Sean Christopherson 3c0c2ad1ae KVM: VMX: Add basic handling of VM-Exit from SGX enclave
Add support for handling VM-Exits that originate from a guest SGX
enclave.  In SGX, an "enclave" is a new CPL3-only execution environment,
wherein the CPU and memory state is protected by hardware to make the
state inaccesible to code running outside of the enclave.  When exiting
an enclave due to an asynchronous event (from the perspective of the
enclave), e.g. exceptions, interrupts, and VM-Exits, the enclave's state
is automatically saved and scrubbed (the CPU loads synthetic state), and
then reloaded when re-entering the enclave.  E.g. after an instruction
based VM-Exit from an enclave, vmcs.GUEST_RIP will not contain the RIP
of the enclave instruction that trigered VM-Exit, but will instead point
to a RIP in the enclave's untrusted runtime (the guest userspace code
that coordinates entry/exit to/from the enclave).

To help a VMM recognize and handle exits from enclaves, SGX adds bits to
existing VMCS fields, VM_EXIT_REASON.VMX_EXIT_REASON_FROM_ENCLAVE and
GUEST_INTERRUPTIBILITY_INFO.GUEST_INTR_STATE_ENCLAVE_INTR.  Define the
new architectural bits, and add a boolean to struct vcpu_vmx to cache
VMX_EXIT_REASON_FROM_ENCLAVE.  Clear the bit in exit_reason so that
checks against exit_reason do not need to account for SGX, e.g.
"if (exit_reason == EXIT_REASON_EXCEPTION_NMI)" continues to work.

KVM is a largely a passive observer of the new bits, e.g. KVM needs to
account for the bits when propagating information to a nested VMM, but
otherwise doesn't need to act differently for the majority of VM-Exits
from enclaves.

The one scenario that is directly impacted is emulation, which is for
all intents and purposes impossible[1] since KVM does not have access to
the RIP or instruction stream that triggered the VM-Exit.  The inability
to emulate is a non-issue for KVM, as most instructions that might
trigger VM-Exit unconditionally #UD in an enclave (before the VM-Exit
check.  For the few instruction that conditionally #UD, KVM either never
sets the exiting control, e.g. PAUSE_EXITING[2], or sets it if and only
if the feature is not exposed to the guest in order to inject a #UD,
e.g. RDRAND_EXITING.

But, because it is still possible for a guest to trigger emulation,
e.g. MMIO, inject a #UD if KVM ever attempts emulation after a VM-Exit
from an enclave.  This is architecturally accurate for instruction
VM-Exits, and for MMIO it's the least bad choice, e.g. it's preferable
to killing the VM.  In practice, only broken or particularly stupid
guests should ever encounter this behavior.

Add a WARN in skip_emulated_instruction to detect any attempt to
modify the guest's RIP during an SGX enclave VM-Exit as all such flows
should either be unreachable or must handle exits from enclaves before
getting to skip_emulated_instruction.

[1] Impossible for all practical purposes.  Not truly impossible
    since KVM could implement some form of para-virtualization scheme.

[2] PAUSE_LOOP_EXITING only affects CPL0 and enclaves exist only at
    CPL3, so we also don't need to worry about that interaction.

Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Kai Huang <kai.huang@intel.com>
Message-Id: <315f54a8507d09c292463ef29104e1d4c62e9090.1618196135.git.kai.huang@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-04-20 04:18:54 -04:00
2021-03-14 13:33:33 -07:00
2021-01-24 14:27:20 +01:00
2021-02-25 10:17:31 -08:00
2021-02-24 09:38:36 -08:00
2021-02-23 09:28:51 -08:00
2021-02-26 09:41:03 -08:00
2021-02-26 09:41:03 -08:00
2021-03-14 14:41:02 -07:00

Linux kernel
============

There are several guides for kernel developers and users. These guides can
be rendered in a number of formats, like HTML and PDF. Please read
Documentation/admin-guide/README.rst first.

In order to build the documentation, use ``make htmldocs`` or
``make pdfdocs``.  The formatted documentation can also be read online at:

    https://www.kernel.org/doc/html/latest/

There are various text files in the Documentation/ subdirectory,
several of them using the Restructured Text markup notation.

Please read the Documentation/process/changes.rst file, as it contains the
requirements for building and running the kernel, and information about
the problems which may result by upgrading your kernel.
Description
No description provided
Readme 5.7 GiB
Languages
C 97.6%
Assembly 1%
Shell 0.5%
Python 0.3%
Makefile 0.3%