Yang Li d0a1c07739 LoongArch: KVM: Remove an unneeded semicolon
Remove an unneeded semicolon to avoid build warnings:

./arch/loongarch/kvm/exit.c:764:2-3: Unneeded semicolon

Cc: stable@vger.kernel.org
Reported-by: Abaci Robot <abaci@linux.alibaba.com>
Closes: https://bugzilla.openanolis.cn/show_bug.cgi?id=9343
Signed-off-by: Yang Li <yang.lee@linux.alibaba.com>
Signed-off-by: Huacai Chen <chenhuacai@loongson.cn>
2024-06-21 10:18:40 +08:00

842 lines
19 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (C) 2020-2023 Loongson Technology Corporation Limited
*/
#include <linux/err.h>
#include <linux/errno.h>
#include <linux/kvm_host.h>
#include <linux/module.h>
#include <linux/preempt.h>
#include <linux/vmalloc.h>
#include <trace/events/kvm.h>
#include <asm/fpu.h>
#include <asm/inst.h>
#include <asm/loongarch.h>
#include <asm/mmzone.h>
#include <asm/numa.h>
#include <asm/time.h>
#include <asm/tlb.h>
#include <asm/kvm_csr.h>
#include <asm/kvm_vcpu.h>
#include "trace.h"
static int kvm_emu_cpucfg(struct kvm_vcpu *vcpu, larch_inst inst)
{
int rd, rj;
unsigned int index;
if (inst.reg2_format.opcode != cpucfg_op)
return EMULATE_FAIL;
rd = inst.reg2_format.rd;
rj = inst.reg2_format.rj;
++vcpu->stat.cpucfg_exits;
index = vcpu->arch.gprs[rj];
/*
* By LoongArch Reference Manual 2.2.10.5
* Return value is 0 for undefined CPUCFG index
*
* Disable preemption since hw gcsr is accessed
*/
preempt_disable();
switch (index) {
case 0 ... (KVM_MAX_CPUCFG_REGS - 1):
vcpu->arch.gprs[rd] = vcpu->arch.cpucfg[index];
break;
case CPUCFG_KVM_SIG:
/* CPUCFG emulation between 0x40000000 -- 0x400000ff */
vcpu->arch.gprs[rd] = *(unsigned int *)KVM_SIGNATURE;
break;
case CPUCFG_KVM_FEATURE:
vcpu->arch.gprs[rd] = KVM_FEATURE_IPI;
break;
default:
vcpu->arch.gprs[rd] = 0;
break;
}
preempt_enable();
return EMULATE_DONE;
}
static unsigned long kvm_emu_read_csr(struct kvm_vcpu *vcpu, int csrid)
{
unsigned long val = 0;
struct loongarch_csrs *csr = vcpu->arch.csr;
/*
* From LoongArch Reference Manual Volume 1 Chapter 4.2.1
* For undefined CSR id, return value is 0
*/
if (get_gcsr_flag(csrid) & SW_GCSR)
val = kvm_read_sw_gcsr(csr, csrid);
else
pr_warn_once("Unsupported csrrd 0x%x with pc %lx\n", csrid, vcpu->arch.pc);
return val;
}
static unsigned long kvm_emu_write_csr(struct kvm_vcpu *vcpu, int csrid, unsigned long val)
{
unsigned long old = 0;
struct loongarch_csrs *csr = vcpu->arch.csr;
if (get_gcsr_flag(csrid) & SW_GCSR) {
old = kvm_read_sw_gcsr(csr, csrid);
kvm_write_sw_gcsr(csr, csrid, val);
} else
pr_warn_once("Unsupported csrwr 0x%x with pc %lx\n", csrid, vcpu->arch.pc);
return old;
}
static unsigned long kvm_emu_xchg_csr(struct kvm_vcpu *vcpu, int csrid,
unsigned long csr_mask, unsigned long val)
{
unsigned long old = 0;
struct loongarch_csrs *csr = vcpu->arch.csr;
if (get_gcsr_flag(csrid) & SW_GCSR) {
old = kvm_read_sw_gcsr(csr, csrid);
val = (old & ~csr_mask) | (val & csr_mask);
kvm_write_sw_gcsr(csr, csrid, val);
old = old & csr_mask;
} else
pr_warn_once("Unsupported csrxchg 0x%x with pc %lx\n", csrid, vcpu->arch.pc);
return old;
}
static int kvm_handle_csr(struct kvm_vcpu *vcpu, larch_inst inst)
{
unsigned int rd, rj, csrid;
unsigned long csr_mask, val = 0;
/*
* CSR value mask imm
* rj = 0 means csrrd
* rj = 1 means csrwr
* rj != 0,1 means csrxchg
*/
rd = inst.reg2csr_format.rd;
rj = inst.reg2csr_format.rj;
csrid = inst.reg2csr_format.csr;
/* Process CSR ops */
switch (rj) {
case 0: /* process csrrd */
val = kvm_emu_read_csr(vcpu, csrid);
vcpu->arch.gprs[rd] = val;
break;
case 1: /* process csrwr */
val = vcpu->arch.gprs[rd];
val = kvm_emu_write_csr(vcpu, csrid, val);
vcpu->arch.gprs[rd] = val;
break;
default: /* process csrxchg */
val = vcpu->arch.gprs[rd];
csr_mask = vcpu->arch.gprs[rj];
val = kvm_emu_xchg_csr(vcpu, csrid, csr_mask, val);
vcpu->arch.gprs[rd] = val;
}
return EMULATE_DONE;
}
int kvm_emu_iocsr(larch_inst inst, struct kvm_run *run, struct kvm_vcpu *vcpu)
{
int ret;
unsigned long val;
u32 addr, rd, rj, opcode;
/*
* Each IOCSR with different opcode
*/
rd = inst.reg2_format.rd;
rj = inst.reg2_format.rj;
opcode = inst.reg2_format.opcode;
addr = vcpu->arch.gprs[rj];
ret = EMULATE_DO_IOCSR;
run->iocsr_io.phys_addr = addr;
run->iocsr_io.is_write = 0;
/* LoongArch is Little endian */
switch (opcode) {
case iocsrrdb_op:
run->iocsr_io.len = 1;
break;
case iocsrrdh_op:
run->iocsr_io.len = 2;
break;
case iocsrrdw_op:
run->iocsr_io.len = 4;
break;
case iocsrrdd_op:
run->iocsr_io.len = 8;
break;
case iocsrwrb_op:
run->iocsr_io.len = 1;
run->iocsr_io.is_write = 1;
break;
case iocsrwrh_op:
run->iocsr_io.len = 2;
run->iocsr_io.is_write = 1;
break;
case iocsrwrw_op:
run->iocsr_io.len = 4;
run->iocsr_io.is_write = 1;
break;
case iocsrwrd_op:
run->iocsr_io.len = 8;
run->iocsr_io.is_write = 1;
break;
default:
ret = EMULATE_FAIL;
break;
}
if (ret == EMULATE_DO_IOCSR) {
if (run->iocsr_io.is_write) {
val = vcpu->arch.gprs[rd];
memcpy(run->iocsr_io.data, &val, run->iocsr_io.len);
}
vcpu->arch.io_gpr = rd;
}
return ret;
}
int kvm_complete_iocsr_read(struct kvm_vcpu *vcpu, struct kvm_run *run)
{
enum emulation_result er = EMULATE_DONE;
unsigned long *gpr = &vcpu->arch.gprs[vcpu->arch.io_gpr];
switch (run->iocsr_io.len) {
case 1:
*gpr = *(s8 *)run->iocsr_io.data;
break;
case 2:
*gpr = *(s16 *)run->iocsr_io.data;
break;
case 4:
*gpr = *(s32 *)run->iocsr_io.data;
break;
case 8:
*gpr = *(s64 *)run->iocsr_io.data;
break;
default:
kvm_err("Bad IOCSR length: %d, addr is 0x%lx\n",
run->iocsr_io.len, vcpu->arch.badv);
er = EMULATE_FAIL;
break;
}
return er;
}
int kvm_emu_idle(struct kvm_vcpu *vcpu)
{
++vcpu->stat.idle_exits;
trace_kvm_exit_idle(vcpu, KVM_TRACE_EXIT_IDLE);
if (!kvm_arch_vcpu_runnable(vcpu))
kvm_vcpu_halt(vcpu);
return EMULATE_DONE;
}
static int kvm_trap_handle_gspr(struct kvm_vcpu *vcpu)
{
unsigned long curr_pc;
larch_inst inst;
enum emulation_result er = EMULATE_DONE;
struct kvm_run *run = vcpu->run;
/* Fetch the instruction */
inst.word = vcpu->arch.badi;
curr_pc = vcpu->arch.pc;
update_pc(&vcpu->arch);
trace_kvm_exit_gspr(vcpu, inst.word);
er = EMULATE_FAIL;
switch (((inst.word >> 24) & 0xff)) {
case 0x0: /* CPUCFG GSPR */
er = kvm_emu_cpucfg(vcpu, inst);
break;
case 0x4: /* CSR{RD,WR,XCHG} GSPR */
er = kvm_handle_csr(vcpu, inst);
break;
case 0x6: /* Cache, Idle and IOCSR GSPR */
switch (((inst.word >> 22) & 0x3ff)) {
case 0x18: /* Cache GSPR */
er = EMULATE_DONE;
trace_kvm_exit_cache(vcpu, KVM_TRACE_EXIT_CACHE);
break;
case 0x19: /* Idle/IOCSR GSPR */
switch (((inst.word >> 15) & 0x1ffff)) {
case 0xc90: /* IOCSR GSPR */
er = kvm_emu_iocsr(inst, run, vcpu);
break;
case 0xc91: /* Idle GSPR */
er = kvm_emu_idle(vcpu);
break;
default:
er = EMULATE_FAIL;
break;
}
break;
default:
er = EMULATE_FAIL;
break;
}
break;
default:
er = EMULATE_FAIL;
break;
}
/* Rollback PC only if emulation was unsuccessful */
if (er == EMULATE_FAIL) {
kvm_err("[%#lx]%s: unsupported gspr instruction 0x%08x\n",
curr_pc, __func__, inst.word);
kvm_arch_vcpu_dump_regs(vcpu);
vcpu->arch.pc = curr_pc;
}
return er;
}
/*
* Trigger GSPR:
* 1) Execute CPUCFG instruction;
* 2) Execute CACOP/IDLE instructions;
* 3) Access to unimplemented CSRs/IOCSRs.
*/
static int kvm_handle_gspr(struct kvm_vcpu *vcpu)
{
int ret = RESUME_GUEST;
enum emulation_result er = EMULATE_DONE;
er = kvm_trap_handle_gspr(vcpu);
if (er == EMULATE_DONE) {
ret = RESUME_GUEST;
} else if (er == EMULATE_DO_MMIO) {
vcpu->run->exit_reason = KVM_EXIT_MMIO;
ret = RESUME_HOST;
} else if (er == EMULATE_DO_IOCSR) {
vcpu->run->exit_reason = KVM_EXIT_LOONGARCH_IOCSR;
ret = RESUME_HOST;
} else {
kvm_queue_exception(vcpu, EXCCODE_INE, 0);
ret = RESUME_GUEST;
}
return ret;
}
int kvm_emu_mmio_read(struct kvm_vcpu *vcpu, larch_inst inst)
{
int ret;
unsigned int op8, opcode, rd;
struct kvm_run *run = vcpu->run;
run->mmio.phys_addr = vcpu->arch.badv;
vcpu->mmio_needed = 2; /* signed */
op8 = (inst.word >> 24) & 0xff;
ret = EMULATE_DO_MMIO;
switch (op8) {
case 0x24 ... 0x27: /* ldptr.w/d process */
rd = inst.reg2i14_format.rd;
opcode = inst.reg2i14_format.opcode;
switch (opcode) {
case ldptrw_op:
run->mmio.len = 4;
break;
case ldptrd_op:
run->mmio.len = 8;
break;
default:
break;
}
break;
case 0x28 ... 0x2e: /* ld.b/h/w/d, ld.bu/hu/wu process */
rd = inst.reg2i12_format.rd;
opcode = inst.reg2i12_format.opcode;
switch (opcode) {
case ldb_op:
run->mmio.len = 1;
break;
case ldbu_op:
vcpu->mmio_needed = 1; /* unsigned */
run->mmio.len = 1;
break;
case ldh_op:
run->mmio.len = 2;
break;
case ldhu_op:
vcpu->mmio_needed = 1; /* unsigned */
run->mmio.len = 2;
break;
case ldw_op:
run->mmio.len = 4;
break;
case ldwu_op:
vcpu->mmio_needed = 1; /* unsigned */
run->mmio.len = 4;
break;
case ldd_op:
run->mmio.len = 8;
break;
default:
ret = EMULATE_FAIL;
break;
}
break;
case 0x38: /* ldx.b/h/w/d, ldx.bu/hu/wu process */
rd = inst.reg3_format.rd;
opcode = inst.reg3_format.opcode;
switch (opcode) {
case ldxb_op:
run->mmio.len = 1;
break;
case ldxbu_op:
run->mmio.len = 1;
vcpu->mmio_needed = 1; /* unsigned */
break;
case ldxh_op:
run->mmio.len = 2;
break;
case ldxhu_op:
run->mmio.len = 2;
vcpu->mmio_needed = 1; /* unsigned */
break;
case ldxw_op:
run->mmio.len = 4;
break;
case ldxwu_op:
run->mmio.len = 4;
vcpu->mmio_needed = 1; /* unsigned */
break;
case ldxd_op:
run->mmio.len = 8;
break;
default:
ret = EMULATE_FAIL;
break;
}
break;
default:
ret = EMULATE_FAIL;
}
if (ret == EMULATE_DO_MMIO) {
/* Set for kvm_complete_mmio_read() use */
vcpu->arch.io_gpr = rd;
run->mmio.is_write = 0;
vcpu->mmio_is_write = 0;
trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, run->mmio.len,
run->mmio.phys_addr, NULL);
} else {
kvm_err("Read not supported Inst=0x%08x @%lx BadVaddr:%#lx\n",
inst.word, vcpu->arch.pc, vcpu->arch.badv);
kvm_arch_vcpu_dump_regs(vcpu);
vcpu->mmio_needed = 0;
}
return ret;
}
int kvm_complete_mmio_read(struct kvm_vcpu *vcpu, struct kvm_run *run)
{
enum emulation_result er = EMULATE_DONE;
unsigned long *gpr = &vcpu->arch.gprs[vcpu->arch.io_gpr];
/* Update with new PC */
update_pc(&vcpu->arch);
switch (run->mmio.len) {
case 1:
if (vcpu->mmio_needed == 2)
*gpr = *(s8 *)run->mmio.data;
else
*gpr = *(u8 *)run->mmio.data;
break;
case 2:
if (vcpu->mmio_needed == 2)
*gpr = *(s16 *)run->mmio.data;
else
*gpr = *(u16 *)run->mmio.data;
break;
case 4:
if (vcpu->mmio_needed == 2)
*gpr = *(s32 *)run->mmio.data;
else
*gpr = *(u32 *)run->mmio.data;
break;
case 8:
*gpr = *(s64 *)run->mmio.data;
break;
default:
kvm_err("Bad MMIO length: %d, addr is 0x%lx\n",
run->mmio.len, vcpu->arch.badv);
er = EMULATE_FAIL;
break;
}
trace_kvm_mmio(KVM_TRACE_MMIO_READ, run->mmio.len,
run->mmio.phys_addr, run->mmio.data);
return er;
}
int kvm_emu_mmio_write(struct kvm_vcpu *vcpu, larch_inst inst)
{
int ret;
unsigned int rd, op8, opcode;
unsigned long curr_pc, rd_val = 0;
struct kvm_run *run = vcpu->run;
void *data = run->mmio.data;
/*
* Update PC and hold onto current PC in case there is
* an error and we want to rollback the PC
*/
curr_pc = vcpu->arch.pc;
update_pc(&vcpu->arch);
op8 = (inst.word >> 24) & 0xff;
run->mmio.phys_addr = vcpu->arch.badv;
ret = EMULATE_DO_MMIO;
switch (op8) {
case 0x24 ... 0x27: /* stptr.w/d process */
rd = inst.reg2i14_format.rd;
opcode = inst.reg2i14_format.opcode;
switch (opcode) {
case stptrw_op:
run->mmio.len = 4;
*(unsigned int *)data = vcpu->arch.gprs[rd];
break;
case stptrd_op:
run->mmio.len = 8;
*(unsigned long *)data = vcpu->arch.gprs[rd];
break;
default:
ret = EMULATE_FAIL;
break;
}
break;
case 0x28 ... 0x2e: /* st.b/h/w/d process */
rd = inst.reg2i12_format.rd;
opcode = inst.reg2i12_format.opcode;
rd_val = vcpu->arch.gprs[rd];
switch (opcode) {
case stb_op:
run->mmio.len = 1;
*(unsigned char *)data = rd_val;
break;
case sth_op:
run->mmio.len = 2;
*(unsigned short *)data = rd_val;
break;
case stw_op:
run->mmio.len = 4;
*(unsigned int *)data = rd_val;
break;
case std_op:
run->mmio.len = 8;
*(unsigned long *)data = rd_val;
break;
default:
ret = EMULATE_FAIL;
break;
}
break;
case 0x38: /* stx.b/h/w/d process */
rd = inst.reg3_format.rd;
opcode = inst.reg3_format.opcode;
switch (opcode) {
case stxb_op:
run->mmio.len = 1;
*(unsigned char *)data = vcpu->arch.gprs[rd];
break;
case stxh_op:
run->mmio.len = 2;
*(unsigned short *)data = vcpu->arch.gprs[rd];
break;
case stxw_op:
run->mmio.len = 4;
*(unsigned int *)data = vcpu->arch.gprs[rd];
break;
case stxd_op:
run->mmio.len = 8;
*(unsigned long *)data = vcpu->arch.gprs[rd];
break;
default:
ret = EMULATE_FAIL;
break;
}
break;
default:
ret = EMULATE_FAIL;
}
if (ret == EMULATE_DO_MMIO) {
run->mmio.is_write = 1;
vcpu->mmio_needed = 1;
vcpu->mmio_is_write = 1;
trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, run->mmio.len,
run->mmio.phys_addr, data);
} else {
vcpu->arch.pc = curr_pc;
kvm_err("Write not supported Inst=0x%08x @%lx BadVaddr:%#lx\n",
inst.word, vcpu->arch.pc, vcpu->arch.badv);
kvm_arch_vcpu_dump_regs(vcpu);
/* Rollback PC if emulation was unsuccessful */
}
return ret;
}
static int kvm_handle_rdwr_fault(struct kvm_vcpu *vcpu, bool write)
{
int ret;
larch_inst inst;
enum emulation_result er = EMULATE_DONE;
struct kvm_run *run = vcpu->run;
unsigned long badv = vcpu->arch.badv;
ret = kvm_handle_mm_fault(vcpu, badv, write);
if (ret) {
/* Treat as MMIO */
inst.word = vcpu->arch.badi;
if (write) {
er = kvm_emu_mmio_write(vcpu, inst);
} else {
/* A code fetch fault doesn't count as an MMIO */
if (kvm_is_ifetch_fault(&vcpu->arch)) {
kvm_queue_exception(vcpu, EXCCODE_ADE, EXSUBCODE_ADEF);
return RESUME_GUEST;
}
er = kvm_emu_mmio_read(vcpu, inst);
}
}
if (er == EMULATE_DONE) {
ret = RESUME_GUEST;
} else if (er == EMULATE_DO_MMIO) {
run->exit_reason = KVM_EXIT_MMIO;
ret = RESUME_HOST;
} else {
kvm_queue_exception(vcpu, EXCCODE_ADE, EXSUBCODE_ADEM);
ret = RESUME_GUEST;
}
return ret;
}
static int kvm_handle_read_fault(struct kvm_vcpu *vcpu)
{
return kvm_handle_rdwr_fault(vcpu, false);
}
static int kvm_handle_write_fault(struct kvm_vcpu *vcpu)
{
return kvm_handle_rdwr_fault(vcpu, true);
}
/**
* kvm_handle_fpu_disabled() - Guest used fpu however it is disabled at host
* @vcpu: Virtual CPU context.
*
* Handle when the guest attempts to use fpu which hasn't been allowed
* by the root context.
*/
static int kvm_handle_fpu_disabled(struct kvm_vcpu *vcpu)
{
struct kvm_run *run = vcpu->run;
if (!kvm_guest_has_fpu(&vcpu->arch)) {
kvm_queue_exception(vcpu, EXCCODE_INE, 0);
return RESUME_GUEST;
}
/*
* If guest FPU not present, the FPU operation should have been
* treated as a reserved instruction!
* If FPU already in use, we shouldn't get this at all.
*/
if (WARN_ON(vcpu->arch.aux_inuse & KVM_LARCH_FPU)) {
kvm_err("%s internal error\n", __func__);
run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
return RESUME_HOST;
}
kvm_own_fpu(vcpu);
return RESUME_GUEST;
}
/*
* kvm_handle_lsx_disabled() - Guest used LSX while disabled in root.
* @vcpu: Virtual CPU context.
*
* Handle when the guest attempts to use LSX when it is disabled in the root
* context.
*/
static int kvm_handle_lsx_disabled(struct kvm_vcpu *vcpu)
{
if (kvm_own_lsx(vcpu))
kvm_queue_exception(vcpu, EXCCODE_INE, 0);
return RESUME_GUEST;
}
/*
* kvm_handle_lasx_disabled() - Guest used LASX while disabled in root.
* @vcpu: Virtual CPU context.
*
* Handle when the guest attempts to use LASX when it is disabled in the root
* context.
*/
static int kvm_handle_lasx_disabled(struct kvm_vcpu *vcpu)
{
if (kvm_own_lasx(vcpu))
kvm_queue_exception(vcpu, EXCCODE_INE, 0);
return RESUME_GUEST;
}
static int kvm_send_pv_ipi(struct kvm_vcpu *vcpu)
{
unsigned int min, cpu, i;
unsigned long ipi_bitmap;
struct kvm_vcpu *dest;
min = kvm_read_reg(vcpu, LOONGARCH_GPR_A3);
for (i = 0; i < 2; i++, min += BITS_PER_LONG) {
ipi_bitmap = kvm_read_reg(vcpu, LOONGARCH_GPR_A1 + i);
if (!ipi_bitmap)
continue;
cpu = find_first_bit((void *)&ipi_bitmap, BITS_PER_LONG);
while (cpu < BITS_PER_LONG) {
dest = kvm_get_vcpu_by_cpuid(vcpu->kvm, cpu + min);
cpu = find_next_bit((void *)&ipi_bitmap, BITS_PER_LONG, cpu + 1);
if (!dest)
continue;
/* Send SWI0 to dest vcpu to emulate IPI interrupt */
kvm_queue_irq(dest, INT_SWI0);
kvm_vcpu_kick(dest);
}
}
return 0;
}
/*
* Hypercall emulation always return to guest, Caller should check retval.
*/
static void kvm_handle_service(struct kvm_vcpu *vcpu)
{
unsigned long func = kvm_read_reg(vcpu, LOONGARCH_GPR_A0);
long ret;
switch (func) {
case KVM_HCALL_FUNC_IPI:
kvm_send_pv_ipi(vcpu);
ret = KVM_HCALL_SUCCESS;
break;
default:
ret = KVM_HCALL_INVALID_CODE;
break;
}
kvm_write_reg(vcpu, LOONGARCH_GPR_A0, ret);
}
static int kvm_handle_hypercall(struct kvm_vcpu *vcpu)
{
int ret;
larch_inst inst;
unsigned int code;
inst.word = vcpu->arch.badi;
code = inst.reg0i15_format.immediate;
ret = RESUME_GUEST;
switch (code) {
case KVM_HCALL_SERVICE:
vcpu->stat.hypercall_exits++;
kvm_handle_service(vcpu);
break;
case KVM_HCALL_SWDBG:
/* KVM_HCALL_SWDBG only in effective when SW_BP is enabled */
if (vcpu->guest_debug & KVM_GUESTDBG_SW_BP_MASK) {
vcpu->run->exit_reason = KVM_EXIT_DEBUG;
ret = RESUME_HOST;
break;
}
fallthrough;
default:
/* Treat it as noop intruction, only set return value */
kvm_write_reg(vcpu, LOONGARCH_GPR_A0, KVM_HCALL_INVALID_CODE);
break;
}
if (ret == RESUME_GUEST)
update_pc(&vcpu->arch);
return ret;
}
/*
* LoongArch KVM callback handling for unimplemented guest exiting
*/
static int kvm_fault_ni(struct kvm_vcpu *vcpu)
{
unsigned int ecode, inst;
unsigned long estat, badv;
/* Fetch the instruction */
inst = vcpu->arch.badi;
badv = vcpu->arch.badv;
estat = vcpu->arch.host_estat;
ecode = (estat & CSR_ESTAT_EXC) >> CSR_ESTAT_EXC_SHIFT;
kvm_err("ECode: %d PC=%#lx Inst=0x%08x BadVaddr=%#lx ESTAT=%#lx\n",
ecode, vcpu->arch.pc, inst, badv, read_gcsr_estat());
kvm_arch_vcpu_dump_regs(vcpu);
kvm_queue_exception(vcpu, EXCCODE_INE, 0);
return RESUME_GUEST;
}
static exit_handle_fn kvm_fault_tables[EXCCODE_INT_START] = {
[0 ... EXCCODE_INT_START - 1] = kvm_fault_ni,
[EXCCODE_TLBI] = kvm_handle_read_fault,
[EXCCODE_TLBL] = kvm_handle_read_fault,
[EXCCODE_TLBS] = kvm_handle_write_fault,
[EXCCODE_TLBM] = kvm_handle_write_fault,
[EXCCODE_FPDIS] = kvm_handle_fpu_disabled,
[EXCCODE_LSXDIS] = kvm_handle_lsx_disabled,
[EXCCODE_LASXDIS] = kvm_handle_lasx_disabled,
[EXCCODE_GSPR] = kvm_handle_gspr,
[EXCCODE_HVC] = kvm_handle_hypercall,
};
int kvm_handle_fault(struct kvm_vcpu *vcpu, int fault)
{
return kvm_fault_tables[fault](vcpu);
}