Now that we can differentiate wants vs uses GuC/HuC, intel_uc_init is restricted to running only if we have successfully fetched the required blob(s) and are committed to using the microcontroller(s). The only remaining thing that can go wrong in uc_init is the allocation of GuC/HuC related objects; if we get such a failure better to bail out immediately instead of wedging later, like we do for e.g. intel_engines_init, since without objects we can't use the HW, including not being able to attempt the firmware load. While at it, remove the unneeded fw_cleanup call (this is handled outside of gt_init) and add a probe failure injection point for testing. Also, update the logs for <g/h>uc_init failures to probe_failure() since they will cause the driver load to fail. Signed-off-by: Daniele Ceraolo Spurio <daniele.ceraolospurio@intel.com> Cc: Michal Wajdeczko <michal.wajdeczko@intel.com> Cc: John Harrison <John.C.Harrison@Intel.com> Cc: Matthew Brost <matthew.brost@intel.com> Reviewed-by: Fernando Pacheco <fernando.pacheco@intel.com> Reviewed-by: Michal Wajdeczko <michal.wajdeczko@intel.com> Reviewed-by: Andi Shyti <andi.shyti@intel.com> Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk> Link: https://patchwork.freedesktop.org/patch/msgid/20200218223327.11058-8-daniele.ceraolospurio@intel.com
728 lines
20 KiB
C
728 lines
20 KiB
C
// SPDX-License-Identifier: MIT
|
|
/*
|
|
* Copyright © 2014-2019 Intel Corporation
|
|
*/
|
|
|
|
#include "gt/intel_gt.h"
|
|
#include "gt/intel_gt_irq.h"
|
|
#include "gt/intel_gt_pm_irq.h"
|
|
#include "intel_guc.h"
|
|
#include "intel_guc_ads.h"
|
|
#include "intel_guc_submission.h"
|
|
#include "i915_drv.h"
|
|
|
|
/**
|
|
* DOC: GuC
|
|
*
|
|
* The GuC is a microcontroller inside the GT HW, introduced in gen9. The GuC is
|
|
* designed to offload some of the functionality usually performed by the host
|
|
* driver; currently the main operations it can take care of are:
|
|
*
|
|
* - Authentication of the HuC, which is required to fully enable HuC usage.
|
|
* - Low latency graphics context scheduling (a.k.a. GuC submission).
|
|
* - GT Power management.
|
|
*
|
|
* The enable_guc module parameter can be used to select which of those
|
|
* operations to enable within GuC. Note that not all the operations are
|
|
* supported on all gen9+ platforms.
|
|
*
|
|
* Enabling the GuC is not mandatory and therefore the firmware is only loaded
|
|
* if at least one of the operations is selected. However, not loading the GuC
|
|
* might result in the loss of some features that do require the GuC (currently
|
|
* just the HuC, but more are expected to land in the future).
|
|
*/
|
|
|
|
void intel_guc_notify(struct intel_guc *guc)
|
|
{
|
|
struct intel_gt *gt = guc_to_gt(guc);
|
|
|
|
/*
|
|
* On Gen11+, the value written to the register is passes as a payload
|
|
* to the FW. However, the FW currently treats all values the same way
|
|
* (H2G interrupt), so we can just write the value that the HW expects
|
|
* on older gens.
|
|
*/
|
|
intel_uncore_write(gt->uncore, guc->notify_reg, GUC_SEND_TRIGGER);
|
|
}
|
|
|
|
static inline i915_reg_t guc_send_reg(struct intel_guc *guc, u32 i)
|
|
{
|
|
GEM_BUG_ON(!guc->send_regs.base);
|
|
GEM_BUG_ON(!guc->send_regs.count);
|
|
GEM_BUG_ON(i >= guc->send_regs.count);
|
|
|
|
return _MMIO(guc->send_regs.base + 4 * i);
|
|
}
|
|
|
|
void intel_guc_init_send_regs(struct intel_guc *guc)
|
|
{
|
|
struct intel_gt *gt = guc_to_gt(guc);
|
|
enum forcewake_domains fw_domains = 0;
|
|
unsigned int i;
|
|
|
|
if (INTEL_GEN(gt->i915) >= 11) {
|
|
guc->send_regs.base =
|
|
i915_mmio_reg_offset(GEN11_SOFT_SCRATCH(0));
|
|
guc->send_regs.count = GEN11_SOFT_SCRATCH_COUNT;
|
|
} else {
|
|
guc->send_regs.base = i915_mmio_reg_offset(SOFT_SCRATCH(0));
|
|
guc->send_regs.count = GUC_MAX_MMIO_MSG_LEN;
|
|
BUILD_BUG_ON(GUC_MAX_MMIO_MSG_LEN > SOFT_SCRATCH_COUNT);
|
|
}
|
|
|
|
for (i = 0; i < guc->send_regs.count; i++) {
|
|
fw_domains |= intel_uncore_forcewake_for_reg(gt->uncore,
|
|
guc_send_reg(guc, i),
|
|
FW_REG_READ | FW_REG_WRITE);
|
|
}
|
|
guc->send_regs.fw_domains = fw_domains;
|
|
}
|
|
|
|
static void gen9_reset_guc_interrupts(struct intel_guc *guc)
|
|
{
|
|
struct intel_gt *gt = guc_to_gt(guc);
|
|
|
|
assert_rpm_wakelock_held(>->i915->runtime_pm);
|
|
|
|
spin_lock_irq(>->irq_lock);
|
|
gen6_gt_pm_reset_iir(gt, gt->pm_guc_events);
|
|
spin_unlock_irq(>->irq_lock);
|
|
}
|
|
|
|
static void gen9_enable_guc_interrupts(struct intel_guc *guc)
|
|
{
|
|
struct intel_gt *gt = guc_to_gt(guc);
|
|
|
|
assert_rpm_wakelock_held(>->i915->runtime_pm);
|
|
|
|
spin_lock_irq(>->irq_lock);
|
|
if (!guc->interrupts.enabled) {
|
|
WARN_ON_ONCE(intel_uncore_read(gt->uncore, GEN8_GT_IIR(2)) &
|
|
gt->pm_guc_events);
|
|
guc->interrupts.enabled = true;
|
|
gen6_gt_pm_enable_irq(gt, gt->pm_guc_events);
|
|
}
|
|
spin_unlock_irq(>->irq_lock);
|
|
}
|
|
|
|
static void gen9_disable_guc_interrupts(struct intel_guc *guc)
|
|
{
|
|
struct intel_gt *gt = guc_to_gt(guc);
|
|
|
|
assert_rpm_wakelock_held(>->i915->runtime_pm);
|
|
|
|
spin_lock_irq(>->irq_lock);
|
|
guc->interrupts.enabled = false;
|
|
|
|
gen6_gt_pm_disable_irq(gt, gt->pm_guc_events);
|
|
|
|
spin_unlock_irq(>->irq_lock);
|
|
intel_synchronize_irq(gt->i915);
|
|
|
|
gen9_reset_guc_interrupts(guc);
|
|
}
|
|
|
|
static void gen11_reset_guc_interrupts(struct intel_guc *guc)
|
|
{
|
|
struct intel_gt *gt = guc_to_gt(guc);
|
|
|
|
spin_lock_irq(>->irq_lock);
|
|
gen11_gt_reset_one_iir(gt, 0, GEN11_GUC);
|
|
spin_unlock_irq(>->irq_lock);
|
|
}
|
|
|
|
static void gen11_enable_guc_interrupts(struct intel_guc *guc)
|
|
{
|
|
struct intel_gt *gt = guc_to_gt(guc);
|
|
|
|
spin_lock_irq(>->irq_lock);
|
|
if (!guc->interrupts.enabled) {
|
|
u32 events = REG_FIELD_PREP(ENGINE1_MASK, GUC_INTR_GUC2HOST);
|
|
|
|
WARN_ON_ONCE(gen11_gt_reset_one_iir(gt, 0, GEN11_GUC));
|
|
intel_uncore_write(gt->uncore,
|
|
GEN11_GUC_SG_INTR_ENABLE, events);
|
|
intel_uncore_write(gt->uncore,
|
|
GEN11_GUC_SG_INTR_MASK, ~events);
|
|
guc->interrupts.enabled = true;
|
|
}
|
|
spin_unlock_irq(>->irq_lock);
|
|
}
|
|
|
|
static void gen11_disable_guc_interrupts(struct intel_guc *guc)
|
|
{
|
|
struct intel_gt *gt = guc_to_gt(guc);
|
|
|
|
spin_lock_irq(>->irq_lock);
|
|
guc->interrupts.enabled = false;
|
|
|
|
intel_uncore_write(gt->uncore, GEN11_GUC_SG_INTR_MASK, ~0);
|
|
intel_uncore_write(gt->uncore, GEN11_GUC_SG_INTR_ENABLE, 0);
|
|
|
|
spin_unlock_irq(>->irq_lock);
|
|
intel_synchronize_irq(gt->i915);
|
|
|
|
gen11_reset_guc_interrupts(guc);
|
|
}
|
|
|
|
void intel_guc_init_early(struct intel_guc *guc)
|
|
{
|
|
struct drm_i915_private *i915 = guc_to_gt(guc)->i915;
|
|
|
|
intel_guc_fw_init_early(guc);
|
|
intel_guc_ct_init_early(&guc->ct);
|
|
intel_guc_log_init_early(&guc->log);
|
|
intel_guc_submission_init_early(guc);
|
|
|
|
mutex_init(&guc->send_mutex);
|
|
spin_lock_init(&guc->irq_lock);
|
|
if (INTEL_GEN(i915) >= 11) {
|
|
guc->notify_reg = GEN11_GUC_HOST_INTERRUPT;
|
|
guc->interrupts.reset = gen11_reset_guc_interrupts;
|
|
guc->interrupts.enable = gen11_enable_guc_interrupts;
|
|
guc->interrupts.disable = gen11_disable_guc_interrupts;
|
|
} else {
|
|
guc->notify_reg = GUC_SEND_INTERRUPT;
|
|
guc->interrupts.reset = gen9_reset_guc_interrupts;
|
|
guc->interrupts.enable = gen9_enable_guc_interrupts;
|
|
guc->interrupts.disable = gen9_disable_guc_interrupts;
|
|
}
|
|
}
|
|
|
|
static u32 guc_ctl_debug_flags(struct intel_guc *guc)
|
|
{
|
|
u32 level = intel_guc_log_get_level(&guc->log);
|
|
u32 flags = 0;
|
|
|
|
if (!GUC_LOG_LEVEL_IS_VERBOSE(level))
|
|
flags |= GUC_LOG_DISABLED;
|
|
else
|
|
flags |= GUC_LOG_LEVEL_TO_VERBOSITY(level) <<
|
|
GUC_LOG_VERBOSITY_SHIFT;
|
|
|
|
return flags;
|
|
}
|
|
|
|
static u32 guc_ctl_feature_flags(struct intel_guc *guc)
|
|
{
|
|
u32 flags = 0;
|
|
|
|
if (!intel_guc_submission_is_used(guc))
|
|
flags |= GUC_CTL_DISABLE_SCHEDULER;
|
|
|
|
return flags;
|
|
}
|
|
|
|
static u32 guc_ctl_ctxinfo_flags(struct intel_guc *guc)
|
|
{
|
|
u32 flags = 0;
|
|
|
|
if (intel_guc_submission_is_used(guc)) {
|
|
u32 ctxnum, base;
|
|
|
|
base = intel_guc_ggtt_offset(guc, guc->stage_desc_pool);
|
|
ctxnum = GUC_MAX_STAGE_DESCRIPTORS / 16;
|
|
|
|
base >>= PAGE_SHIFT;
|
|
flags |= (base << GUC_CTL_BASE_ADDR_SHIFT) |
|
|
(ctxnum << GUC_CTL_CTXNUM_IN16_SHIFT);
|
|
}
|
|
return flags;
|
|
}
|
|
|
|
static u32 guc_ctl_log_params_flags(struct intel_guc *guc)
|
|
{
|
|
u32 offset = intel_guc_ggtt_offset(guc, guc->log.vma) >> PAGE_SHIFT;
|
|
u32 flags;
|
|
|
|
#if (((CRASH_BUFFER_SIZE) % SZ_1M) == 0)
|
|
#define UNIT SZ_1M
|
|
#define FLAG GUC_LOG_ALLOC_IN_MEGABYTE
|
|
#else
|
|
#define UNIT SZ_4K
|
|
#define FLAG 0
|
|
#endif
|
|
|
|
BUILD_BUG_ON(!CRASH_BUFFER_SIZE);
|
|
BUILD_BUG_ON(!IS_ALIGNED(CRASH_BUFFER_SIZE, UNIT));
|
|
BUILD_BUG_ON(!DPC_BUFFER_SIZE);
|
|
BUILD_BUG_ON(!IS_ALIGNED(DPC_BUFFER_SIZE, UNIT));
|
|
BUILD_BUG_ON(!ISR_BUFFER_SIZE);
|
|
BUILD_BUG_ON(!IS_ALIGNED(ISR_BUFFER_SIZE, UNIT));
|
|
|
|
BUILD_BUG_ON((CRASH_BUFFER_SIZE / UNIT - 1) >
|
|
(GUC_LOG_CRASH_MASK >> GUC_LOG_CRASH_SHIFT));
|
|
BUILD_BUG_ON((DPC_BUFFER_SIZE / UNIT - 1) >
|
|
(GUC_LOG_DPC_MASK >> GUC_LOG_DPC_SHIFT));
|
|
BUILD_BUG_ON((ISR_BUFFER_SIZE / UNIT - 1) >
|
|
(GUC_LOG_ISR_MASK >> GUC_LOG_ISR_SHIFT));
|
|
|
|
flags = GUC_LOG_VALID |
|
|
GUC_LOG_NOTIFY_ON_HALF_FULL |
|
|
FLAG |
|
|
((CRASH_BUFFER_SIZE / UNIT - 1) << GUC_LOG_CRASH_SHIFT) |
|
|
((DPC_BUFFER_SIZE / UNIT - 1) << GUC_LOG_DPC_SHIFT) |
|
|
((ISR_BUFFER_SIZE / UNIT - 1) << GUC_LOG_ISR_SHIFT) |
|
|
(offset << GUC_LOG_BUF_ADDR_SHIFT);
|
|
|
|
#undef UNIT
|
|
#undef FLAG
|
|
|
|
return flags;
|
|
}
|
|
|
|
static u32 guc_ctl_ads_flags(struct intel_guc *guc)
|
|
{
|
|
u32 ads = intel_guc_ggtt_offset(guc, guc->ads_vma) >> PAGE_SHIFT;
|
|
u32 flags = ads << GUC_ADS_ADDR_SHIFT;
|
|
|
|
return flags;
|
|
}
|
|
|
|
/*
|
|
* Initialise the GuC parameter block before starting the firmware
|
|
* transfer. These parameters are read by the firmware on startup
|
|
* and cannot be changed thereafter.
|
|
*/
|
|
static void guc_init_params(struct intel_guc *guc)
|
|
{
|
|
u32 *params = guc->params;
|
|
int i;
|
|
|
|
BUILD_BUG_ON(sizeof(guc->params) != GUC_CTL_MAX_DWORDS * sizeof(u32));
|
|
|
|
params[GUC_CTL_CTXINFO] = guc_ctl_ctxinfo_flags(guc);
|
|
params[GUC_CTL_LOG_PARAMS] = guc_ctl_log_params_flags(guc);
|
|
params[GUC_CTL_FEATURE] = guc_ctl_feature_flags(guc);
|
|
params[GUC_CTL_DEBUG] = guc_ctl_debug_flags(guc);
|
|
params[GUC_CTL_ADS] = guc_ctl_ads_flags(guc);
|
|
|
|
for (i = 0; i < GUC_CTL_MAX_DWORDS; i++)
|
|
DRM_DEBUG_DRIVER("param[%2d] = %#x\n", i, params[i]);
|
|
}
|
|
|
|
/*
|
|
* Initialise the GuC parameter block before starting the firmware
|
|
* transfer. These parameters are read by the firmware on startup
|
|
* and cannot be changed thereafter.
|
|
*/
|
|
void intel_guc_write_params(struct intel_guc *guc)
|
|
{
|
|
struct intel_uncore *uncore = guc_to_gt(guc)->uncore;
|
|
int i;
|
|
|
|
/*
|
|
* All SOFT_SCRATCH registers are in FORCEWAKE_BLITTER domain and
|
|
* they are power context saved so it's ok to release forcewake
|
|
* when we are done here and take it again at xfer time.
|
|
*/
|
|
intel_uncore_forcewake_get(uncore, FORCEWAKE_BLITTER);
|
|
|
|
intel_uncore_write(uncore, SOFT_SCRATCH(0), 0);
|
|
|
|
for (i = 0; i < GUC_CTL_MAX_DWORDS; i++)
|
|
intel_uncore_write(uncore, SOFT_SCRATCH(1 + i), guc->params[i]);
|
|
|
|
intel_uncore_forcewake_put(uncore, FORCEWAKE_BLITTER);
|
|
}
|
|
|
|
int intel_guc_init(struct intel_guc *guc)
|
|
{
|
|
struct intel_gt *gt = guc_to_gt(guc);
|
|
int ret;
|
|
|
|
ret = intel_uc_fw_init(&guc->fw);
|
|
if (ret)
|
|
goto err_fetch;
|
|
|
|
ret = intel_guc_log_create(&guc->log);
|
|
if (ret)
|
|
goto err_fw;
|
|
|
|
ret = intel_guc_ads_create(guc);
|
|
if (ret)
|
|
goto err_log;
|
|
GEM_BUG_ON(!guc->ads_vma);
|
|
|
|
ret = intel_guc_ct_init(&guc->ct);
|
|
if (ret)
|
|
goto err_ads;
|
|
|
|
if (intel_guc_submission_is_used(guc)) {
|
|
/*
|
|
* This is stuff we need to have available at fw load time
|
|
* if we are planning to enable submission later
|
|
*/
|
|
ret = intel_guc_submission_init(guc);
|
|
if (ret)
|
|
goto err_ct;
|
|
}
|
|
|
|
/* now that everything is perma-pinned, initialize the parameters */
|
|
guc_init_params(guc);
|
|
|
|
/* We need to notify the guc whenever we change the GGTT */
|
|
i915_ggtt_enable_guc(gt->ggtt);
|
|
|
|
return 0;
|
|
|
|
err_ct:
|
|
intel_guc_ct_fini(&guc->ct);
|
|
err_ads:
|
|
intel_guc_ads_destroy(guc);
|
|
err_log:
|
|
intel_guc_log_destroy(&guc->log);
|
|
err_fw:
|
|
intel_uc_fw_fini(&guc->fw);
|
|
err_fetch:
|
|
intel_uc_fw_cleanup_fetch(&guc->fw);
|
|
i915_probe_error(gt->i915, "failed with %d\n", ret);
|
|
return ret;
|
|
}
|
|
|
|
void intel_guc_fini(struct intel_guc *guc)
|
|
{
|
|
struct intel_gt *gt = guc_to_gt(guc);
|
|
|
|
if (!intel_uc_fw_is_available(&guc->fw))
|
|
return;
|
|
|
|
i915_ggtt_disable_guc(gt->ggtt);
|
|
|
|
if (intel_guc_submission_is_used(guc))
|
|
intel_guc_submission_fini(guc);
|
|
|
|
intel_guc_ct_fini(&guc->ct);
|
|
|
|
intel_guc_ads_destroy(guc);
|
|
intel_guc_log_destroy(&guc->log);
|
|
intel_uc_fw_fini(&guc->fw);
|
|
intel_uc_fw_cleanup_fetch(&guc->fw);
|
|
|
|
intel_uc_fw_change_status(&guc->fw, INTEL_UC_FIRMWARE_DISABLED);
|
|
}
|
|
|
|
/*
|
|
* This function implements the MMIO based host to GuC interface.
|
|
*/
|
|
int intel_guc_send_mmio(struct intel_guc *guc, const u32 *action, u32 len,
|
|
u32 *response_buf, u32 response_buf_size)
|
|
{
|
|
struct intel_uncore *uncore = guc_to_gt(guc)->uncore;
|
|
u32 status;
|
|
int i;
|
|
int ret;
|
|
|
|
GEM_BUG_ON(!len);
|
|
GEM_BUG_ON(len > guc->send_regs.count);
|
|
|
|
/* We expect only action code */
|
|
GEM_BUG_ON(*action & ~INTEL_GUC_MSG_CODE_MASK);
|
|
|
|
/* If CT is available, we expect to use MMIO only during init/fini */
|
|
GEM_BUG_ON(*action != INTEL_GUC_ACTION_REGISTER_COMMAND_TRANSPORT_BUFFER &&
|
|
*action != INTEL_GUC_ACTION_DEREGISTER_COMMAND_TRANSPORT_BUFFER);
|
|
|
|
mutex_lock(&guc->send_mutex);
|
|
intel_uncore_forcewake_get(uncore, guc->send_regs.fw_domains);
|
|
|
|
for (i = 0; i < len; i++)
|
|
intel_uncore_write(uncore, guc_send_reg(guc, i), action[i]);
|
|
|
|
intel_uncore_posting_read(uncore, guc_send_reg(guc, i - 1));
|
|
|
|
intel_guc_notify(guc);
|
|
|
|
/*
|
|
* No GuC command should ever take longer than 10ms.
|
|
* Fast commands should still complete in 10us.
|
|
*/
|
|
ret = __intel_wait_for_register_fw(uncore,
|
|
guc_send_reg(guc, 0),
|
|
INTEL_GUC_MSG_TYPE_MASK,
|
|
INTEL_GUC_MSG_TYPE_RESPONSE <<
|
|
INTEL_GUC_MSG_TYPE_SHIFT,
|
|
10, 10, &status);
|
|
/* If GuC explicitly returned an error, convert it to -EIO */
|
|
if (!ret && !INTEL_GUC_MSG_IS_RESPONSE_SUCCESS(status))
|
|
ret = -EIO;
|
|
|
|
if (ret) {
|
|
DRM_ERROR("MMIO: GuC action %#x failed with error %d %#x\n",
|
|
action[0], ret, status);
|
|
goto out;
|
|
}
|
|
|
|
if (response_buf) {
|
|
int count = min(response_buf_size, guc->send_regs.count - 1);
|
|
|
|
for (i = 0; i < count; i++)
|
|
response_buf[i] = intel_uncore_read(uncore,
|
|
guc_send_reg(guc, i + 1));
|
|
}
|
|
|
|
/* Use data from the GuC response as our return value */
|
|
ret = INTEL_GUC_MSG_TO_DATA(status);
|
|
|
|
out:
|
|
intel_uncore_forcewake_put(uncore, guc->send_regs.fw_domains);
|
|
mutex_unlock(&guc->send_mutex);
|
|
|
|
return ret;
|
|
}
|
|
|
|
int intel_guc_to_host_process_recv_msg(struct intel_guc *guc,
|
|
const u32 *payload, u32 len)
|
|
{
|
|
u32 msg;
|
|
|
|
if (unlikely(!len))
|
|
return -EPROTO;
|
|
|
|
/* Make sure to handle only enabled messages */
|
|
msg = payload[0] & guc->msg_enabled_mask;
|
|
|
|
if (msg & (INTEL_GUC_RECV_MSG_FLUSH_LOG_BUFFER |
|
|
INTEL_GUC_RECV_MSG_CRASH_DUMP_POSTED))
|
|
intel_guc_log_handle_flush_event(&guc->log);
|
|
|
|
return 0;
|
|
}
|
|
|
|
int intel_guc_sample_forcewake(struct intel_guc *guc)
|
|
{
|
|
struct drm_i915_private *dev_priv = guc_to_gt(guc)->i915;
|
|
u32 action[2];
|
|
|
|
action[0] = INTEL_GUC_ACTION_SAMPLE_FORCEWAKE;
|
|
/* WaRsDisableCoarsePowerGating:skl,cnl */
|
|
if (!HAS_RC6(dev_priv) || NEEDS_WaRsDisableCoarsePowerGating(dev_priv))
|
|
action[1] = 0;
|
|
else
|
|
/* bit 0 and 1 are for Render and Media domain separately */
|
|
action[1] = GUC_FORCEWAKE_RENDER | GUC_FORCEWAKE_MEDIA;
|
|
|
|
return intel_guc_send(guc, action, ARRAY_SIZE(action));
|
|
}
|
|
|
|
/**
|
|
* intel_guc_auth_huc() - Send action to GuC to authenticate HuC ucode
|
|
* @guc: intel_guc structure
|
|
* @rsa_offset: rsa offset w.r.t ggtt base of huc vma
|
|
*
|
|
* Triggers a HuC firmware authentication request to the GuC via intel_guc_send
|
|
* INTEL_GUC_ACTION_AUTHENTICATE_HUC interface. This function is invoked by
|
|
* intel_huc_auth().
|
|
*
|
|
* Return: non-zero code on error
|
|
*/
|
|
int intel_guc_auth_huc(struct intel_guc *guc, u32 rsa_offset)
|
|
{
|
|
u32 action[] = {
|
|
INTEL_GUC_ACTION_AUTHENTICATE_HUC,
|
|
rsa_offset
|
|
};
|
|
|
|
return intel_guc_send(guc, action, ARRAY_SIZE(action));
|
|
}
|
|
|
|
/**
|
|
* intel_guc_suspend() - notify GuC entering suspend state
|
|
* @guc: the guc
|
|
*/
|
|
int intel_guc_suspend(struct intel_guc *guc)
|
|
{
|
|
struct intel_uncore *uncore = guc_to_gt(guc)->uncore;
|
|
int ret;
|
|
u32 status;
|
|
u32 action[] = {
|
|
INTEL_GUC_ACTION_ENTER_S_STATE,
|
|
GUC_POWER_D1, /* any value greater than GUC_POWER_D0 */
|
|
};
|
|
|
|
/*
|
|
* If GuC communication is enabled but submission is not supported,
|
|
* we do not need to suspend the GuC.
|
|
*/
|
|
if (!intel_guc_submission_is_used(guc) || !intel_guc_is_ready(guc))
|
|
return 0;
|
|
|
|
/*
|
|
* The ENTER_S_STATE action queues the save/restore operation in GuC FW
|
|
* and then returns, so waiting on the H2G is not enough to guarantee
|
|
* GuC is done. When all the processing is done, GuC writes
|
|
* INTEL_GUC_SLEEP_STATE_SUCCESS to scratch register 14, so we can poll
|
|
* on that. Note that GuC does not ensure that the value in the register
|
|
* is different from INTEL_GUC_SLEEP_STATE_SUCCESS while the action is
|
|
* in progress so we need to take care of that ourselves as well.
|
|
*/
|
|
|
|
intel_uncore_write(uncore, SOFT_SCRATCH(14),
|
|
INTEL_GUC_SLEEP_STATE_INVALID_MASK);
|
|
|
|
ret = intel_guc_send(guc, action, ARRAY_SIZE(action));
|
|
if (ret)
|
|
return ret;
|
|
|
|
ret = __intel_wait_for_register(uncore, SOFT_SCRATCH(14),
|
|
INTEL_GUC_SLEEP_STATE_INVALID_MASK,
|
|
0, 0, 10, &status);
|
|
if (ret)
|
|
return ret;
|
|
|
|
if (status != INTEL_GUC_SLEEP_STATE_SUCCESS) {
|
|
DRM_ERROR("GuC failed to change sleep state. "
|
|
"action=0x%x, err=%u\n",
|
|
action[0], status);
|
|
return -EIO;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* intel_guc_reset_engine() - ask GuC to reset an engine
|
|
* @guc: intel_guc structure
|
|
* @engine: engine to be reset
|
|
*/
|
|
int intel_guc_reset_engine(struct intel_guc *guc,
|
|
struct intel_engine_cs *engine)
|
|
{
|
|
/* XXX: to be implemented with submission interface rework */
|
|
|
|
return -ENODEV;
|
|
}
|
|
|
|
/**
|
|
* intel_guc_resume() - notify GuC resuming from suspend state
|
|
* @guc: the guc
|
|
*/
|
|
int intel_guc_resume(struct intel_guc *guc)
|
|
{
|
|
u32 action[] = {
|
|
INTEL_GUC_ACTION_EXIT_S_STATE,
|
|
GUC_POWER_D0,
|
|
};
|
|
|
|
/*
|
|
* If GuC communication is enabled but submission is not supported,
|
|
* we do not need to resume the GuC but we do need to enable the
|
|
* GuC communication on resume (above).
|
|
*/
|
|
if (!intel_guc_submission_is_used(guc) || !intel_guc_is_ready(guc))
|
|
return 0;
|
|
|
|
return intel_guc_send(guc, action, ARRAY_SIZE(action));
|
|
}
|
|
|
|
/**
|
|
* DOC: GuC Memory Management
|
|
*
|
|
* GuC can't allocate any memory for its own usage, so all the allocations must
|
|
* be handled by the host driver. GuC accesses the memory via the GGTT, with the
|
|
* exception of the top and bottom parts of the 4GB address space, which are
|
|
* instead re-mapped by the GuC HW to memory location of the FW itself (WOPCM)
|
|
* or other parts of the HW. The driver must take care not to place objects that
|
|
* the GuC is going to access in these reserved ranges. The layout of the GuC
|
|
* address space is shown below:
|
|
*
|
|
* ::
|
|
*
|
|
* +===========> +====================+ <== FFFF_FFFF
|
|
* ^ | Reserved |
|
|
* | +====================+ <== GUC_GGTT_TOP
|
|
* | | |
|
|
* | | DRAM |
|
|
* GuC | |
|
|
* Address +===> +====================+ <== GuC ggtt_pin_bias
|
|
* Space ^ | |
|
|
* | | | |
|
|
* | GuC | GuC |
|
|
* | WOPCM | WOPCM |
|
|
* | Size | |
|
|
* | | | |
|
|
* v v | |
|
|
* +=======+===> +====================+ <== 0000_0000
|
|
*
|
|
* The lower part of GuC Address Space [0, ggtt_pin_bias) is mapped to GuC WOPCM
|
|
* while upper part of GuC Address Space [ggtt_pin_bias, GUC_GGTT_TOP) is mapped
|
|
* to DRAM. The value of the GuC ggtt_pin_bias is the GuC WOPCM size.
|
|
*/
|
|
|
|
/**
|
|
* intel_guc_allocate_vma() - Allocate a GGTT VMA for GuC usage
|
|
* @guc: the guc
|
|
* @size: size of area to allocate (both virtual space and memory)
|
|
*
|
|
* This is a wrapper to create an object for use with the GuC. In order to
|
|
* use it inside the GuC, an object needs to be pinned lifetime, so we allocate
|
|
* both some backing storage and a range inside the Global GTT. We must pin
|
|
* it in the GGTT somewhere other than than [0, GUC ggtt_pin_bias) because that
|
|
* range is reserved inside GuC.
|
|
*
|
|
* Return: A i915_vma if successful, otherwise an ERR_PTR.
|
|
*/
|
|
struct i915_vma *intel_guc_allocate_vma(struct intel_guc *guc, u32 size)
|
|
{
|
|
struct intel_gt *gt = guc_to_gt(guc);
|
|
struct drm_i915_gem_object *obj;
|
|
struct i915_vma *vma;
|
|
u64 flags;
|
|
int ret;
|
|
|
|
obj = i915_gem_object_create_shmem(gt->i915, size);
|
|
if (IS_ERR(obj))
|
|
return ERR_CAST(obj);
|
|
|
|
vma = i915_vma_instance(obj, >->ggtt->vm, NULL);
|
|
if (IS_ERR(vma))
|
|
goto err;
|
|
|
|
flags = PIN_OFFSET_BIAS | i915_ggtt_pin_bias(vma);
|
|
ret = i915_ggtt_pin(vma, 0, flags);
|
|
if (ret) {
|
|
vma = ERR_PTR(ret);
|
|
goto err;
|
|
}
|
|
|
|
return i915_vma_make_unshrinkable(vma);
|
|
|
|
err:
|
|
i915_gem_object_put(obj);
|
|
return vma;
|
|
}
|
|
|
|
/**
|
|
* intel_guc_allocate_and_map_vma() - Allocate and map VMA for GuC usage
|
|
* @guc: the guc
|
|
* @size: size of area to allocate (both virtual space and memory)
|
|
* @out_vma: return variable for the allocated vma pointer
|
|
* @out_vaddr: return variable for the obj mapping
|
|
*
|
|
* This wrapper calls intel_guc_allocate_vma() and then maps the allocated
|
|
* object with I915_MAP_WB.
|
|
*
|
|
* Return: 0 if successful, a negative errno code otherwise.
|
|
*/
|
|
int intel_guc_allocate_and_map_vma(struct intel_guc *guc, u32 size,
|
|
struct i915_vma **out_vma, void **out_vaddr)
|
|
{
|
|
struct i915_vma *vma;
|
|
void *vaddr;
|
|
|
|
vma = intel_guc_allocate_vma(guc, size);
|
|
if (IS_ERR(vma))
|
|
return PTR_ERR(vma);
|
|
|
|
vaddr = i915_gem_object_pin_map(vma->obj, I915_MAP_WB);
|
|
if (IS_ERR(vaddr)) {
|
|
i915_vma_unpin_and_release(&vma, 0);
|
|
return PTR_ERR(vaddr);
|
|
}
|
|
|
|
*out_vma = vma;
|
|
*out_vaddr = vaddr;
|
|
|
|
return 0;
|
|
}
|