eeprom, u8 *data)
{
struct smsc911x_data *pdata = netdev_priv(dev);
u8 eeprom_data[SMSC911X_EEPROM_SIZE];
int len;
int i;
smsc911x_eeprom_enable_access(pdata);
len = min(eeprom->len, SMSC911X_EEPROM_SIZE);
for (i = 0; i < len; i++) {
int ret = smsc911x_eeprom_read_location(pdata, i, eeprom_data);
if (ret < 0) {
eeprom->len = 0;
return ret;
}
}
memcpy(data, &eeprom_data[eeprom->offset], len);
eeprom->len = len;
return 0;
}
static int smsc911x_ethtool_set_eeprom(struct net_device *dev,
struct ethtool_eeprom *eeprom, u8 *data)
{
int ret;
struct smsc911x_data *pdata = netdev_priv(dev);
smsc911x_eeprom_enable_access(pdata);
smsc911x_eeprom_send_cmd(pdata, E2P_CMD_EPC_CMD_EWEN_);
ret = smsc911x_eeprom_write_location(pdata, eeprom->offset, *data);
smsc911x_eeprom_send_cmd(pdata, E2P_CMD_EPC_CMD_EWDS_);
/* Single byte write, according to man page */
eeprom->len = 1;
return ret;
}
static const struct ethtool_ops smsc911x_ethtool_ops = {
.get_settings = smsc911x_ethtool_getsettings,
.set_settings = smsc911x_ethtool_setsettings,
.get_link = ethtool_op_get_link,
.get_drvinfo = smsc911x_ethtool_getdrvinfo,
.nway_reset = smsc911x_ethtool_nwayreset,
.get_msglevel = smsc911x_ethtool_getmsglevel,
.set_msglevel = smsc911x_ethtool_setmsglevel,
.get_regs_len = smsc911x_ethtool_getregslen,
.get_regs = smsc911x_ethtool_getregs,
.get_eeprom_len = smsc911x_ethtool_get_eeprom_len,
.get_eeprom = smsc911x_ethtool_get_eeprom,
.set_eeprom = smsc911x_ethtool_set_eeprom,
.get_ts_info = ethtool_op_get_ts_info,
};
static const struct net_device_ops smsc911x_netdev_ops = {
.ndo_open = smsc911x_open,
.ndo_stop = smsc911x_stop,
.ndo_start_xmit = smsc911x_hard_start_xmit,
.ndo_get_stats = smsc911x_get_stats,
.ndo_set_rx_mode = smsc911x_set_multicast_list,
.ndo_do_ioctl = smsc911x_do_ioctl,
.ndo_change_mtu = eth_change_mtu,
.ndo_validate_addr = eth_validate_addr,
.ndo_set_mac_address = smsc911x_set_mac_address,
#ifdef CONFIG_NET_POLL_CONTROLLER
.ndo_poll_controller = smsc911x_poll_controller,
#endif
};
/* copies the current mac address from hardware to dev->dev_addr */
static void smsc911x_read_mac_address(struct net_device *dev)
{
struct smsc911x_data *pdata = netdev_priv(dev);
u32 mac_high16 = smsc911x_mac_read(pdata, ADDRH);
u32 mac_low32 = smsc911x_mac_read(pdata, ADDRL);
dev->dev_addr[0] = (u8)(mac_low32);
dev->dev_addr[1] = (u8)(mac_low32 >> 8);
dev->dev_addr[2] = (u8)(mac_low32 >> 16);
dev->dev_addr[3] = (u8)(mac_low32 >> 24);
dev->dev_addr[4] = (u8)(mac_high16);
dev->dev_addr[5] = (u8)(mac_high16 >> 8);
}
/* Initializing private device structures, only called from probe */
static int smsc911x_init(struct net_device *dev)
{
struct smsc911x_data *pdata = netdev_priv(dev);
unsigned int byte_test, mask;
unsigned int to = 100;
SMSC_TRACE(pdata, probe, "Driver Parameters:");
SMSC_TRACE(pdata, probe, "LAN base: 0x%08lX",
(unsigned long)pdata->ioaddr);
SMSC_TRACE(pdata, probe, "IRQ: %d", dev->irq);
SMSC_TRACE(pdata, probe, "PHY will be autodetected.");
spin_lock_init(&pdata->dev_lock);
spin_lock_init(&pdata->mac_lock);
if (pdata->ioaddr == NULL) {
SMSC_WARN(pdata, probe, "pdata->ioaddr: 0x00000000");
return -ENODEV;
}
/*
* poll the READY bit in PMT_CTRL. Any other access to the device is
* forbidden while this bit isn't set. Try for 100ms
*
* Note that this test is done before the WORD_SWAP register is
* programmed. So in some configurations the READY bit is at 16 before
* WORD_SWAP is written to. This issue is worked around by waiting
* until either bit 0 or bit 16 gets set in PMT_CTRL.
*
* SMSC has confirmed that checking bit 16 (marked as reserved in
* the datasheet) is fine since these bits "will either never be set
* or can only go high after READY does (so also indicate the device
* is ready)".
*/
mask = PMT_CTRL_READY_ | swahw32(PMT_CTRL_READY_);
while (!(smsc911x_reg_read(pdata, PMT_CTRL) & mask) && --to)
udelay(1000);
if (to == 0) {
netdev_err(dev, "Device not READY in 100ms aborting\n");
return -ENODEV;
}
/* Check byte ordering */
byte_test = smsc911x_reg_read(pdata, BYTE_TEST);
SMSC_TRACE(pdata, probe, "BYTE_TEST: 0x%08X", byte_test);
if (byte_test == 0x43218765) {
SMSC_TRACE(pdata, probe, "BYTE_TEST looks swapped, "
"applying WORD_SWAP");
smsc911x_reg_write(pdata, WORD_SWAP, 0xffffffff);
/* 1 dummy read of BYTE_TEST is needed after a write to
* WORD_SWAP before its contents are valid */
byte_test = smsc911x_reg_read(pdata, BYTE_TEST);
byte_test = smsc911x_reg_read(pdata, BYTE_TEST);
}
if (byte_test != 0x87654321) {
SMSC_WARN(pdata, drv, "BYTE_TEST: 0x%08X", byte_test);
if (((byte_test >> 16) & 0xFFFF) == (byte_test & 0xFFFF)) {
SMSC_WARN(pdata, probe,
"top 16 bits equal to bottom 16 bits");
SMSC_TRACE(pdata, probe,
"This may mean the chip is set "
"for 32 bit while the bus is reading 16 bit");
}
return -ENODEV;
}
/* Default generation to zero (all workarounds apply) */
pdata->generation = 0;
pdata->idrev = smsc911x_reg_read(pdata, ID_REV);
switch (pdata->idrev & 0xFFFF0000) {
case 0x01180000:
case 0x01170000:
case 0x01160000:
case 0x01150000:
case 0x218A0000:
/* LAN911[5678] family */
pdata->generation = pdata->idrev & 0x0000FFFF;
break;
case 0x118A0000:
case 0x117A0000:
case 0x116A0000:
case 0x115A0000:
/* LAN921[5678] family */
pdata->generation = 3;
break;
case 0x92100000:
case 0x92110000:
case 0x92200000:
case 0x92210000:
/* LAN9210/LAN9211/LAN9220/LAN9221 */
pdata->generation = 4;
break;
default:
SMSC_WARN(pdata, probe, "LAN911x not identified, idrev: 0x%08X",
pdata->idrev);
return -ENODEV;
}
SMSC_TRACE(pdata, probe,
"LAN911x identified, idrev: 0x%08X, generation: %d",
pdata->idrev, pdata->generation);
if (pdata->generation == 0)
SMSC_WARN(pdata, probe,
"This driver is not intended for this chip revision");
/* workaround for platforms without an eeprom, where the mac address
* is stored elsewhere and set by the bootloader. This saves the
* mac address before resetting the device */
if (pdata->config.flags & SMSC911X_SAVE_MAC_ADDRESS) {
spin_lock_irq(&pdata->mac_lock);
smsc911x_read_mac_address(dev);
spin_unlock_irq(&pdata->mac_lock);
}
/* Reset the LAN911x */
if (smsc911x_soft_reset(pdata))
return -ENODEV;
dev->flags |= IFF_MULTICAST;
netif_napi_add(dev, &pdata->napi, smsc911x_poll, SMSC_NAPI_WEIGHT);
dev->netdev_ops = &smsc911x_netdev_ops;
dev->ethtool_ops = &smsc911x_ethtool_ops;
return 0;
}
static int smsc911x_drv_remove(struct platform_device *pdev)
{
struct net_device *dev;
struct smsc911x_data *pdata;
struct resource *res;
dev = platform_get_drvdata(pdev);
BUG_ON(!dev);
pdata = netdev_priv(dev);
BUG_ON(!pdata);
BUG_ON(!pdata->ioaddr);
BUG_ON(!pdata->phy_dev);
SMSC_TRACE(pdata, ifdown, "Stopping driver");
phy_disconnect(pdata->phy_dev);
pdata->phy_dev = NULL;
mdiobus_unregister(pdata->mii_bus);
mdiobus_free(pdata->mii_bus);
unregister_netdev(dev);
free_irq(dev->irq, dev);
res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
"smsc911x-memory");
if (!res)
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
release_mem_region(res->start, resource_size(res));
iounmap(pdata->ioaddr);
(void)smsc911x_disable_resources(pdev);
smsc911x_free_resources(pdev);
free_netdev(dev);
pm_runtime_put(&pdev->dev);
pm_runtime_disable(&pdev->dev);
return 0;
}
/* standard register acces */
static const struct smsc911x_ops standard_smsc911x_ops = {
.reg_read = __smsc911x_reg_read,
.reg_write = __smsc911x_reg_write,
.rx_readfifo = smsc911x_rx_readfifo,
.tx_writefifo = smsc911x_tx_writefifo,
};
/* shifted register access */
static const struct smsc911x_ops shifted_smsc911x_ops = {
.reg_read = __smsc911x_reg_read_shift,
.reg_write = __smsc911x_reg_write_shift,
.rx_readfifo = smsc911x_rx_readfifo_shift,
.tx_writefifo = smsc911x_tx_writefifo_shift,
};
#ifdef CONFIG_OF
static int smsc911x_probe_config_dt(struct smsc911x_platform_config *config,
struct device_node *np)
{
const char *mac;
u32 width = 0;
if (!np)
return -ENODEV;
config->phy_interface = of_get_phy_mode(np);
mac = of_get_mac_address(np);
if (mac)
memcpy(config->mac, mac, ETH_ALEN);
of_property_read_u32(np, "reg-shift", &config->shift);
of_property_read_u32(np, "reg-io-width", &width);
if (width == 4)
config->flags |= SMSC911X_USE_32BIT;
else
config->flags |= SMSC911X_USE_16BIT;
if (of_get_property(np, "smsc,irq-active-high", NULL))
config->irq_polarity = SMSC911X_IRQ_POLARITY_ACTIVE_HIGH;
if (of_get_property(np, "smsc,irq-push-pull", NULL))
config->irq_type = SMSC911X_IRQ_TYPE_PUSH_PULL;
if (of_get_property(np, "smsc,force-internal-phy", NULL))
config->flags |= SMSC911X_FORCE_INTERNAL_PHY;
if (of_get_property(np, "smsc,force-external-phy", NULL))
config->flags |= SMSC911X_FORCE_EXTERNAL_PHY;
if (of_get_property(np, "smsc,save-mac-address", NULL))
config->flags |= SMSC911X_SAVE_MAC_ADDRESS;
return 0;
}
#else
static inline int smsc911x_probe_config_dt(
struct smsc911x_platform_config *config,
struct device_node *np)
{
return -ENODEV;
}
#endif /* CONFIG_OF */
static int smsc911x_drv_probe(struct platform_device *pdev)
{
struct device_node *np = pdev->dev.of_node;
struct net_device *dev;
struct smsc911x_data *pdata;
struct smsc911x_platform_config *config = dev_get_platdata(&pdev->dev);
struct resource *res, *irq_res;
unsigned int intcfg = 0;
int res_size, irq_flags;
int retval;
res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
"smsc911x-memory");
if (!res)
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
if (!res) {
pr_warn("Could not allocate resource\n");
retval = -ENODEV;
goto out_0;
}
res_size = resource_size(res);
irq_res = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
if (!irq_res) {
pr_warn("Could not allocate irq resource\n");
retval = -ENODEV;
goto out_0;
}
if (!request_mem_region(res->start, res_size, SMSC_CHIPNAME)) {
retval = -EBUSY;
goto out_0;
}
dev = alloc_etherdev(sizeof(struct smsc911x_data));
if (!dev) {
retval = -ENOMEM;
goto out_release_io_1;
}
SET_NETDEV_DEV(dev, &pdev->dev);
pdata = netdev_priv(dev);
dev->irq = irq_res->start;
irq_flags = irq_res->flags & IRQF_TRIGGER_MASK;
pdata->ioaddr = ioremap_nocache(res->start, res_size);
pdata->dev = dev;
pdata->msg_enable = ((1 << debug) - 1);
platform_set_drvdata(pdev, dev);
retval = smsc911x_request_resources(pdev);
if (retval)
goto out_request_resources_fail;
retval = smsc911x_enable_resources(pdev);
if (retval)
goto out_enable_resources_fail;
if (pdata->ioaddr == NULL) {
SMSC_WARN(pdata, probe, "Error smsc911x base address invalid");
retval = -ENOMEM;
goto out_disable_resources;
}
retval = smsc911x_probe_config_dt(&pdata->config, np);
if (retval && config) {
/* copy config parameters across to pdata */
memcpy(&pdata->config, config, sizeof(pdata->config));
retval = 0;
}
if (retval) {
SMSC_WARN(pdata, probe, "Error smsc911x config not found");
goto out_disable_resources;
}
/* assume standard, non-shifted, access to HW registers */
pdata->ops = &standard_smsc911x_ops;
/* apply the right access if shifting is needed */
if (pdata->config.shift)
pdata->ops = &shifted_smsc911x_ops;
pm_runtime_enable(&pdev->dev);
pm_runtime_get_sync(&pdev->dev);
retval = smsc911x_init(dev);
if (retval < 0)
goto out_disable_resources;
/* configure irq polarity and type before connecting isr */
if (pdata->config.irq_polarity == SMSC911X_IRQ_POLARITY_ACTIVE_HIGH)
intcfg |= INT_CFG_IRQ_POL_;
if (pdata->config.irq_type == SMSC911X_IRQ_TYPE_PUSH_PULL)
intcfg |= INT_CFG_IRQ_TYPE_;
smsc911x_reg_write(pdata, INT_CFG, intcfg);
/* Ensure interrupts are globally disabled before connecting ISR */
smsc911x_disable_irq_chip(dev);
retval = request_irq(dev->irq, smsc911x_irqhandler,
irq_flags | IRQF_SHARED, dev->name, dev);
if (retval) {
SMSC_WARN(pdata, probe,
"Unable to claim requested irq: %d", dev->irq);
goto out_disable_resources;
}
netif_carrier_off(dev);
retval = register_netdev(dev);
if (retval) {
SMSC_WARN(pdata, probe, "Error %i registering device", retval);
goto out_free_irq;
} else {
SMSC_TRACE(pdata, probe,
"Network interface: \"%s\"", dev->name);
}
retval = smsc911x_mii_init(pdev, dev);
if (retval) {
SMSC_WARN(pdata, probe, "Error %i initialising mii", retval);
goto out_unregister_netdev_5;
}
spin_lock_irq(&pdata->mac_lock);
/* Check if mac address has been specified when bringing interface up */
if (is_valid_ether_addr(dev->dev_addr)) {
smsc911x_set_hw_mac_address(pdata, dev->dev_addr);
SMSC_TRACE(pdata, probe,
"MAC Address is specified by configuration");
} else if (is_valid_ether_addr(pdata->config.mac)) {
memcpy(dev->dev_addr, pdata->config.mac, ETH_ALEN);
SMSC_TRACE(pdata, probe,
"MAC Address specified by platform data");
} else {
/* Try reading mac address from device. if EEPROM is present
* it will already have been set */
smsc_get_mac(dev);
if (is_valid_ether_addr(dev->dev_addr)) {
/* eeprom values are valid so use them */
SMSC_TRACE(pdata, probe,
"Mac Address is read from LAN911x EEPROM");
} else {
/* eeprom values are invalid, generate random MAC */
eth_hw_addr_random(dev);
smsc911x_set_hw_mac_address(pdata, dev->dev_addr);
SMSC_TRACE(pdata, probe,
"MAC Address is set to eth_random_addr");
}
}
spin_unlock_irq(&pdata->mac_lock);
netdev_info(dev, "MAC Address: %pM\n", dev->dev_addr);
return 0;
out_unregister_netdev_5:
unregister_netdev(dev);
out_free_irq:
free_irq(dev->irq, dev);
out_disable_resources:
pm_runtime_put(&pdev->dev);
pm_runtime_disable(&pdev->dev);
(void)smsc911x_disable_resources(pdev);
out_enable_resources_fail:
smsc911x_free_resources(pdev);
out_request_resources_fail:
iounmap(pdata->ioaddr);
free_netdev(dev);
out_release_io_1:
release_mem_region(res->start, resource_size(res));
out_0:
return retval;
}
#ifdef CONFIG_PM
/* This implementation assumes the devices remains powered on its VDDVARIO
* pins during suspend. */
/* TODO: implement freeze/thaw callbacks for hibernation.*/
static int smsc911x_suspend(struct device *dev)
{
struct net_device *ndev = dev_get_drvdata(dev);
struct smsc911x_data *pdata = netdev_priv(ndev);
/* enable wake on LAN, energy detection and the external PME
* signal. */
smsc911x_reg_write(pdata, PMT_CTRL,
PMT_CTRL_PM_MODE_D1_ | PMT_CTRL_WOL_EN_ |
PMT_CTRL_ED_EN_ | PMT_CTRL_PME_EN_);
return 0;
}
static int smsc911x_resume(struct device *dev)
{
struct net_device *ndev = dev_get_drvdata(dev);
struct smsc911x_data *pdata = netdev_priv(ndev);
unsigned int to = 100;
/* Note 3.11 from the datasheet:
* "When the LAN9220 is in a power saving state, a write of any
* data to the BYTE_TEST register will wake-up the device."
*/
smsc911x_reg_write(pdata, BYTE_TEST, 0);
/* poll the READY bit in PMT_CTRL. Any other access to the device is
* forbidden while this bit isn't set. Try for 100ms and return -EIO
* if it failed. */
while (!(smsc911x_reg_read(pdata, PMT_CTRL) & PMT_CTRL_READY_) && --to)
udelay(1000);
return (to == 0) ? -EIO : 0;
}
static const struct dev_pm_ops smsc911x_pm_ops = {
.suspend = smsc911x_suspend,
.resume = smsc911x_resume,
};
#define SMSC911X_PM_OPS (&smsc911x_pm_ops)
#else
#define SMSC911X_PM_OPS NULL
#endif
#ifdef CONFIG_OF
static const struct of_device_id smsc911x_dt_ids[] = {
{ .compatible = "smsc,lan9115", },
{ /* sentinel */ }
};
MODULE_DEVICE_TABLE(of, smsc911x_dt_ids);
#endif
static struct platform_driver smsc911x_driver = {
.probe = smsc911x_drv_probe,
.remove = smsc911x_drv_remove,
.driver = {
.name = SMSC_CHIPNAME,
.owner = THIS_MODULE,
.pm = SMSC911X_PM_OPS,
.of_match_table = of_match_ptr(smsc911x_dt_ids),
},
};
/* Entry point for loading the module */
static int __init smsc911x_init_module(void)
{
SMSC_INITIALIZE();
return platform_driver_register(&smsc911x_driver);
}
/* entry point for unloading the module */
static void __exit smsc911x_cleanup_module(void)
{
platform_driver_unregister(&smsc911x_driver);
}
module_init(smsc911x_init_module);
module_exit(smsc911x_cleanup_module);