IMA allocates kernel virtual memory to carry forward the measurement
list, from the current kernel to the next kernel on kexec system call,
in ima_add_kexec_buffer() function.  This buffer is not freed before
completing the kexec system call resulting in memory leak.
Add ima_buffer field in "struct kimage" to store the virtual address
of the buffer allocated for the IMA measurement list.
Free the memory allocated for the IMA measurement list in
kimage_file_post_load_cleanup() function.
Signed-off-by: Lakshmi Ramasubramanian <nramas@linux.microsoft.com>
Suggested-by: Tyler Hicks <tyhicks@linux.microsoft.com>
Reviewed-by: Thiago Jung Bauermann <bauerman@linux.ibm.com>
Reviewed-by: Tyler Hicks <tyhicks@linux.microsoft.com>
Fixes: 7b8589cc29 ("ima: on soft reboot, save the measurement list")
Signed-off-by: Mimi Zohar <zohar@linux.ibm.com>
		
	
		
			
				
	
	
		
			1354 lines
		
	
	
		
			33 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1354 lines
		
	
	
		
			33 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| // SPDX-License-Identifier: GPL-2.0-only
 | |
| /*
 | |
|  * kexec: kexec_file_load system call
 | |
|  *
 | |
|  * Copyright (C) 2014 Red Hat Inc.
 | |
|  * Authors:
 | |
|  *      Vivek Goyal <vgoyal@redhat.com>
 | |
|  */
 | |
| 
 | |
| #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
 | |
| 
 | |
| #include <linux/capability.h>
 | |
| #include <linux/mm.h>
 | |
| #include <linux/file.h>
 | |
| #include <linux/slab.h>
 | |
| #include <linux/kexec.h>
 | |
| #include <linux/memblock.h>
 | |
| #include <linux/mutex.h>
 | |
| #include <linux/list.h>
 | |
| #include <linux/fs.h>
 | |
| #include <linux/ima.h>
 | |
| #include <crypto/hash.h>
 | |
| #include <crypto/sha2.h>
 | |
| #include <linux/elf.h>
 | |
| #include <linux/elfcore.h>
 | |
| #include <linux/kernel.h>
 | |
| #include <linux/kernel_read_file.h>
 | |
| #include <linux/syscalls.h>
 | |
| #include <linux/vmalloc.h>
 | |
| #include "kexec_internal.h"
 | |
| 
 | |
| static int kexec_calculate_store_digests(struct kimage *image);
 | |
| 
 | |
| /*
 | |
|  * Currently this is the only default function that is exported as some
 | |
|  * architectures need it to do additional handlings.
 | |
|  * In the future, other default functions may be exported too if required.
 | |
|  */
 | |
| int kexec_image_probe_default(struct kimage *image, void *buf,
 | |
| 			      unsigned long buf_len)
 | |
| {
 | |
| 	const struct kexec_file_ops * const *fops;
 | |
| 	int ret = -ENOEXEC;
 | |
| 
 | |
| 	for (fops = &kexec_file_loaders[0]; *fops && (*fops)->probe; ++fops) {
 | |
| 		ret = (*fops)->probe(buf, buf_len);
 | |
| 		if (!ret) {
 | |
| 			image->fops = *fops;
 | |
| 			return ret;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /* Architectures can provide this probe function */
 | |
| int __weak arch_kexec_kernel_image_probe(struct kimage *image, void *buf,
 | |
| 					 unsigned long buf_len)
 | |
| {
 | |
| 	return kexec_image_probe_default(image, buf, buf_len);
 | |
| }
 | |
| 
 | |
| static void *kexec_image_load_default(struct kimage *image)
 | |
| {
 | |
| 	if (!image->fops || !image->fops->load)
 | |
| 		return ERR_PTR(-ENOEXEC);
 | |
| 
 | |
| 	return image->fops->load(image, image->kernel_buf,
 | |
| 				 image->kernel_buf_len, image->initrd_buf,
 | |
| 				 image->initrd_buf_len, image->cmdline_buf,
 | |
| 				 image->cmdline_buf_len);
 | |
| }
 | |
| 
 | |
| void * __weak arch_kexec_kernel_image_load(struct kimage *image)
 | |
| {
 | |
| 	return kexec_image_load_default(image);
 | |
| }
 | |
| 
 | |
| int kexec_image_post_load_cleanup_default(struct kimage *image)
 | |
| {
 | |
| 	if (!image->fops || !image->fops->cleanup)
 | |
| 		return 0;
 | |
| 
 | |
| 	return image->fops->cleanup(image->image_loader_data);
 | |
| }
 | |
| 
 | |
| int __weak arch_kimage_file_post_load_cleanup(struct kimage *image)
 | |
| {
 | |
| 	return kexec_image_post_load_cleanup_default(image);
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_KEXEC_SIG
 | |
| static int kexec_image_verify_sig_default(struct kimage *image, void *buf,
 | |
| 					  unsigned long buf_len)
 | |
| {
 | |
| 	if (!image->fops || !image->fops->verify_sig) {
 | |
| 		pr_debug("kernel loader does not support signature verification.\n");
 | |
| 		return -EKEYREJECTED;
 | |
| 	}
 | |
| 
 | |
| 	return image->fops->verify_sig(buf, buf_len);
 | |
| }
 | |
| 
 | |
| int __weak arch_kexec_kernel_verify_sig(struct kimage *image, void *buf,
 | |
| 					unsigned long buf_len)
 | |
| {
 | |
| 	return kexec_image_verify_sig_default(image, buf, buf_len);
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * arch_kexec_apply_relocations_add - apply relocations of type RELA
 | |
|  * @pi:		Purgatory to be relocated.
 | |
|  * @section:	Section relocations applying to.
 | |
|  * @relsec:	Section containing RELAs.
 | |
|  * @symtab:	Corresponding symtab.
 | |
|  *
 | |
|  * Return: 0 on success, negative errno on error.
 | |
|  */
 | |
| int __weak
 | |
| arch_kexec_apply_relocations_add(struct purgatory_info *pi, Elf_Shdr *section,
 | |
| 				 const Elf_Shdr *relsec, const Elf_Shdr *symtab)
 | |
| {
 | |
| 	pr_err("RELA relocation unsupported.\n");
 | |
| 	return -ENOEXEC;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * arch_kexec_apply_relocations - apply relocations of type REL
 | |
|  * @pi:		Purgatory to be relocated.
 | |
|  * @section:	Section relocations applying to.
 | |
|  * @relsec:	Section containing RELs.
 | |
|  * @symtab:	Corresponding symtab.
 | |
|  *
 | |
|  * Return: 0 on success, negative errno on error.
 | |
|  */
 | |
| int __weak
 | |
| arch_kexec_apply_relocations(struct purgatory_info *pi, Elf_Shdr *section,
 | |
| 			     const Elf_Shdr *relsec, const Elf_Shdr *symtab)
 | |
| {
 | |
| 	pr_err("REL relocation unsupported.\n");
 | |
| 	return -ENOEXEC;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Free up memory used by kernel, initrd, and command line. This is temporary
 | |
|  * memory allocation which is not needed any more after these buffers have
 | |
|  * been loaded into separate segments and have been copied elsewhere.
 | |
|  */
 | |
| void kimage_file_post_load_cleanup(struct kimage *image)
 | |
| {
 | |
| 	struct purgatory_info *pi = &image->purgatory_info;
 | |
| 
 | |
| 	vfree(image->kernel_buf);
 | |
| 	image->kernel_buf = NULL;
 | |
| 
 | |
| 	vfree(image->initrd_buf);
 | |
| 	image->initrd_buf = NULL;
 | |
| 
 | |
| 	kfree(image->cmdline_buf);
 | |
| 	image->cmdline_buf = NULL;
 | |
| 
 | |
| 	vfree(pi->purgatory_buf);
 | |
| 	pi->purgatory_buf = NULL;
 | |
| 
 | |
| 	vfree(pi->sechdrs);
 | |
| 	pi->sechdrs = NULL;
 | |
| 
 | |
| #ifdef CONFIG_IMA_KEXEC
 | |
| 	vfree(image->ima_buffer);
 | |
| 	image->ima_buffer = NULL;
 | |
| #endif /* CONFIG_IMA_KEXEC */
 | |
| 
 | |
| 	/* See if architecture has anything to cleanup post load */
 | |
| 	arch_kimage_file_post_load_cleanup(image);
 | |
| 
 | |
| 	/*
 | |
| 	 * Above call should have called into bootloader to free up
 | |
| 	 * any data stored in kimage->image_loader_data. It should
 | |
| 	 * be ok now to free it up.
 | |
| 	 */
 | |
| 	kfree(image->image_loader_data);
 | |
| 	image->image_loader_data = NULL;
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_KEXEC_SIG
 | |
| static int
 | |
| kimage_validate_signature(struct kimage *image)
 | |
| {
 | |
| 	int ret;
 | |
| 
 | |
| 	ret = arch_kexec_kernel_verify_sig(image, image->kernel_buf,
 | |
| 					   image->kernel_buf_len);
 | |
| 	if (ret) {
 | |
| 
 | |
| 		if (IS_ENABLED(CONFIG_KEXEC_SIG_FORCE)) {
 | |
| 			pr_notice("Enforced kernel signature verification failed (%d).\n", ret);
 | |
| 			return ret;
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * If IMA is guaranteed to appraise a signature on the kexec
 | |
| 		 * image, permit it even if the kernel is otherwise locked
 | |
| 		 * down.
 | |
| 		 */
 | |
| 		if (!ima_appraise_signature(READING_KEXEC_IMAGE) &&
 | |
| 		    security_locked_down(LOCKDOWN_KEXEC))
 | |
| 			return -EPERM;
 | |
| 
 | |
| 		pr_debug("kernel signature verification failed (%d).\n", ret);
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * In file mode list of segments is prepared by kernel. Copy relevant
 | |
|  * data from user space, do error checking, prepare segment list
 | |
|  */
 | |
| static int
 | |
| kimage_file_prepare_segments(struct kimage *image, int kernel_fd, int initrd_fd,
 | |
| 			     const char __user *cmdline_ptr,
 | |
| 			     unsigned long cmdline_len, unsigned flags)
 | |
| {
 | |
| 	int ret;
 | |
| 	void *ldata;
 | |
| 
 | |
| 	ret = kernel_read_file_from_fd(kernel_fd, 0, &image->kernel_buf,
 | |
| 				       INT_MAX, NULL, READING_KEXEC_IMAGE);
 | |
| 	if (ret < 0)
 | |
| 		return ret;
 | |
| 	image->kernel_buf_len = ret;
 | |
| 
 | |
| 	/* Call arch image probe handlers */
 | |
| 	ret = arch_kexec_kernel_image_probe(image, image->kernel_buf,
 | |
| 					    image->kernel_buf_len);
 | |
| 	if (ret)
 | |
| 		goto out;
 | |
| 
 | |
| #ifdef CONFIG_KEXEC_SIG
 | |
| 	ret = kimage_validate_signature(image);
 | |
| 
 | |
| 	if (ret)
 | |
| 		goto out;
 | |
| #endif
 | |
| 	/* It is possible that there no initramfs is being loaded */
 | |
| 	if (!(flags & KEXEC_FILE_NO_INITRAMFS)) {
 | |
| 		ret = kernel_read_file_from_fd(initrd_fd, 0, &image->initrd_buf,
 | |
| 					       INT_MAX, NULL,
 | |
| 					       READING_KEXEC_INITRAMFS);
 | |
| 		if (ret < 0)
 | |
| 			goto out;
 | |
| 		image->initrd_buf_len = ret;
 | |
| 		ret = 0;
 | |
| 	}
 | |
| 
 | |
| 	if (cmdline_len) {
 | |
| 		image->cmdline_buf = memdup_user(cmdline_ptr, cmdline_len);
 | |
| 		if (IS_ERR(image->cmdline_buf)) {
 | |
| 			ret = PTR_ERR(image->cmdline_buf);
 | |
| 			image->cmdline_buf = NULL;
 | |
| 			goto out;
 | |
| 		}
 | |
| 
 | |
| 		image->cmdline_buf_len = cmdline_len;
 | |
| 
 | |
| 		/* command line should be a string with last byte null */
 | |
| 		if (image->cmdline_buf[cmdline_len - 1] != '\0') {
 | |
| 			ret = -EINVAL;
 | |
| 			goto out;
 | |
| 		}
 | |
| 
 | |
| 		ima_kexec_cmdline(kernel_fd, image->cmdline_buf,
 | |
| 				  image->cmdline_buf_len - 1);
 | |
| 	}
 | |
| 
 | |
| 	/* IMA needs to pass the measurement list to the next kernel. */
 | |
| 	ima_add_kexec_buffer(image);
 | |
| 
 | |
| 	/* Call arch image load handlers */
 | |
| 	ldata = arch_kexec_kernel_image_load(image);
 | |
| 
 | |
| 	if (IS_ERR(ldata)) {
 | |
| 		ret = PTR_ERR(ldata);
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	image->image_loader_data = ldata;
 | |
| out:
 | |
| 	/* In case of error, free up all allocated memory in this function */
 | |
| 	if (ret)
 | |
| 		kimage_file_post_load_cleanup(image);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int
 | |
| kimage_file_alloc_init(struct kimage **rimage, int kernel_fd,
 | |
| 		       int initrd_fd, const char __user *cmdline_ptr,
 | |
| 		       unsigned long cmdline_len, unsigned long flags)
 | |
| {
 | |
| 	int ret;
 | |
| 	struct kimage *image;
 | |
| 	bool kexec_on_panic = flags & KEXEC_FILE_ON_CRASH;
 | |
| 
 | |
| 	image = do_kimage_alloc_init();
 | |
| 	if (!image)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	image->file_mode = 1;
 | |
| 
 | |
| 	if (kexec_on_panic) {
 | |
| 		/* Enable special crash kernel control page alloc policy. */
 | |
| 		image->control_page = crashk_res.start;
 | |
| 		image->type = KEXEC_TYPE_CRASH;
 | |
| 	}
 | |
| 
 | |
| 	ret = kimage_file_prepare_segments(image, kernel_fd, initrd_fd,
 | |
| 					   cmdline_ptr, cmdline_len, flags);
 | |
| 	if (ret)
 | |
| 		goto out_free_image;
 | |
| 
 | |
| 	ret = sanity_check_segment_list(image);
 | |
| 	if (ret)
 | |
| 		goto out_free_post_load_bufs;
 | |
| 
 | |
| 	ret = -ENOMEM;
 | |
| 	image->control_code_page = kimage_alloc_control_pages(image,
 | |
| 					   get_order(KEXEC_CONTROL_PAGE_SIZE));
 | |
| 	if (!image->control_code_page) {
 | |
| 		pr_err("Could not allocate control_code_buffer\n");
 | |
| 		goto out_free_post_load_bufs;
 | |
| 	}
 | |
| 
 | |
| 	if (!kexec_on_panic) {
 | |
| 		image->swap_page = kimage_alloc_control_pages(image, 0);
 | |
| 		if (!image->swap_page) {
 | |
| 			pr_err("Could not allocate swap buffer\n");
 | |
| 			goto out_free_control_pages;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	*rimage = image;
 | |
| 	return 0;
 | |
| out_free_control_pages:
 | |
| 	kimage_free_page_list(&image->control_pages);
 | |
| out_free_post_load_bufs:
 | |
| 	kimage_file_post_load_cleanup(image);
 | |
| out_free_image:
 | |
| 	kfree(image);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| SYSCALL_DEFINE5(kexec_file_load, int, kernel_fd, int, initrd_fd,
 | |
| 		unsigned long, cmdline_len, const char __user *, cmdline_ptr,
 | |
| 		unsigned long, flags)
 | |
| {
 | |
| 	int ret = 0, i;
 | |
| 	struct kimage **dest_image, *image;
 | |
| 
 | |
| 	/* We only trust the superuser with rebooting the system. */
 | |
| 	if (!capable(CAP_SYS_BOOT) || kexec_load_disabled)
 | |
| 		return -EPERM;
 | |
| 
 | |
| 	/* Make sure we have a legal set of flags */
 | |
| 	if (flags != (flags & KEXEC_FILE_FLAGS))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	image = NULL;
 | |
| 
 | |
| 	if (!mutex_trylock(&kexec_mutex))
 | |
| 		return -EBUSY;
 | |
| 
 | |
| 	dest_image = &kexec_image;
 | |
| 	if (flags & KEXEC_FILE_ON_CRASH) {
 | |
| 		dest_image = &kexec_crash_image;
 | |
| 		if (kexec_crash_image)
 | |
| 			arch_kexec_unprotect_crashkres();
 | |
| 	}
 | |
| 
 | |
| 	if (flags & KEXEC_FILE_UNLOAD)
 | |
| 		goto exchange;
 | |
| 
 | |
| 	/*
 | |
| 	 * In case of crash, new kernel gets loaded in reserved region. It is
 | |
| 	 * same memory where old crash kernel might be loaded. Free any
 | |
| 	 * current crash dump kernel before we corrupt it.
 | |
| 	 */
 | |
| 	if (flags & KEXEC_FILE_ON_CRASH)
 | |
| 		kimage_free(xchg(&kexec_crash_image, NULL));
 | |
| 
 | |
| 	ret = kimage_file_alloc_init(&image, kernel_fd, initrd_fd, cmdline_ptr,
 | |
| 				     cmdline_len, flags);
 | |
| 	if (ret)
 | |
| 		goto out;
 | |
| 
 | |
| 	ret = machine_kexec_prepare(image);
 | |
| 	if (ret)
 | |
| 		goto out;
 | |
| 
 | |
| 	/*
 | |
| 	 * Some architecture(like S390) may touch the crash memory before
 | |
| 	 * machine_kexec_prepare(), we must copy vmcoreinfo data after it.
 | |
| 	 */
 | |
| 	ret = kimage_crash_copy_vmcoreinfo(image);
 | |
| 	if (ret)
 | |
| 		goto out;
 | |
| 
 | |
| 	ret = kexec_calculate_store_digests(image);
 | |
| 	if (ret)
 | |
| 		goto out;
 | |
| 
 | |
| 	for (i = 0; i < image->nr_segments; i++) {
 | |
| 		struct kexec_segment *ksegment;
 | |
| 
 | |
| 		ksegment = &image->segment[i];
 | |
| 		pr_debug("Loading segment %d: buf=0x%p bufsz=0x%zx mem=0x%lx memsz=0x%zx\n",
 | |
| 			 i, ksegment->buf, ksegment->bufsz, ksegment->mem,
 | |
| 			 ksegment->memsz);
 | |
| 
 | |
| 		ret = kimage_load_segment(image, &image->segment[i]);
 | |
| 		if (ret)
 | |
| 			goto out;
 | |
| 	}
 | |
| 
 | |
| 	kimage_terminate(image);
 | |
| 
 | |
| 	ret = machine_kexec_post_load(image);
 | |
| 	if (ret)
 | |
| 		goto out;
 | |
| 
 | |
| 	/*
 | |
| 	 * Free up any temporary buffers allocated which are not needed
 | |
| 	 * after image has been loaded
 | |
| 	 */
 | |
| 	kimage_file_post_load_cleanup(image);
 | |
| exchange:
 | |
| 	image = xchg(dest_image, image);
 | |
| out:
 | |
| 	if ((flags & KEXEC_FILE_ON_CRASH) && kexec_crash_image)
 | |
| 		arch_kexec_protect_crashkres();
 | |
| 
 | |
| 	mutex_unlock(&kexec_mutex);
 | |
| 	kimage_free(image);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int locate_mem_hole_top_down(unsigned long start, unsigned long end,
 | |
| 				    struct kexec_buf *kbuf)
 | |
| {
 | |
| 	struct kimage *image = kbuf->image;
 | |
| 	unsigned long temp_start, temp_end;
 | |
| 
 | |
| 	temp_end = min(end, kbuf->buf_max);
 | |
| 	temp_start = temp_end - kbuf->memsz;
 | |
| 
 | |
| 	do {
 | |
| 		/* align down start */
 | |
| 		temp_start = temp_start & (~(kbuf->buf_align - 1));
 | |
| 
 | |
| 		if (temp_start < start || temp_start < kbuf->buf_min)
 | |
| 			return 0;
 | |
| 
 | |
| 		temp_end = temp_start + kbuf->memsz - 1;
 | |
| 
 | |
| 		/*
 | |
| 		 * Make sure this does not conflict with any of existing
 | |
| 		 * segments
 | |
| 		 */
 | |
| 		if (kimage_is_destination_range(image, temp_start, temp_end)) {
 | |
| 			temp_start = temp_start - PAGE_SIZE;
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		/* We found a suitable memory range */
 | |
| 		break;
 | |
| 	} while (1);
 | |
| 
 | |
| 	/* If we are here, we found a suitable memory range */
 | |
| 	kbuf->mem = temp_start;
 | |
| 
 | |
| 	/* Success, stop navigating through remaining System RAM ranges */
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| static int locate_mem_hole_bottom_up(unsigned long start, unsigned long end,
 | |
| 				     struct kexec_buf *kbuf)
 | |
| {
 | |
| 	struct kimage *image = kbuf->image;
 | |
| 	unsigned long temp_start, temp_end;
 | |
| 
 | |
| 	temp_start = max(start, kbuf->buf_min);
 | |
| 
 | |
| 	do {
 | |
| 		temp_start = ALIGN(temp_start, kbuf->buf_align);
 | |
| 		temp_end = temp_start + kbuf->memsz - 1;
 | |
| 
 | |
| 		if (temp_end > end || temp_end > kbuf->buf_max)
 | |
| 			return 0;
 | |
| 		/*
 | |
| 		 * Make sure this does not conflict with any of existing
 | |
| 		 * segments
 | |
| 		 */
 | |
| 		if (kimage_is_destination_range(image, temp_start, temp_end)) {
 | |
| 			temp_start = temp_start + PAGE_SIZE;
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		/* We found a suitable memory range */
 | |
| 		break;
 | |
| 	} while (1);
 | |
| 
 | |
| 	/* If we are here, we found a suitable memory range */
 | |
| 	kbuf->mem = temp_start;
 | |
| 
 | |
| 	/* Success, stop navigating through remaining System RAM ranges */
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| static int locate_mem_hole_callback(struct resource *res, void *arg)
 | |
| {
 | |
| 	struct kexec_buf *kbuf = (struct kexec_buf *)arg;
 | |
| 	u64 start = res->start, end = res->end;
 | |
| 	unsigned long sz = end - start + 1;
 | |
| 
 | |
| 	/* Returning 0 will take to next memory range */
 | |
| 
 | |
| 	/* Don't use memory that will be detected and handled by a driver. */
 | |
| 	if (res->flags & IORESOURCE_SYSRAM_DRIVER_MANAGED)
 | |
| 		return 0;
 | |
| 
 | |
| 	if (sz < kbuf->memsz)
 | |
| 		return 0;
 | |
| 
 | |
| 	if (end < kbuf->buf_min || start > kbuf->buf_max)
 | |
| 		return 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * Allocate memory top down with-in ram range. Otherwise bottom up
 | |
| 	 * allocation.
 | |
| 	 */
 | |
| 	if (kbuf->top_down)
 | |
| 		return locate_mem_hole_top_down(start, end, kbuf);
 | |
| 	return locate_mem_hole_bottom_up(start, end, kbuf);
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_ARCH_KEEP_MEMBLOCK
 | |
| static int kexec_walk_memblock(struct kexec_buf *kbuf,
 | |
| 			       int (*func)(struct resource *, void *))
 | |
| {
 | |
| 	int ret = 0;
 | |
| 	u64 i;
 | |
| 	phys_addr_t mstart, mend;
 | |
| 	struct resource res = { };
 | |
| 
 | |
| 	if (kbuf->image->type == KEXEC_TYPE_CRASH)
 | |
| 		return func(&crashk_res, kbuf);
 | |
| 
 | |
| 	if (kbuf->top_down) {
 | |
| 		for_each_free_mem_range_reverse(i, NUMA_NO_NODE, MEMBLOCK_NONE,
 | |
| 						&mstart, &mend, NULL) {
 | |
| 			/*
 | |
| 			 * In memblock, end points to the first byte after the
 | |
| 			 * range while in kexec, end points to the last byte
 | |
| 			 * in the range.
 | |
| 			 */
 | |
| 			res.start = mstart;
 | |
| 			res.end = mend - 1;
 | |
| 			ret = func(&res, kbuf);
 | |
| 			if (ret)
 | |
| 				break;
 | |
| 		}
 | |
| 	} else {
 | |
| 		for_each_free_mem_range(i, NUMA_NO_NODE, MEMBLOCK_NONE,
 | |
| 					&mstart, &mend, NULL) {
 | |
| 			/*
 | |
| 			 * In memblock, end points to the first byte after the
 | |
| 			 * range while in kexec, end points to the last byte
 | |
| 			 * in the range.
 | |
| 			 */
 | |
| 			res.start = mstart;
 | |
| 			res.end = mend - 1;
 | |
| 			ret = func(&res, kbuf);
 | |
| 			if (ret)
 | |
| 				break;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| #else
 | |
| static int kexec_walk_memblock(struct kexec_buf *kbuf,
 | |
| 			       int (*func)(struct resource *, void *))
 | |
| {
 | |
| 	return 0;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /**
 | |
|  * kexec_walk_resources - call func(data) on free memory regions
 | |
|  * @kbuf:	Context info for the search. Also passed to @func.
 | |
|  * @func:	Function to call for each memory region.
 | |
|  *
 | |
|  * Return: The memory walk will stop when func returns a non-zero value
 | |
|  * and that value will be returned. If all free regions are visited without
 | |
|  * func returning non-zero, then zero will be returned.
 | |
|  */
 | |
| static int kexec_walk_resources(struct kexec_buf *kbuf,
 | |
| 				int (*func)(struct resource *, void *))
 | |
| {
 | |
| 	if (kbuf->image->type == KEXEC_TYPE_CRASH)
 | |
| 		return walk_iomem_res_desc(crashk_res.desc,
 | |
| 					   IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY,
 | |
| 					   crashk_res.start, crashk_res.end,
 | |
| 					   kbuf, func);
 | |
| 	else
 | |
| 		return walk_system_ram_res(0, ULONG_MAX, kbuf, func);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * kexec_locate_mem_hole - find free memory for the purgatory or the next kernel
 | |
|  * @kbuf:	Parameters for the memory search.
 | |
|  *
 | |
|  * On success, kbuf->mem will have the start address of the memory region found.
 | |
|  *
 | |
|  * Return: 0 on success, negative errno on error.
 | |
|  */
 | |
| int kexec_locate_mem_hole(struct kexec_buf *kbuf)
 | |
| {
 | |
| 	int ret;
 | |
| 
 | |
| 	/* Arch knows where to place */
 | |
| 	if (kbuf->mem != KEXEC_BUF_MEM_UNKNOWN)
 | |
| 		return 0;
 | |
| 
 | |
| 	if (!IS_ENABLED(CONFIG_ARCH_KEEP_MEMBLOCK))
 | |
| 		ret = kexec_walk_resources(kbuf, locate_mem_hole_callback);
 | |
| 	else
 | |
| 		ret = kexec_walk_memblock(kbuf, locate_mem_hole_callback);
 | |
| 
 | |
| 	return ret == 1 ? 0 : -EADDRNOTAVAIL;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * arch_kexec_locate_mem_hole - Find free memory to place the segments.
 | |
|  * @kbuf:                       Parameters for the memory search.
 | |
|  *
 | |
|  * On success, kbuf->mem will have the start address of the memory region found.
 | |
|  *
 | |
|  * Return: 0 on success, negative errno on error.
 | |
|  */
 | |
| int __weak arch_kexec_locate_mem_hole(struct kexec_buf *kbuf)
 | |
| {
 | |
| 	return kexec_locate_mem_hole(kbuf);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * kexec_add_buffer - place a buffer in a kexec segment
 | |
|  * @kbuf:	Buffer contents and memory parameters.
 | |
|  *
 | |
|  * This function assumes that kexec_mutex is held.
 | |
|  * On successful return, @kbuf->mem will have the physical address of
 | |
|  * the buffer in memory.
 | |
|  *
 | |
|  * Return: 0 on success, negative errno on error.
 | |
|  */
 | |
| int kexec_add_buffer(struct kexec_buf *kbuf)
 | |
| {
 | |
| 	struct kexec_segment *ksegment;
 | |
| 	int ret;
 | |
| 
 | |
| 	/* Currently adding segment this way is allowed only in file mode */
 | |
| 	if (!kbuf->image->file_mode)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	if (kbuf->image->nr_segments >= KEXEC_SEGMENT_MAX)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	/*
 | |
| 	 * Make sure we are not trying to add buffer after allocating
 | |
| 	 * control pages. All segments need to be placed first before
 | |
| 	 * any control pages are allocated. As control page allocation
 | |
| 	 * logic goes through list of segments to make sure there are
 | |
| 	 * no destination overlaps.
 | |
| 	 */
 | |
| 	if (!list_empty(&kbuf->image->control_pages)) {
 | |
| 		WARN_ON(1);
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	/* Ensure minimum alignment needed for segments. */
 | |
| 	kbuf->memsz = ALIGN(kbuf->memsz, PAGE_SIZE);
 | |
| 	kbuf->buf_align = max(kbuf->buf_align, PAGE_SIZE);
 | |
| 
 | |
| 	/* Walk the RAM ranges and allocate a suitable range for the buffer */
 | |
| 	ret = arch_kexec_locate_mem_hole(kbuf);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	/* Found a suitable memory range */
 | |
| 	ksegment = &kbuf->image->segment[kbuf->image->nr_segments];
 | |
| 	ksegment->kbuf = kbuf->buffer;
 | |
| 	ksegment->bufsz = kbuf->bufsz;
 | |
| 	ksegment->mem = kbuf->mem;
 | |
| 	ksegment->memsz = kbuf->memsz;
 | |
| 	kbuf->image->nr_segments++;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /* Calculate and store the digest of segments */
 | |
| static int kexec_calculate_store_digests(struct kimage *image)
 | |
| {
 | |
| 	struct crypto_shash *tfm;
 | |
| 	struct shash_desc *desc;
 | |
| 	int ret = 0, i, j, zero_buf_sz, sha_region_sz;
 | |
| 	size_t desc_size, nullsz;
 | |
| 	char *digest;
 | |
| 	void *zero_buf;
 | |
| 	struct kexec_sha_region *sha_regions;
 | |
| 	struct purgatory_info *pi = &image->purgatory_info;
 | |
| 
 | |
| 	if (!IS_ENABLED(CONFIG_ARCH_HAS_KEXEC_PURGATORY))
 | |
| 		return 0;
 | |
| 
 | |
| 	zero_buf = __va(page_to_pfn(ZERO_PAGE(0)) << PAGE_SHIFT);
 | |
| 	zero_buf_sz = PAGE_SIZE;
 | |
| 
 | |
| 	tfm = crypto_alloc_shash("sha256", 0, 0);
 | |
| 	if (IS_ERR(tfm)) {
 | |
| 		ret = PTR_ERR(tfm);
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	desc_size = crypto_shash_descsize(tfm) + sizeof(*desc);
 | |
| 	desc = kzalloc(desc_size, GFP_KERNEL);
 | |
| 	if (!desc) {
 | |
| 		ret = -ENOMEM;
 | |
| 		goto out_free_tfm;
 | |
| 	}
 | |
| 
 | |
| 	sha_region_sz = KEXEC_SEGMENT_MAX * sizeof(struct kexec_sha_region);
 | |
| 	sha_regions = vzalloc(sha_region_sz);
 | |
| 	if (!sha_regions)
 | |
| 		goto out_free_desc;
 | |
| 
 | |
| 	desc->tfm   = tfm;
 | |
| 
 | |
| 	ret = crypto_shash_init(desc);
 | |
| 	if (ret < 0)
 | |
| 		goto out_free_sha_regions;
 | |
| 
 | |
| 	digest = kzalloc(SHA256_DIGEST_SIZE, GFP_KERNEL);
 | |
| 	if (!digest) {
 | |
| 		ret = -ENOMEM;
 | |
| 		goto out_free_sha_regions;
 | |
| 	}
 | |
| 
 | |
| 	for (j = i = 0; i < image->nr_segments; i++) {
 | |
| 		struct kexec_segment *ksegment;
 | |
| 
 | |
| 		ksegment = &image->segment[i];
 | |
| 		/*
 | |
| 		 * Skip purgatory as it will be modified once we put digest
 | |
| 		 * info in purgatory.
 | |
| 		 */
 | |
| 		if (ksegment->kbuf == pi->purgatory_buf)
 | |
| 			continue;
 | |
| 
 | |
| 		ret = crypto_shash_update(desc, ksegment->kbuf,
 | |
| 					  ksegment->bufsz);
 | |
| 		if (ret)
 | |
| 			break;
 | |
| 
 | |
| 		/*
 | |
| 		 * Assume rest of the buffer is filled with zero and
 | |
| 		 * update digest accordingly.
 | |
| 		 */
 | |
| 		nullsz = ksegment->memsz - ksegment->bufsz;
 | |
| 		while (nullsz) {
 | |
| 			unsigned long bytes = nullsz;
 | |
| 
 | |
| 			if (bytes > zero_buf_sz)
 | |
| 				bytes = zero_buf_sz;
 | |
| 			ret = crypto_shash_update(desc, zero_buf, bytes);
 | |
| 			if (ret)
 | |
| 				break;
 | |
| 			nullsz -= bytes;
 | |
| 		}
 | |
| 
 | |
| 		if (ret)
 | |
| 			break;
 | |
| 
 | |
| 		sha_regions[j].start = ksegment->mem;
 | |
| 		sha_regions[j].len = ksegment->memsz;
 | |
| 		j++;
 | |
| 	}
 | |
| 
 | |
| 	if (!ret) {
 | |
| 		ret = crypto_shash_final(desc, digest);
 | |
| 		if (ret)
 | |
| 			goto out_free_digest;
 | |
| 		ret = kexec_purgatory_get_set_symbol(image, "purgatory_sha_regions",
 | |
| 						     sha_regions, sha_region_sz, 0);
 | |
| 		if (ret)
 | |
| 			goto out_free_digest;
 | |
| 
 | |
| 		ret = kexec_purgatory_get_set_symbol(image, "purgatory_sha256_digest",
 | |
| 						     digest, SHA256_DIGEST_SIZE, 0);
 | |
| 		if (ret)
 | |
| 			goto out_free_digest;
 | |
| 	}
 | |
| 
 | |
| out_free_digest:
 | |
| 	kfree(digest);
 | |
| out_free_sha_regions:
 | |
| 	vfree(sha_regions);
 | |
| out_free_desc:
 | |
| 	kfree(desc);
 | |
| out_free_tfm:
 | |
| 	kfree(tfm);
 | |
| out:
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_ARCH_HAS_KEXEC_PURGATORY
 | |
| /*
 | |
|  * kexec_purgatory_setup_kbuf - prepare buffer to load purgatory.
 | |
|  * @pi:		Purgatory to be loaded.
 | |
|  * @kbuf:	Buffer to setup.
 | |
|  *
 | |
|  * Allocates the memory needed for the buffer. Caller is responsible to free
 | |
|  * the memory after use.
 | |
|  *
 | |
|  * Return: 0 on success, negative errno on error.
 | |
|  */
 | |
| static int kexec_purgatory_setup_kbuf(struct purgatory_info *pi,
 | |
| 				      struct kexec_buf *kbuf)
 | |
| {
 | |
| 	const Elf_Shdr *sechdrs;
 | |
| 	unsigned long bss_align;
 | |
| 	unsigned long bss_sz;
 | |
| 	unsigned long align;
 | |
| 	int i, ret;
 | |
| 
 | |
| 	sechdrs = (void *)pi->ehdr + pi->ehdr->e_shoff;
 | |
| 	kbuf->buf_align = bss_align = 1;
 | |
| 	kbuf->bufsz = bss_sz = 0;
 | |
| 
 | |
| 	for (i = 0; i < pi->ehdr->e_shnum; i++) {
 | |
| 		if (!(sechdrs[i].sh_flags & SHF_ALLOC))
 | |
| 			continue;
 | |
| 
 | |
| 		align = sechdrs[i].sh_addralign;
 | |
| 		if (sechdrs[i].sh_type != SHT_NOBITS) {
 | |
| 			if (kbuf->buf_align < align)
 | |
| 				kbuf->buf_align = align;
 | |
| 			kbuf->bufsz = ALIGN(kbuf->bufsz, align);
 | |
| 			kbuf->bufsz += sechdrs[i].sh_size;
 | |
| 		} else {
 | |
| 			if (bss_align < align)
 | |
| 				bss_align = align;
 | |
| 			bss_sz = ALIGN(bss_sz, align);
 | |
| 			bss_sz += sechdrs[i].sh_size;
 | |
| 		}
 | |
| 	}
 | |
| 	kbuf->bufsz = ALIGN(kbuf->bufsz, bss_align);
 | |
| 	kbuf->memsz = kbuf->bufsz + bss_sz;
 | |
| 	if (kbuf->buf_align < bss_align)
 | |
| 		kbuf->buf_align = bss_align;
 | |
| 
 | |
| 	kbuf->buffer = vzalloc(kbuf->bufsz);
 | |
| 	if (!kbuf->buffer)
 | |
| 		return -ENOMEM;
 | |
| 	pi->purgatory_buf = kbuf->buffer;
 | |
| 
 | |
| 	ret = kexec_add_buffer(kbuf);
 | |
| 	if (ret)
 | |
| 		goto out;
 | |
| 
 | |
| 	return 0;
 | |
| out:
 | |
| 	vfree(pi->purgatory_buf);
 | |
| 	pi->purgatory_buf = NULL;
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * kexec_purgatory_setup_sechdrs - prepares the pi->sechdrs buffer.
 | |
|  * @pi:		Purgatory to be loaded.
 | |
|  * @kbuf:	Buffer prepared to store purgatory.
 | |
|  *
 | |
|  * Allocates the memory needed for the buffer. Caller is responsible to free
 | |
|  * the memory after use.
 | |
|  *
 | |
|  * Return: 0 on success, negative errno on error.
 | |
|  */
 | |
| static int kexec_purgatory_setup_sechdrs(struct purgatory_info *pi,
 | |
| 					 struct kexec_buf *kbuf)
 | |
| {
 | |
| 	unsigned long bss_addr;
 | |
| 	unsigned long offset;
 | |
| 	Elf_Shdr *sechdrs;
 | |
| 	int i;
 | |
| 
 | |
| 	/*
 | |
| 	 * The section headers in kexec_purgatory are read-only. In order to
 | |
| 	 * have them modifiable make a temporary copy.
 | |
| 	 */
 | |
| 	sechdrs = vzalloc(array_size(sizeof(Elf_Shdr), pi->ehdr->e_shnum));
 | |
| 	if (!sechdrs)
 | |
| 		return -ENOMEM;
 | |
| 	memcpy(sechdrs, (void *)pi->ehdr + pi->ehdr->e_shoff,
 | |
| 	       pi->ehdr->e_shnum * sizeof(Elf_Shdr));
 | |
| 	pi->sechdrs = sechdrs;
 | |
| 
 | |
| 	offset = 0;
 | |
| 	bss_addr = kbuf->mem + kbuf->bufsz;
 | |
| 	kbuf->image->start = pi->ehdr->e_entry;
 | |
| 
 | |
| 	for (i = 0; i < pi->ehdr->e_shnum; i++) {
 | |
| 		unsigned long align;
 | |
| 		void *src, *dst;
 | |
| 
 | |
| 		if (!(sechdrs[i].sh_flags & SHF_ALLOC))
 | |
| 			continue;
 | |
| 
 | |
| 		align = sechdrs[i].sh_addralign;
 | |
| 		if (sechdrs[i].sh_type == SHT_NOBITS) {
 | |
| 			bss_addr = ALIGN(bss_addr, align);
 | |
| 			sechdrs[i].sh_addr = bss_addr;
 | |
| 			bss_addr += sechdrs[i].sh_size;
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		offset = ALIGN(offset, align);
 | |
| 		if (sechdrs[i].sh_flags & SHF_EXECINSTR &&
 | |
| 		    pi->ehdr->e_entry >= sechdrs[i].sh_addr &&
 | |
| 		    pi->ehdr->e_entry < (sechdrs[i].sh_addr
 | |
| 					 + sechdrs[i].sh_size)) {
 | |
| 			kbuf->image->start -= sechdrs[i].sh_addr;
 | |
| 			kbuf->image->start += kbuf->mem + offset;
 | |
| 		}
 | |
| 
 | |
| 		src = (void *)pi->ehdr + sechdrs[i].sh_offset;
 | |
| 		dst = pi->purgatory_buf + offset;
 | |
| 		memcpy(dst, src, sechdrs[i].sh_size);
 | |
| 
 | |
| 		sechdrs[i].sh_addr = kbuf->mem + offset;
 | |
| 		sechdrs[i].sh_offset = offset;
 | |
| 		offset += sechdrs[i].sh_size;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int kexec_apply_relocations(struct kimage *image)
 | |
| {
 | |
| 	int i, ret;
 | |
| 	struct purgatory_info *pi = &image->purgatory_info;
 | |
| 	const Elf_Shdr *sechdrs;
 | |
| 
 | |
| 	sechdrs = (void *)pi->ehdr + pi->ehdr->e_shoff;
 | |
| 
 | |
| 	for (i = 0; i < pi->ehdr->e_shnum; i++) {
 | |
| 		const Elf_Shdr *relsec;
 | |
| 		const Elf_Shdr *symtab;
 | |
| 		Elf_Shdr *section;
 | |
| 
 | |
| 		relsec = sechdrs + i;
 | |
| 
 | |
| 		if (relsec->sh_type != SHT_RELA &&
 | |
| 		    relsec->sh_type != SHT_REL)
 | |
| 			continue;
 | |
| 
 | |
| 		/*
 | |
| 		 * For section of type SHT_RELA/SHT_REL,
 | |
| 		 * ->sh_link contains section header index of associated
 | |
| 		 * symbol table. And ->sh_info contains section header
 | |
| 		 * index of section to which relocations apply.
 | |
| 		 */
 | |
| 		if (relsec->sh_info >= pi->ehdr->e_shnum ||
 | |
| 		    relsec->sh_link >= pi->ehdr->e_shnum)
 | |
| 			return -ENOEXEC;
 | |
| 
 | |
| 		section = pi->sechdrs + relsec->sh_info;
 | |
| 		symtab = sechdrs + relsec->sh_link;
 | |
| 
 | |
| 		if (!(section->sh_flags & SHF_ALLOC))
 | |
| 			continue;
 | |
| 
 | |
| 		/*
 | |
| 		 * symtab->sh_link contain section header index of associated
 | |
| 		 * string table.
 | |
| 		 */
 | |
| 		if (symtab->sh_link >= pi->ehdr->e_shnum)
 | |
| 			/* Invalid section number? */
 | |
| 			continue;
 | |
| 
 | |
| 		/*
 | |
| 		 * Respective architecture needs to provide support for applying
 | |
| 		 * relocations of type SHT_RELA/SHT_REL.
 | |
| 		 */
 | |
| 		if (relsec->sh_type == SHT_RELA)
 | |
| 			ret = arch_kexec_apply_relocations_add(pi, section,
 | |
| 							       relsec, symtab);
 | |
| 		else if (relsec->sh_type == SHT_REL)
 | |
| 			ret = arch_kexec_apply_relocations(pi, section,
 | |
| 							   relsec, symtab);
 | |
| 		if (ret)
 | |
| 			return ret;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * kexec_load_purgatory - Load and relocate the purgatory object.
 | |
|  * @image:	Image to add the purgatory to.
 | |
|  * @kbuf:	Memory parameters to use.
 | |
|  *
 | |
|  * Allocates the memory needed for image->purgatory_info.sechdrs and
 | |
|  * image->purgatory_info.purgatory_buf/kbuf->buffer. Caller is responsible
 | |
|  * to free the memory after use.
 | |
|  *
 | |
|  * Return: 0 on success, negative errno on error.
 | |
|  */
 | |
| int kexec_load_purgatory(struct kimage *image, struct kexec_buf *kbuf)
 | |
| {
 | |
| 	struct purgatory_info *pi = &image->purgatory_info;
 | |
| 	int ret;
 | |
| 
 | |
| 	if (kexec_purgatory_size <= 0)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	pi->ehdr = (const Elf_Ehdr *)kexec_purgatory;
 | |
| 
 | |
| 	ret = kexec_purgatory_setup_kbuf(pi, kbuf);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	ret = kexec_purgatory_setup_sechdrs(pi, kbuf);
 | |
| 	if (ret)
 | |
| 		goto out_free_kbuf;
 | |
| 
 | |
| 	ret = kexec_apply_relocations(image);
 | |
| 	if (ret)
 | |
| 		goto out;
 | |
| 
 | |
| 	return 0;
 | |
| out:
 | |
| 	vfree(pi->sechdrs);
 | |
| 	pi->sechdrs = NULL;
 | |
| out_free_kbuf:
 | |
| 	vfree(pi->purgatory_buf);
 | |
| 	pi->purgatory_buf = NULL;
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * kexec_purgatory_find_symbol - find a symbol in the purgatory
 | |
|  * @pi:		Purgatory to search in.
 | |
|  * @name:	Name of the symbol.
 | |
|  *
 | |
|  * Return: pointer to symbol in read-only symtab on success, NULL on error.
 | |
|  */
 | |
| static const Elf_Sym *kexec_purgatory_find_symbol(struct purgatory_info *pi,
 | |
| 						  const char *name)
 | |
| {
 | |
| 	const Elf_Shdr *sechdrs;
 | |
| 	const Elf_Ehdr *ehdr;
 | |
| 	const Elf_Sym *syms;
 | |
| 	const char *strtab;
 | |
| 	int i, k;
 | |
| 
 | |
| 	if (!pi->ehdr)
 | |
| 		return NULL;
 | |
| 
 | |
| 	ehdr = pi->ehdr;
 | |
| 	sechdrs = (void *)ehdr + ehdr->e_shoff;
 | |
| 
 | |
| 	for (i = 0; i < ehdr->e_shnum; i++) {
 | |
| 		if (sechdrs[i].sh_type != SHT_SYMTAB)
 | |
| 			continue;
 | |
| 
 | |
| 		if (sechdrs[i].sh_link >= ehdr->e_shnum)
 | |
| 			/* Invalid strtab section number */
 | |
| 			continue;
 | |
| 		strtab = (void *)ehdr + sechdrs[sechdrs[i].sh_link].sh_offset;
 | |
| 		syms = (void *)ehdr + sechdrs[i].sh_offset;
 | |
| 
 | |
| 		/* Go through symbols for a match */
 | |
| 		for (k = 0; k < sechdrs[i].sh_size/sizeof(Elf_Sym); k++) {
 | |
| 			if (ELF_ST_BIND(syms[k].st_info) != STB_GLOBAL)
 | |
| 				continue;
 | |
| 
 | |
| 			if (strcmp(strtab + syms[k].st_name, name) != 0)
 | |
| 				continue;
 | |
| 
 | |
| 			if (syms[k].st_shndx == SHN_UNDEF ||
 | |
| 			    syms[k].st_shndx >= ehdr->e_shnum) {
 | |
| 				pr_debug("Symbol: %s has bad section index %d.\n",
 | |
| 						name, syms[k].st_shndx);
 | |
| 				return NULL;
 | |
| 			}
 | |
| 
 | |
| 			/* Found the symbol we are looking for */
 | |
| 			return &syms[k];
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| void *kexec_purgatory_get_symbol_addr(struct kimage *image, const char *name)
 | |
| {
 | |
| 	struct purgatory_info *pi = &image->purgatory_info;
 | |
| 	const Elf_Sym *sym;
 | |
| 	Elf_Shdr *sechdr;
 | |
| 
 | |
| 	sym = kexec_purgatory_find_symbol(pi, name);
 | |
| 	if (!sym)
 | |
| 		return ERR_PTR(-EINVAL);
 | |
| 
 | |
| 	sechdr = &pi->sechdrs[sym->st_shndx];
 | |
| 
 | |
| 	/*
 | |
| 	 * Returns the address where symbol will finally be loaded after
 | |
| 	 * kexec_load_segment()
 | |
| 	 */
 | |
| 	return (void *)(sechdr->sh_addr + sym->st_value);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Get or set value of a symbol. If "get_value" is true, symbol value is
 | |
|  * returned in buf otherwise symbol value is set based on value in buf.
 | |
|  */
 | |
| int kexec_purgatory_get_set_symbol(struct kimage *image, const char *name,
 | |
| 				   void *buf, unsigned int size, bool get_value)
 | |
| {
 | |
| 	struct purgatory_info *pi = &image->purgatory_info;
 | |
| 	const Elf_Sym *sym;
 | |
| 	Elf_Shdr *sec;
 | |
| 	char *sym_buf;
 | |
| 
 | |
| 	sym = kexec_purgatory_find_symbol(pi, name);
 | |
| 	if (!sym)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	if (sym->st_size != size) {
 | |
| 		pr_err("symbol %s size mismatch: expected %lu actual %u\n",
 | |
| 		       name, (unsigned long)sym->st_size, size);
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	sec = pi->sechdrs + sym->st_shndx;
 | |
| 
 | |
| 	if (sec->sh_type == SHT_NOBITS) {
 | |
| 		pr_err("symbol %s is in a bss section. Cannot %s\n", name,
 | |
| 		       get_value ? "get" : "set");
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	sym_buf = (char *)pi->purgatory_buf + sec->sh_offset + sym->st_value;
 | |
| 
 | |
| 	if (get_value)
 | |
| 		memcpy((void *)buf, sym_buf, size);
 | |
| 	else
 | |
| 		memcpy((void *)sym_buf, buf, size);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| #endif /* CONFIG_ARCH_HAS_KEXEC_PURGATORY */
 | |
| 
 | |
| int crash_exclude_mem_range(struct crash_mem *mem,
 | |
| 			    unsigned long long mstart, unsigned long long mend)
 | |
| {
 | |
| 	int i, j;
 | |
| 	unsigned long long start, end, p_start, p_end;
 | |
| 	struct crash_mem_range temp_range = {0, 0};
 | |
| 
 | |
| 	for (i = 0; i < mem->nr_ranges; i++) {
 | |
| 		start = mem->ranges[i].start;
 | |
| 		end = mem->ranges[i].end;
 | |
| 		p_start = mstart;
 | |
| 		p_end = mend;
 | |
| 
 | |
| 		if (mstart > end || mend < start)
 | |
| 			continue;
 | |
| 
 | |
| 		/* Truncate any area outside of range */
 | |
| 		if (mstart < start)
 | |
| 			p_start = start;
 | |
| 		if (mend > end)
 | |
| 			p_end = end;
 | |
| 
 | |
| 		/* Found completely overlapping range */
 | |
| 		if (p_start == start && p_end == end) {
 | |
| 			mem->ranges[i].start = 0;
 | |
| 			mem->ranges[i].end = 0;
 | |
| 			if (i < mem->nr_ranges - 1) {
 | |
| 				/* Shift rest of the ranges to left */
 | |
| 				for (j = i; j < mem->nr_ranges - 1; j++) {
 | |
| 					mem->ranges[j].start =
 | |
| 						mem->ranges[j+1].start;
 | |
| 					mem->ranges[j].end =
 | |
| 							mem->ranges[j+1].end;
 | |
| 				}
 | |
| 
 | |
| 				/*
 | |
| 				 * Continue to check if there are another overlapping ranges
 | |
| 				 * from the current position because of shifting the above
 | |
| 				 * mem ranges.
 | |
| 				 */
 | |
| 				i--;
 | |
| 				mem->nr_ranges--;
 | |
| 				continue;
 | |
| 			}
 | |
| 			mem->nr_ranges--;
 | |
| 			return 0;
 | |
| 		}
 | |
| 
 | |
| 		if (p_start > start && p_end < end) {
 | |
| 			/* Split original range */
 | |
| 			mem->ranges[i].end = p_start - 1;
 | |
| 			temp_range.start = p_end + 1;
 | |
| 			temp_range.end = end;
 | |
| 		} else if (p_start != start)
 | |
| 			mem->ranges[i].end = p_start - 1;
 | |
| 		else
 | |
| 			mem->ranges[i].start = p_end + 1;
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	/* If a split happened, add the split to array */
 | |
| 	if (!temp_range.end)
 | |
| 		return 0;
 | |
| 
 | |
| 	/* Split happened */
 | |
| 	if (i == mem->max_nr_ranges - 1)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	/* Location where new range should go */
 | |
| 	j = i + 1;
 | |
| 	if (j < mem->nr_ranges) {
 | |
| 		/* Move over all ranges one slot towards the end */
 | |
| 		for (i = mem->nr_ranges - 1; i >= j; i--)
 | |
| 			mem->ranges[i + 1] = mem->ranges[i];
 | |
| 	}
 | |
| 
 | |
| 	mem->ranges[j].start = temp_range.start;
 | |
| 	mem->ranges[j].end = temp_range.end;
 | |
| 	mem->nr_ranges++;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| int crash_prepare_elf64_headers(struct crash_mem *mem, int kernel_map,
 | |
| 			  void **addr, unsigned long *sz)
 | |
| {
 | |
| 	Elf64_Ehdr *ehdr;
 | |
| 	Elf64_Phdr *phdr;
 | |
| 	unsigned long nr_cpus = num_possible_cpus(), nr_phdr, elf_sz;
 | |
| 	unsigned char *buf;
 | |
| 	unsigned int cpu, i;
 | |
| 	unsigned long long notes_addr;
 | |
| 	unsigned long mstart, mend;
 | |
| 
 | |
| 	/* extra phdr for vmcoreinfo ELF note */
 | |
| 	nr_phdr = nr_cpus + 1;
 | |
| 	nr_phdr += mem->nr_ranges;
 | |
| 
 | |
| 	/*
 | |
| 	 * kexec-tools creates an extra PT_LOAD phdr for kernel text mapping
 | |
| 	 * area (for example, ffffffff80000000 - ffffffffa0000000 on x86_64).
 | |
| 	 * I think this is required by tools like gdb. So same physical
 | |
| 	 * memory will be mapped in two ELF headers. One will contain kernel
 | |
| 	 * text virtual addresses and other will have __va(physical) addresses.
 | |
| 	 */
 | |
| 
 | |
| 	nr_phdr++;
 | |
| 	elf_sz = sizeof(Elf64_Ehdr) + nr_phdr * sizeof(Elf64_Phdr);
 | |
| 	elf_sz = ALIGN(elf_sz, ELF_CORE_HEADER_ALIGN);
 | |
| 
 | |
| 	buf = vzalloc(elf_sz);
 | |
| 	if (!buf)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	ehdr = (Elf64_Ehdr *)buf;
 | |
| 	phdr = (Elf64_Phdr *)(ehdr + 1);
 | |
| 	memcpy(ehdr->e_ident, ELFMAG, SELFMAG);
 | |
| 	ehdr->e_ident[EI_CLASS] = ELFCLASS64;
 | |
| 	ehdr->e_ident[EI_DATA] = ELFDATA2LSB;
 | |
| 	ehdr->e_ident[EI_VERSION] = EV_CURRENT;
 | |
| 	ehdr->e_ident[EI_OSABI] = ELF_OSABI;
 | |
| 	memset(ehdr->e_ident + EI_PAD, 0, EI_NIDENT - EI_PAD);
 | |
| 	ehdr->e_type = ET_CORE;
 | |
| 	ehdr->e_machine = ELF_ARCH;
 | |
| 	ehdr->e_version = EV_CURRENT;
 | |
| 	ehdr->e_phoff = sizeof(Elf64_Ehdr);
 | |
| 	ehdr->e_ehsize = sizeof(Elf64_Ehdr);
 | |
| 	ehdr->e_phentsize = sizeof(Elf64_Phdr);
 | |
| 
 | |
| 	/* Prepare one phdr of type PT_NOTE for each present CPU */
 | |
| 	for_each_present_cpu(cpu) {
 | |
| 		phdr->p_type = PT_NOTE;
 | |
| 		notes_addr = per_cpu_ptr_to_phys(per_cpu_ptr(crash_notes, cpu));
 | |
| 		phdr->p_offset = phdr->p_paddr = notes_addr;
 | |
| 		phdr->p_filesz = phdr->p_memsz = sizeof(note_buf_t);
 | |
| 		(ehdr->e_phnum)++;
 | |
| 		phdr++;
 | |
| 	}
 | |
| 
 | |
| 	/* Prepare one PT_NOTE header for vmcoreinfo */
 | |
| 	phdr->p_type = PT_NOTE;
 | |
| 	phdr->p_offset = phdr->p_paddr = paddr_vmcoreinfo_note();
 | |
| 	phdr->p_filesz = phdr->p_memsz = VMCOREINFO_NOTE_SIZE;
 | |
| 	(ehdr->e_phnum)++;
 | |
| 	phdr++;
 | |
| 
 | |
| 	/* Prepare PT_LOAD type program header for kernel text region */
 | |
| 	if (kernel_map) {
 | |
| 		phdr->p_type = PT_LOAD;
 | |
| 		phdr->p_flags = PF_R|PF_W|PF_X;
 | |
| 		phdr->p_vaddr = (unsigned long) _text;
 | |
| 		phdr->p_filesz = phdr->p_memsz = _end - _text;
 | |
| 		phdr->p_offset = phdr->p_paddr = __pa_symbol(_text);
 | |
| 		ehdr->e_phnum++;
 | |
| 		phdr++;
 | |
| 	}
 | |
| 
 | |
| 	/* Go through all the ranges in mem->ranges[] and prepare phdr */
 | |
| 	for (i = 0; i < mem->nr_ranges; i++) {
 | |
| 		mstart = mem->ranges[i].start;
 | |
| 		mend = mem->ranges[i].end;
 | |
| 
 | |
| 		phdr->p_type = PT_LOAD;
 | |
| 		phdr->p_flags = PF_R|PF_W|PF_X;
 | |
| 		phdr->p_offset  = mstart;
 | |
| 
 | |
| 		phdr->p_paddr = mstart;
 | |
| 		phdr->p_vaddr = (unsigned long) __va(mstart);
 | |
| 		phdr->p_filesz = phdr->p_memsz = mend - mstart + 1;
 | |
| 		phdr->p_align = 0;
 | |
| 		ehdr->e_phnum++;
 | |
| 		pr_debug("Crash PT_LOAD ELF header. phdr=%p vaddr=0x%llx, paddr=0x%llx, sz=0x%llx e_phnum=%d p_offset=0x%llx\n",
 | |
| 			phdr, phdr->p_vaddr, phdr->p_paddr, phdr->p_filesz,
 | |
| 			ehdr->e_phnum, phdr->p_offset);
 | |
| 		phdr++;
 | |
| 	}
 | |
| 
 | |
| 	*addr = buf;
 | |
| 	*sz = elf_sz;
 | |
| 	return 0;
 | |
| }
 |