linux/drivers/idle/intel_idle.c
Rafael J. Wysocki 3d3a1ae9b4 intel_idle: Rearrange intel_idle_cpuidle_driver_init()
Notice that intel_idle_state_table_update() only needs to be called
if icpu is not NULL, so fold it into intel_idle_init_cstates_icpu(),
and pass a pointer to the driver object to
intel_idle_cpuidle_driver_init() as an argument instead of
referencing it locally in there.

No intentional functional impact.

Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2020-01-23 00:37:00 +01:00

1663 lines
41 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* intel_idle.c - native hardware idle loop for modern Intel processors
*
* Copyright (c) 2013, Intel Corporation.
* Len Brown <len.brown@intel.com>
*/
/*
* intel_idle is a cpuidle driver that loads on specific Intel processors
* in lieu of the legacy ACPI processor_idle driver. The intent is to
* make Linux more efficient on these processors, as intel_idle knows
* more than ACPI, as well as make Linux more immune to ACPI BIOS bugs.
*/
/*
* Design Assumptions
*
* All CPUs have same idle states as boot CPU
*
* Chipset BM_STS (bus master status) bit is a NOP
* for preventing entry into deep C-stats
*/
/*
* Known limitations
*
* The driver currently initializes for_each_online_cpu() upon modprobe.
* It it unaware of subsequent processors hot-added to the system.
* This means that if you boot with maxcpus=n and later online
* processors above n, those processors will use C1 only.
*
* ACPI has a .suspend hack to turn off deep c-statees during suspend
* to avoid complications with the lapic timer workaround.
* Have not seen issues with suspend, but may need same workaround here.
*
*/
/* un-comment DEBUG to enable pr_debug() statements */
#define DEBUG
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <linux/acpi.h>
#include <linux/kernel.h>
#include <linux/cpuidle.h>
#include <linux/tick.h>
#include <trace/events/power.h>
#include <linux/sched.h>
#include <linux/notifier.h>
#include <linux/cpu.h>
#include <linux/moduleparam.h>
#include <asm/cpu_device_id.h>
#include <asm/intel-family.h>
#include <asm/mwait.h>
#include <asm/msr.h>
#define INTEL_IDLE_VERSION "0.4.1"
static struct cpuidle_driver intel_idle_driver = {
.name = "intel_idle",
.owner = THIS_MODULE,
};
/* intel_idle.max_cstate=0 disables driver */
static int max_cstate = CPUIDLE_STATE_MAX - 1;
static unsigned int mwait_substates;
#define LAPIC_TIMER_ALWAYS_RELIABLE 0xFFFFFFFF
/* Reliable LAPIC Timer States, bit 1 for C1 etc. */
static unsigned int lapic_timer_reliable_states = (1 << 1); /* Default to only C1 */
struct idle_cpu {
struct cpuidle_state *state_table;
/*
* Hardware C-state auto-demotion may not always be optimal.
* Indicate which enable bits to clear here.
*/
unsigned long auto_demotion_disable_flags;
bool byt_auto_demotion_disable_flag;
bool disable_promotion_to_c1e;
bool use_acpi;
};
static const struct idle_cpu *icpu;
static struct cpuidle_device __percpu *intel_idle_cpuidle_devices;
static int intel_idle(struct cpuidle_device *dev,
struct cpuidle_driver *drv, int index);
static void intel_idle_s2idle(struct cpuidle_device *dev,
struct cpuidle_driver *drv, int index);
static struct cpuidle_state *cpuidle_state_table;
/*
* Enable this state by default even if the ACPI _CST does not list it.
*/
#define CPUIDLE_FLAG_ALWAYS_ENABLE BIT(15)
/*
* Set this flag for states where the HW flushes the TLB for us
* and so we don't need cross-calls to keep it consistent.
* If this flag is set, SW flushes the TLB, so even if the
* HW doesn't do the flushing, this flag is safe to use.
*/
#define CPUIDLE_FLAG_TLB_FLUSHED 0x10000
/*
* MWAIT takes an 8-bit "hint" in EAX "suggesting"
* the C-state (top nibble) and sub-state (bottom nibble)
* 0x00 means "MWAIT(C1)", 0x10 means "MWAIT(C2)" etc.
*
* We store the hint at the top of our "flags" for each state.
*/
#define flg2MWAIT(flags) (((flags) >> 24) & 0xFF)
#define MWAIT2flg(eax) ((eax & 0xFF) << 24)
/*
* States are indexed by the cstate number,
* which is also the index into the MWAIT hint array.
* Thus C0 is a dummy.
*/
static struct cpuidle_state nehalem_cstates[] = {
{
.name = "C1",
.desc = "MWAIT 0x00",
.flags = MWAIT2flg(0x00),
.exit_latency = 3,
.target_residency = 6,
.enter = &intel_idle,
.enter_s2idle = intel_idle_s2idle, },
{
.name = "C1E",
.desc = "MWAIT 0x01",
.flags = MWAIT2flg(0x01) | CPUIDLE_FLAG_ALWAYS_ENABLE,
.exit_latency = 10,
.target_residency = 20,
.enter = &intel_idle,
.enter_s2idle = intel_idle_s2idle, },
{
.name = "C3",
.desc = "MWAIT 0x10",
.flags = MWAIT2flg(0x10) | CPUIDLE_FLAG_TLB_FLUSHED,
.exit_latency = 20,
.target_residency = 80,
.enter = &intel_idle,
.enter_s2idle = intel_idle_s2idle, },
{
.name = "C6",
.desc = "MWAIT 0x20",
.flags = MWAIT2flg(0x20) | CPUIDLE_FLAG_TLB_FLUSHED,
.exit_latency = 200,
.target_residency = 800,
.enter = &intel_idle,
.enter_s2idle = intel_idle_s2idle, },
{
.enter = NULL }
};
static struct cpuidle_state snb_cstates[] = {
{
.name = "C1",
.desc = "MWAIT 0x00",
.flags = MWAIT2flg(0x00),
.exit_latency = 2,
.target_residency = 2,
.enter = &intel_idle,
.enter_s2idle = intel_idle_s2idle, },
{
.name = "C1E",
.desc = "MWAIT 0x01",
.flags = MWAIT2flg(0x01) | CPUIDLE_FLAG_ALWAYS_ENABLE,
.exit_latency = 10,
.target_residency = 20,
.enter = &intel_idle,
.enter_s2idle = intel_idle_s2idle, },
{
.name = "C3",
.desc = "MWAIT 0x10",
.flags = MWAIT2flg(0x10) | CPUIDLE_FLAG_TLB_FLUSHED,
.exit_latency = 80,
.target_residency = 211,
.enter = &intel_idle,
.enter_s2idle = intel_idle_s2idle, },
{
.name = "C6",
.desc = "MWAIT 0x20",
.flags = MWAIT2flg(0x20) | CPUIDLE_FLAG_TLB_FLUSHED,
.exit_latency = 104,
.target_residency = 345,
.enter = &intel_idle,
.enter_s2idle = intel_idle_s2idle, },
{
.name = "C7",
.desc = "MWAIT 0x30",
.flags = MWAIT2flg(0x30) | CPUIDLE_FLAG_TLB_FLUSHED,
.exit_latency = 109,
.target_residency = 345,
.enter = &intel_idle,
.enter_s2idle = intel_idle_s2idle, },
{
.enter = NULL }
};
static struct cpuidle_state byt_cstates[] = {
{
.name = "C1",
.desc = "MWAIT 0x00",
.flags = MWAIT2flg(0x00),
.exit_latency = 1,
.target_residency = 1,
.enter = &intel_idle,
.enter_s2idle = intel_idle_s2idle, },
{
.name = "C6N",
.desc = "MWAIT 0x58",
.flags = MWAIT2flg(0x58) | CPUIDLE_FLAG_TLB_FLUSHED,
.exit_latency = 300,
.target_residency = 275,
.enter = &intel_idle,
.enter_s2idle = intel_idle_s2idle, },
{
.name = "C6S",
.desc = "MWAIT 0x52",
.flags = MWAIT2flg(0x52) | CPUIDLE_FLAG_TLB_FLUSHED,
.exit_latency = 500,
.target_residency = 560,
.enter = &intel_idle,
.enter_s2idle = intel_idle_s2idle, },
{
.name = "C7",
.desc = "MWAIT 0x60",
.flags = MWAIT2flg(0x60) | CPUIDLE_FLAG_TLB_FLUSHED,
.exit_latency = 1200,
.target_residency = 4000,
.enter = &intel_idle,
.enter_s2idle = intel_idle_s2idle, },
{
.name = "C7S",
.desc = "MWAIT 0x64",
.flags = MWAIT2flg(0x64) | CPUIDLE_FLAG_TLB_FLUSHED,
.exit_latency = 10000,
.target_residency = 20000,
.enter = &intel_idle,
.enter_s2idle = intel_idle_s2idle, },
{
.enter = NULL }
};
static struct cpuidle_state cht_cstates[] = {
{
.name = "C1",
.desc = "MWAIT 0x00",
.flags = MWAIT2flg(0x00),
.exit_latency = 1,
.target_residency = 1,
.enter = &intel_idle,
.enter_s2idle = intel_idle_s2idle, },
{
.name = "C6N",
.desc = "MWAIT 0x58",
.flags = MWAIT2flg(0x58) | CPUIDLE_FLAG_TLB_FLUSHED,
.exit_latency = 80,
.target_residency = 275,
.enter = &intel_idle,
.enter_s2idle = intel_idle_s2idle, },
{
.name = "C6S",
.desc = "MWAIT 0x52",
.flags = MWAIT2flg(0x52) | CPUIDLE_FLAG_TLB_FLUSHED,
.exit_latency = 200,
.target_residency = 560,
.enter = &intel_idle,
.enter_s2idle = intel_idle_s2idle, },
{
.name = "C7",
.desc = "MWAIT 0x60",
.flags = MWAIT2flg(0x60) | CPUIDLE_FLAG_TLB_FLUSHED,
.exit_latency = 1200,
.target_residency = 4000,
.enter = &intel_idle,
.enter_s2idle = intel_idle_s2idle, },
{
.name = "C7S",
.desc = "MWAIT 0x64",
.flags = MWAIT2flg(0x64) | CPUIDLE_FLAG_TLB_FLUSHED,
.exit_latency = 10000,
.target_residency = 20000,
.enter = &intel_idle,
.enter_s2idle = intel_idle_s2idle, },
{
.enter = NULL }
};
static struct cpuidle_state ivb_cstates[] = {
{
.name = "C1",
.desc = "MWAIT 0x00",
.flags = MWAIT2flg(0x00),
.exit_latency = 1,
.target_residency = 1,
.enter = &intel_idle,
.enter_s2idle = intel_idle_s2idle, },
{
.name = "C1E",
.desc = "MWAIT 0x01",
.flags = MWAIT2flg(0x01) | CPUIDLE_FLAG_ALWAYS_ENABLE,
.exit_latency = 10,
.target_residency = 20,
.enter = &intel_idle,
.enter_s2idle = intel_idle_s2idle, },
{
.name = "C3",
.desc = "MWAIT 0x10",
.flags = MWAIT2flg(0x10) | CPUIDLE_FLAG_TLB_FLUSHED,
.exit_latency = 59,
.target_residency = 156,
.enter = &intel_idle,
.enter_s2idle = intel_idle_s2idle, },
{
.name = "C6",
.desc = "MWAIT 0x20",
.flags = MWAIT2flg(0x20) | CPUIDLE_FLAG_TLB_FLUSHED,
.exit_latency = 80,
.target_residency = 300,
.enter = &intel_idle,
.enter_s2idle = intel_idle_s2idle, },
{
.name = "C7",
.desc = "MWAIT 0x30",
.flags = MWAIT2flg(0x30) | CPUIDLE_FLAG_TLB_FLUSHED,
.exit_latency = 87,
.target_residency = 300,
.enter = &intel_idle,
.enter_s2idle = intel_idle_s2idle, },
{
.enter = NULL }
};
static struct cpuidle_state ivt_cstates[] = {
{
.name = "C1",
.desc = "MWAIT 0x00",
.flags = MWAIT2flg(0x00),
.exit_latency = 1,
.target_residency = 1,
.enter = &intel_idle,
.enter_s2idle = intel_idle_s2idle, },
{
.name = "C1E",
.desc = "MWAIT 0x01",
.flags = MWAIT2flg(0x01) | CPUIDLE_FLAG_ALWAYS_ENABLE,
.exit_latency = 10,
.target_residency = 80,
.enter = &intel_idle,
.enter_s2idle = intel_idle_s2idle, },
{
.name = "C3",
.desc = "MWAIT 0x10",
.flags = MWAIT2flg(0x10) | CPUIDLE_FLAG_TLB_FLUSHED,
.exit_latency = 59,
.target_residency = 156,
.enter = &intel_idle,
.enter_s2idle = intel_idle_s2idle, },
{
.name = "C6",
.desc = "MWAIT 0x20",
.flags = MWAIT2flg(0x20) | CPUIDLE_FLAG_TLB_FLUSHED,
.exit_latency = 82,
.target_residency = 300,
.enter = &intel_idle,
.enter_s2idle = intel_idle_s2idle, },
{
.enter = NULL }
};
static struct cpuidle_state ivt_cstates_4s[] = {
{
.name = "C1",
.desc = "MWAIT 0x00",
.flags = MWAIT2flg(0x00),
.exit_latency = 1,
.target_residency = 1,
.enter = &intel_idle,
.enter_s2idle = intel_idle_s2idle, },
{
.name = "C1E",
.desc = "MWAIT 0x01",
.flags = MWAIT2flg(0x01) | CPUIDLE_FLAG_ALWAYS_ENABLE,
.exit_latency = 10,
.target_residency = 250,
.enter = &intel_idle,
.enter_s2idle = intel_idle_s2idle, },
{
.name = "C3",
.desc = "MWAIT 0x10",
.flags = MWAIT2flg(0x10) | CPUIDLE_FLAG_TLB_FLUSHED,
.exit_latency = 59,
.target_residency = 300,
.enter = &intel_idle,
.enter_s2idle = intel_idle_s2idle, },
{
.name = "C6",
.desc = "MWAIT 0x20",
.flags = MWAIT2flg(0x20) | CPUIDLE_FLAG_TLB_FLUSHED,
.exit_latency = 84,
.target_residency = 400,
.enter = &intel_idle,
.enter_s2idle = intel_idle_s2idle, },
{
.enter = NULL }
};
static struct cpuidle_state ivt_cstates_8s[] = {
{
.name = "C1",
.desc = "MWAIT 0x00",
.flags = MWAIT2flg(0x00),
.exit_latency = 1,
.target_residency = 1,
.enter = &intel_idle,
.enter_s2idle = intel_idle_s2idle, },
{
.name = "C1E",
.desc = "MWAIT 0x01",
.flags = MWAIT2flg(0x01) | CPUIDLE_FLAG_ALWAYS_ENABLE,
.exit_latency = 10,
.target_residency = 500,
.enter = &intel_idle,
.enter_s2idle = intel_idle_s2idle, },
{
.name = "C3",
.desc = "MWAIT 0x10",
.flags = MWAIT2flg(0x10) | CPUIDLE_FLAG_TLB_FLUSHED,
.exit_latency = 59,
.target_residency = 600,
.enter = &intel_idle,
.enter_s2idle = intel_idle_s2idle, },
{
.name = "C6",
.desc = "MWAIT 0x20",
.flags = MWAIT2flg(0x20) | CPUIDLE_FLAG_TLB_FLUSHED,
.exit_latency = 88,
.target_residency = 700,
.enter = &intel_idle,
.enter_s2idle = intel_idle_s2idle, },
{
.enter = NULL }
};
static struct cpuidle_state hsw_cstates[] = {
{
.name = "C1",
.desc = "MWAIT 0x00",
.flags = MWAIT2flg(0x00),
.exit_latency = 2,
.target_residency = 2,
.enter = &intel_idle,
.enter_s2idle = intel_idle_s2idle, },
{
.name = "C1E",
.desc = "MWAIT 0x01",
.flags = MWAIT2flg(0x01) | CPUIDLE_FLAG_ALWAYS_ENABLE,
.exit_latency = 10,
.target_residency = 20,
.enter = &intel_idle,
.enter_s2idle = intel_idle_s2idle, },
{
.name = "C3",
.desc = "MWAIT 0x10",
.flags = MWAIT2flg(0x10) | CPUIDLE_FLAG_TLB_FLUSHED,
.exit_latency = 33,
.target_residency = 100,
.enter = &intel_idle,
.enter_s2idle = intel_idle_s2idle, },
{
.name = "C6",
.desc = "MWAIT 0x20",
.flags = MWAIT2flg(0x20) | CPUIDLE_FLAG_TLB_FLUSHED,
.exit_latency = 133,
.target_residency = 400,
.enter = &intel_idle,
.enter_s2idle = intel_idle_s2idle, },
{
.name = "C7s",
.desc = "MWAIT 0x32",
.flags = MWAIT2flg(0x32) | CPUIDLE_FLAG_TLB_FLUSHED,
.exit_latency = 166,
.target_residency = 500,
.enter = &intel_idle,
.enter_s2idle = intel_idle_s2idle, },
{
.name = "C8",
.desc = "MWAIT 0x40",
.flags = MWAIT2flg(0x40) | CPUIDLE_FLAG_TLB_FLUSHED,
.exit_latency = 300,
.target_residency = 900,
.enter = &intel_idle,
.enter_s2idle = intel_idle_s2idle, },
{
.name = "C9",
.desc = "MWAIT 0x50",
.flags = MWAIT2flg(0x50) | CPUIDLE_FLAG_TLB_FLUSHED,
.exit_latency = 600,
.target_residency = 1800,
.enter = &intel_idle,
.enter_s2idle = intel_idle_s2idle, },
{
.name = "C10",
.desc = "MWAIT 0x60",
.flags = MWAIT2flg(0x60) | CPUIDLE_FLAG_TLB_FLUSHED,
.exit_latency = 2600,
.target_residency = 7700,
.enter = &intel_idle,
.enter_s2idle = intel_idle_s2idle, },
{
.enter = NULL }
};
static struct cpuidle_state bdw_cstates[] = {
{
.name = "C1",
.desc = "MWAIT 0x00",
.flags = MWAIT2flg(0x00),
.exit_latency = 2,
.target_residency = 2,
.enter = &intel_idle,
.enter_s2idle = intel_idle_s2idle, },
{
.name = "C1E",
.desc = "MWAIT 0x01",
.flags = MWAIT2flg(0x01) | CPUIDLE_FLAG_ALWAYS_ENABLE,
.exit_latency = 10,
.target_residency = 20,
.enter = &intel_idle,
.enter_s2idle = intel_idle_s2idle, },
{
.name = "C3",
.desc = "MWAIT 0x10",
.flags = MWAIT2flg(0x10) | CPUIDLE_FLAG_TLB_FLUSHED,
.exit_latency = 40,
.target_residency = 100,
.enter = &intel_idle,
.enter_s2idle = intel_idle_s2idle, },
{
.name = "C6",
.desc = "MWAIT 0x20",
.flags = MWAIT2flg(0x20) | CPUIDLE_FLAG_TLB_FLUSHED,
.exit_latency = 133,
.target_residency = 400,
.enter = &intel_idle,
.enter_s2idle = intel_idle_s2idle, },
{
.name = "C7s",
.desc = "MWAIT 0x32",
.flags = MWAIT2flg(0x32) | CPUIDLE_FLAG_TLB_FLUSHED,
.exit_latency = 166,
.target_residency = 500,
.enter = &intel_idle,
.enter_s2idle = intel_idle_s2idle, },
{
.name = "C8",
.desc = "MWAIT 0x40",
.flags = MWAIT2flg(0x40) | CPUIDLE_FLAG_TLB_FLUSHED,
.exit_latency = 300,
.target_residency = 900,
.enter = &intel_idle,
.enter_s2idle = intel_idle_s2idle, },
{
.name = "C9",
.desc = "MWAIT 0x50",
.flags = MWAIT2flg(0x50) | CPUIDLE_FLAG_TLB_FLUSHED,
.exit_latency = 600,
.target_residency = 1800,
.enter = &intel_idle,
.enter_s2idle = intel_idle_s2idle, },
{
.name = "C10",
.desc = "MWAIT 0x60",
.flags = MWAIT2flg(0x60) | CPUIDLE_FLAG_TLB_FLUSHED,
.exit_latency = 2600,
.target_residency = 7700,
.enter = &intel_idle,
.enter_s2idle = intel_idle_s2idle, },
{
.enter = NULL }
};
static struct cpuidle_state skl_cstates[] = {
{
.name = "C1",
.desc = "MWAIT 0x00",
.flags = MWAIT2flg(0x00),
.exit_latency = 2,
.target_residency = 2,
.enter = &intel_idle,
.enter_s2idle = intel_idle_s2idle, },
{
.name = "C1E",
.desc = "MWAIT 0x01",
.flags = MWAIT2flg(0x01) | CPUIDLE_FLAG_ALWAYS_ENABLE,
.exit_latency = 10,
.target_residency = 20,
.enter = &intel_idle,
.enter_s2idle = intel_idle_s2idle, },
{
.name = "C3",
.desc = "MWAIT 0x10",
.flags = MWAIT2flg(0x10) | CPUIDLE_FLAG_TLB_FLUSHED,
.exit_latency = 70,
.target_residency = 100,
.enter = &intel_idle,
.enter_s2idle = intel_idle_s2idle, },
{
.name = "C6",
.desc = "MWAIT 0x20",
.flags = MWAIT2flg(0x20) | CPUIDLE_FLAG_TLB_FLUSHED,
.exit_latency = 85,
.target_residency = 200,
.enter = &intel_idle,
.enter_s2idle = intel_idle_s2idle, },
{
.name = "C7s",
.desc = "MWAIT 0x33",
.flags = MWAIT2flg(0x33) | CPUIDLE_FLAG_TLB_FLUSHED,
.exit_latency = 124,
.target_residency = 800,
.enter = &intel_idle,
.enter_s2idle = intel_idle_s2idle, },
{
.name = "C8",
.desc = "MWAIT 0x40",
.flags = MWAIT2flg(0x40) | CPUIDLE_FLAG_TLB_FLUSHED,
.exit_latency = 200,
.target_residency = 800,
.enter = &intel_idle,
.enter_s2idle = intel_idle_s2idle, },
{
.name = "C9",
.desc = "MWAIT 0x50",
.flags = MWAIT2flg(0x50) | CPUIDLE_FLAG_TLB_FLUSHED,
.exit_latency = 480,
.target_residency = 5000,
.enter = &intel_idle,
.enter_s2idle = intel_idle_s2idle, },
{
.name = "C10",
.desc = "MWAIT 0x60",
.flags = MWAIT2flg(0x60) | CPUIDLE_FLAG_TLB_FLUSHED,
.exit_latency = 890,
.target_residency = 5000,
.enter = &intel_idle,
.enter_s2idle = intel_idle_s2idle, },
{
.enter = NULL }
};
static struct cpuidle_state skx_cstates[] = {
{
.name = "C1",
.desc = "MWAIT 0x00",
.flags = MWAIT2flg(0x00),
.exit_latency = 2,
.target_residency = 2,
.enter = &intel_idle,
.enter_s2idle = intel_idle_s2idle, },
{
.name = "C1E",
.desc = "MWAIT 0x01",
.flags = MWAIT2flg(0x01) | CPUIDLE_FLAG_ALWAYS_ENABLE,
.exit_latency = 10,
.target_residency = 20,
.enter = &intel_idle,
.enter_s2idle = intel_idle_s2idle, },
{
.name = "C6",
.desc = "MWAIT 0x20",
.flags = MWAIT2flg(0x20) | CPUIDLE_FLAG_TLB_FLUSHED,
.exit_latency = 133,
.target_residency = 600,
.enter = &intel_idle,
.enter_s2idle = intel_idle_s2idle, },
{
.enter = NULL }
};
static struct cpuidle_state atom_cstates[] = {
{
.name = "C1E",
.desc = "MWAIT 0x00",
.flags = MWAIT2flg(0x00),
.exit_latency = 10,
.target_residency = 20,
.enter = &intel_idle,
.enter_s2idle = intel_idle_s2idle, },
{
.name = "C2",
.desc = "MWAIT 0x10",
.flags = MWAIT2flg(0x10),
.exit_latency = 20,
.target_residency = 80,
.enter = &intel_idle,
.enter_s2idle = intel_idle_s2idle, },
{
.name = "C4",
.desc = "MWAIT 0x30",
.flags = MWAIT2flg(0x30) | CPUIDLE_FLAG_TLB_FLUSHED,
.exit_latency = 100,
.target_residency = 400,
.enter = &intel_idle,
.enter_s2idle = intel_idle_s2idle, },
{
.name = "C6",
.desc = "MWAIT 0x52",
.flags = MWAIT2flg(0x52) | CPUIDLE_FLAG_TLB_FLUSHED,
.exit_latency = 140,
.target_residency = 560,
.enter = &intel_idle,
.enter_s2idle = intel_idle_s2idle, },
{
.enter = NULL }
};
static struct cpuidle_state tangier_cstates[] = {
{
.name = "C1",
.desc = "MWAIT 0x00",
.flags = MWAIT2flg(0x00),
.exit_latency = 1,
.target_residency = 4,
.enter = &intel_idle,
.enter_s2idle = intel_idle_s2idle, },
{
.name = "C4",
.desc = "MWAIT 0x30",
.flags = MWAIT2flg(0x30) | CPUIDLE_FLAG_TLB_FLUSHED,
.exit_latency = 100,
.target_residency = 400,
.enter = &intel_idle,
.enter_s2idle = intel_idle_s2idle, },
{
.name = "C6",
.desc = "MWAIT 0x52",
.flags = MWAIT2flg(0x52) | CPUIDLE_FLAG_TLB_FLUSHED,
.exit_latency = 140,
.target_residency = 560,
.enter = &intel_idle,
.enter_s2idle = intel_idle_s2idle, },
{
.name = "C7",
.desc = "MWAIT 0x60",
.flags = MWAIT2flg(0x60) | CPUIDLE_FLAG_TLB_FLUSHED,
.exit_latency = 1200,
.target_residency = 4000,
.enter = &intel_idle,
.enter_s2idle = intel_idle_s2idle, },
{
.name = "C9",
.desc = "MWAIT 0x64",
.flags = MWAIT2flg(0x64) | CPUIDLE_FLAG_TLB_FLUSHED,
.exit_latency = 10000,
.target_residency = 20000,
.enter = &intel_idle,
.enter_s2idle = intel_idle_s2idle, },
{
.enter = NULL }
};
static struct cpuidle_state avn_cstates[] = {
{
.name = "C1",
.desc = "MWAIT 0x00",
.flags = MWAIT2flg(0x00),
.exit_latency = 2,
.target_residency = 2,
.enter = &intel_idle,
.enter_s2idle = intel_idle_s2idle, },
{
.name = "C6",
.desc = "MWAIT 0x51",
.flags = MWAIT2flg(0x51) | CPUIDLE_FLAG_TLB_FLUSHED,
.exit_latency = 15,
.target_residency = 45,
.enter = &intel_idle,
.enter_s2idle = intel_idle_s2idle, },
{
.enter = NULL }
};
static struct cpuidle_state knl_cstates[] = {
{
.name = "C1",
.desc = "MWAIT 0x00",
.flags = MWAIT2flg(0x00),
.exit_latency = 1,
.target_residency = 2,
.enter = &intel_idle,
.enter_s2idle = intel_idle_s2idle },
{
.name = "C6",
.desc = "MWAIT 0x10",
.flags = MWAIT2flg(0x10) | CPUIDLE_FLAG_TLB_FLUSHED,
.exit_latency = 120,
.target_residency = 500,
.enter = &intel_idle,
.enter_s2idle = intel_idle_s2idle },
{
.enter = NULL }
};
static struct cpuidle_state bxt_cstates[] = {
{
.name = "C1",
.desc = "MWAIT 0x00",
.flags = MWAIT2flg(0x00),
.exit_latency = 2,
.target_residency = 2,
.enter = &intel_idle,
.enter_s2idle = intel_idle_s2idle, },
{
.name = "C1E",
.desc = "MWAIT 0x01",
.flags = MWAIT2flg(0x01) | CPUIDLE_FLAG_ALWAYS_ENABLE,
.exit_latency = 10,
.target_residency = 20,
.enter = &intel_idle,
.enter_s2idle = intel_idle_s2idle, },
{
.name = "C6",
.desc = "MWAIT 0x20",
.flags = MWAIT2flg(0x20) | CPUIDLE_FLAG_TLB_FLUSHED,
.exit_latency = 133,
.target_residency = 133,
.enter = &intel_idle,
.enter_s2idle = intel_idle_s2idle, },
{
.name = "C7s",
.desc = "MWAIT 0x31",
.flags = MWAIT2flg(0x31) | CPUIDLE_FLAG_TLB_FLUSHED,
.exit_latency = 155,
.target_residency = 155,
.enter = &intel_idle,
.enter_s2idle = intel_idle_s2idle, },
{
.name = "C8",
.desc = "MWAIT 0x40",
.flags = MWAIT2flg(0x40) | CPUIDLE_FLAG_TLB_FLUSHED,
.exit_latency = 1000,
.target_residency = 1000,
.enter = &intel_idle,
.enter_s2idle = intel_idle_s2idle, },
{
.name = "C9",
.desc = "MWAIT 0x50",
.flags = MWAIT2flg(0x50) | CPUIDLE_FLAG_TLB_FLUSHED,
.exit_latency = 2000,
.target_residency = 2000,
.enter = &intel_idle,
.enter_s2idle = intel_idle_s2idle, },
{
.name = "C10",
.desc = "MWAIT 0x60",
.flags = MWAIT2flg(0x60) | CPUIDLE_FLAG_TLB_FLUSHED,
.exit_latency = 10000,
.target_residency = 10000,
.enter = &intel_idle,
.enter_s2idle = intel_idle_s2idle, },
{
.enter = NULL }
};
static struct cpuidle_state dnv_cstates[] = {
{
.name = "C1",
.desc = "MWAIT 0x00",
.flags = MWAIT2flg(0x00),
.exit_latency = 2,
.target_residency = 2,
.enter = &intel_idle,
.enter_s2idle = intel_idle_s2idle, },
{
.name = "C1E",
.desc = "MWAIT 0x01",
.flags = MWAIT2flg(0x01) | CPUIDLE_FLAG_ALWAYS_ENABLE,
.exit_latency = 10,
.target_residency = 20,
.enter = &intel_idle,
.enter_s2idle = intel_idle_s2idle, },
{
.name = "C6",
.desc = "MWAIT 0x20",
.flags = MWAIT2flg(0x20) | CPUIDLE_FLAG_TLB_FLUSHED,
.exit_latency = 50,
.target_residency = 500,
.enter = &intel_idle,
.enter_s2idle = intel_idle_s2idle, },
{
.enter = NULL }
};
/**
* intel_idle
* @dev: cpuidle_device
* @drv: cpuidle driver
* @index: index of cpuidle state
*
* Must be called under local_irq_disable().
*/
static __cpuidle int intel_idle(struct cpuidle_device *dev,
struct cpuidle_driver *drv, int index)
{
unsigned long ecx = 1; /* break on interrupt flag */
struct cpuidle_state *state = &drv->states[index];
unsigned long eax = flg2MWAIT(state->flags);
unsigned int cstate;
bool uninitialized_var(tick);
int cpu = smp_processor_id();
/*
* leave_mm() to avoid costly and often unnecessary wakeups
* for flushing the user TLB's associated with the active mm.
*/
if (state->flags & CPUIDLE_FLAG_TLB_FLUSHED)
leave_mm(cpu);
if (!static_cpu_has(X86_FEATURE_ARAT)) {
cstate = (((eax) >> MWAIT_SUBSTATE_SIZE) &
MWAIT_CSTATE_MASK) + 1;
tick = false;
if (!(lapic_timer_reliable_states & (1 << (cstate)))) {
tick = true;
tick_broadcast_enter();
}
}
mwait_idle_with_hints(eax, ecx);
if (!static_cpu_has(X86_FEATURE_ARAT) && tick)
tick_broadcast_exit();
return index;
}
/**
* intel_idle_s2idle - simplified "enter" callback routine for suspend-to-idle
* @dev: cpuidle_device
* @drv: cpuidle driver
* @index: state index
*/
static void intel_idle_s2idle(struct cpuidle_device *dev,
struct cpuidle_driver *drv, int index)
{
unsigned long ecx = 1; /* break on interrupt flag */
unsigned long eax = flg2MWAIT(drv->states[index].flags);
mwait_idle_with_hints(eax, ecx);
}
static bool intel_idle_verify_cstate(unsigned int mwait_hint)
{
unsigned int mwait_cstate = MWAIT_HINT2CSTATE(mwait_hint) + 1;
unsigned int num_substates = (mwait_substates >> mwait_cstate * 4) &
MWAIT_SUBSTATE_MASK;
/* Ignore the C-state if there are NO sub-states in CPUID for it. */
if (num_substates == 0)
return false;
if (mwait_cstate > 2 && !boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
mark_tsc_unstable("TSC halts in idle states deeper than C2");
return true;
}
static void auto_demotion_disable(void)
{
unsigned long long msr_bits;
rdmsrl(MSR_PKG_CST_CONFIG_CONTROL, msr_bits);
msr_bits &= ~(icpu->auto_demotion_disable_flags);
wrmsrl(MSR_PKG_CST_CONFIG_CONTROL, msr_bits);
}
static void c1e_promotion_disable(void)
{
unsigned long long msr_bits;
rdmsrl(MSR_IA32_POWER_CTL, msr_bits);
msr_bits &= ~0x2;
wrmsrl(MSR_IA32_POWER_CTL, msr_bits);
}
static const struct idle_cpu idle_cpu_nehalem = {
.state_table = nehalem_cstates,
.auto_demotion_disable_flags = NHM_C1_AUTO_DEMOTE | NHM_C3_AUTO_DEMOTE,
.disable_promotion_to_c1e = true,
};
static const struct idle_cpu idle_cpu_nhx = {
.state_table = nehalem_cstates,
.auto_demotion_disable_flags = NHM_C1_AUTO_DEMOTE | NHM_C3_AUTO_DEMOTE,
.disable_promotion_to_c1e = true,
.use_acpi = true,
};
static const struct idle_cpu idle_cpu_atom = {
.state_table = atom_cstates,
};
static const struct idle_cpu idle_cpu_tangier = {
.state_table = tangier_cstates,
};
static const struct idle_cpu idle_cpu_lincroft = {
.state_table = atom_cstates,
.auto_demotion_disable_flags = ATM_LNC_C6_AUTO_DEMOTE,
};
static const struct idle_cpu idle_cpu_snb = {
.state_table = snb_cstates,
.disable_promotion_to_c1e = true,
};
static const struct idle_cpu idle_cpu_snx = {
.state_table = snb_cstates,
.disable_promotion_to_c1e = true,
.use_acpi = true,
};
static const struct idle_cpu idle_cpu_byt = {
.state_table = byt_cstates,
.disable_promotion_to_c1e = true,
.byt_auto_demotion_disable_flag = true,
};
static const struct idle_cpu idle_cpu_cht = {
.state_table = cht_cstates,
.disable_promotion_to_c1e = true,
.byt_auto_demotion_disable_flag = true,
};
static const struct idle_cpu idle_cpu_ivb = {
.state_table = ivb_cstates,
.disable_promotion_to_c1e = true,
};
static const struct idle_cpu idle_cpu_ivt = {
.state_table = ivt_cstates,
.disable_promotion_to_c1e = true,
.use_acpi = true,
};
static const struct idle_cpu idle_cpu_hsw = {
.state_table = hsw_cstates,
.disable_promotion_to_c1e = true,
};
static const struct idle_cpu idle_cpu_hsx = {
.state_table = hsw_cstates,
.disable_promotion_to_c1e = true,
.use_acpi = true,
};
static const struct idle_cpu idle_cpu_bdw = {
.state_table = bdw_cstates,
.disable_promotion_to_c1e = true,
};
static const struct idle_cpu idle_cpu_bdx = {
.state_table = bdw_cstates,
.disable_promotion_to_c1e = true,
.use_acpi = true,
};
static const struct idle_cpu idle_cpu_skl = {
.state_table = skl_cstates,
.disable_promotion_to_c1e = true,
};
static const struct idle_cpu idle_cpu_skx = {
.state_table = skx_cstates,
.disable_promotion_to_c1e = true,
.use_acpi = true,
};
static const struct idle_cpu idle_cpu_avn = {
.state_table = avn_cstates,
.disable_promotion_to_c1e = true,
.use_acpi = true,
};
static const struct idle_cpu idle_cpu_knl = {
.state_table = knl_cstates,
.use_acpi = true,
};
static const struct idle_cpu idle_cpu_bxt = {
.state_table = bxt_cstates,
.disable_promotion_to_c1e = true,
};
static const struct idle_cpu idle_cpu_dnv = {
.state_table = dnv_cstates,
.disable_promotion_to_c1e = true,
.use_acpi = true,
};
static const struct x86_cpu_id intel_idle_ids[] __initconst = {
INTEL_CPU_FAM6(NEHALEM_EP, idle_cpu_nhx),
INTEL_CPU_FAM6(NEHALEM, idle_cpu_nehalem),
INTEL_CPU_FAM6(NEHALEM_G, idle_cpu_nehalem),
INTEL_CPU_FAM6(WESTMERE, idle_cpu_nehalem),
INTEL_CPU_FAM6(WESTMERE_EP, idle_cpu_nhx),
INTEL_CPU_FAM6(NEHALEM_EX, idle_cpu_nhx),
INTEL_CPU_FAM6(ATOM_BONNELL, idle_cpu_atom),
INTEL_CPU_FAM6(ATOM_BONNELL_MID, idle_cpu_lincroft),
INTEL_CPU_FAM6(WESTMERE_EX, idle_cpu_nhx),
INTEL_CPU_FAM6(SANDYBRIDGE, idle_cpu_snb),
INTEL_CPU_FAM6(SANDYBRIDGE_X, idle_cpu_snx),
INTEL_CPU_FAM6(ATOM_SALTWELL, idle_cpu_atom),
INTEL_CPU_FAM6(ATOM_SILVERMONT, idle_cpu_byt),
INTEL_CPU_FAM6(ATOM_SILVERMONT_MID, idle_cpu_tangier),
INTEL_CPU_FAM6(ATOM_AIRMONT, idle_cpu_cht),
INTEL_CPU_FAM6(IVYBRIDGE, idle_cpu_ivb),
INTEL_CPU_FAM6(IVYBRIDGE_X, idle_cpu_ivt),
INTEL_CPU_FAM6(HASWELL, idle_cpu_hsw),
INTEL_CPU_FAM6(HASWELL_X, idle_cpu_hsx),
INTEL_CPU_FAM6(HASWELL_L, idle_cpu_hsw),
INTEL_CPU_FAM6(HASWELL_G, idle_cpu_hsw),
INTEL_CPU_FAM6(ATOM_SILVERMONT_D, idle_cpu_avn),
INTEL_CPU_FAM6(BROADWELL, idle_cpu_bdw),
INTEL_CPU_FAM6(BROADWELL_G, idle_cpu_bdw),
INTEL_CPU_FAM6(BROADWELL_X, idle_cpu_bdx),
INTEL_CPU_FAM6(BROADWELL_D, idle_cpu_bdx),
INTEL_CPU_FAM6(SKYLAKE_L, idle_cpu_skl),
INTEL_CPU_FAM6(SKYLAKE, idle_cpu_skl),
INTEL_CPU_FAM6(KABYLAKE_L, idle_cpu_skl),
INTEL_CPU_FAM6(KABYLAKE, idle_cpu_skl),
INTEL_CPU_FAM6(SKYLAKE_X, idle_cpu_skx),
INTEL_CPU_FAM6(XEON_PHI_KNL, idle_cpu_knl),
INTEL_CPU_FAM6(XEON_PHI_KNM, idle_cpu_knl),
INTEL_CPU_FAM6(ATOM_GOLDMONT, idle_cpu_bxt),
INTEL_CPU_FAM6(ATOM_GOLDMONT_PLUS, idle_cpu_bxt),
INTEL_CPU_FAM6(ATOM_GOLDMONT_D, idle_cpu_dnv),
INTEL_CPU_FAM6(ATOM_TREMONT_D, idle_cpu_dnv),
{}
};
#define INTEL_CPU_FAM6_MWAIT \
{ X86_VENDOR_INTEL, 6, X86_MODEL_ANY, X86_FEATURE_MWAIT, 0 }
static const struct x86_cpu_id intel_mwait_ids[] __initconst = {
INTEL_CPU_FAM6_MWAIT,
{}
};
static bool intel_idle_max_cstate_reached(int cstate)
{
if (cstate + 1 > max_cstate) {
pr_info("max_cstate %d reached\n", max_cstate);
return true;
}
return false;
}
#ifdef CONFIG_ACPI_PROCESSOR_CSTATE
#include <acpi/processor.h>
static bool no_acpi __read_mostly;
module_param(no_acpi, bool, 0444);
MODULE_PARM_DESC(no_acpi, "Do not use ACPI _CST for building the idle states list");
static struct acpi_processor_power acpi_state_table;
/**
* intel_idle_cst_usable - Check if the _CST information can be used.
*
* Check if all of the C-states listed by _CST in the max_cstate range are
* ACPI_CSTATE_FFH, which means that they should be entered via MWAIT.
*/
static bool intel_idle_cst_usable(void)
{
int cstate, limit;
limit = min_t(int, min_t(int, CPUIDLE_STATE_MAX, max_cstate + 1),
acpi_state_table.count);
for (cstate = 1; cstate < limit; cstate++) {
struct acpi_processor_cx *cx = &acpi_state_table.states[cstate];
if (cx->entry_method != ACPI_CSTATE_FFH)
return false;
}
return true;
}
static bool intel_idle_acpi_cst_extract(void)
{
unsigned int cpu;
if (no_acpi) {
pr_debug("Not allowed to use ACPI _CST\n");
return false;
}
for_each_possible_cpu(cpu) {
struct acpi_processor *pr = per_cpu(processors, cpu);
if (!pr)
continue;
if (acpi_processor_evaluate_cst(pr->handle, cpu, &acpi_state_table))
continue;
acpi_state_table.count++;
if (!intel_idle_cst_usable())
continue;
if (!acpi_processor_claim_cst_control()) {
acpi_state_table.count = 0;
return false;
}
return true;
}
pr_debug("ACPI _CST not found or not usable\n");
return false;
}
static void intel_idle_init_cstates_acpi(struct cpuidle_driver *drv)
{
int cstate, limit = min_t(int, CPUIDLE_STATE_MAX, acpi_state_table.count);
/*
* If limit > 0, intel_idle_cst_usable() has returned 'true', so all of
* the interesting states are ACPI_CSTATE_FFH.
*/
for (cstate = 1; cstate < limit; cstate++) {
struct acpi_processor_cx *cx;
struct cpuidle_state *state;
if (intel_idle_max_cstate_reached(cstate))
break;
cx = &acpi_state_table.states[cstate];
state = &drv->states[drv->state_count++];
snprintf(state->name, CPUIDLE_NAME_LEN, "C%d_ACPI", cstate);
strlcpy(state->desc, cx->desc, CPUIDLE_DESC_LEN);
state->exit_latency = cx->latency;
/*
* For C1-type C-states use the same number for both the exit
* latency and target residency, because that is the case for
* C1 in the majority of the static C-states tables above.
* For the other types of C-states, however, set the target
* residency to 3 times the exit latency which should lead to
* a reasonable balance between energy-efficiency and
* performance in the majority of interesting cases.
*/
state->target_residency = cx->latency;
if (cx->type > ACPI_STATE_C1)
state->target_residency *= 3;
state->flags = MWAIT2flg(cx->address);
if (cx->type > ACPI_STATE_C2)
state->flags |= CPUIDLE_FLAG_TLB_FLUSHED;
state->enter = intel_idle;
state->enter_s2idle = intel_idle_s2idle;
}
}
static bool intel_idle_off_by_default(u32 mwait_hint)
{
int cstate, limit;
/*
* If there are no _CST C-states, do not disable any C-states by
* default.
*/
if (!acpi_state_table.count)
return false;
limit = min_t(int, CPUIDLE_STATE_MAX, acpi_state_table.count);
/*
* If limit > 0, intel_idle_cst_usable() has returned 'true', so all of
* the interesting states are ACPI_CSTATE_FFH.
*/
for (cstate = 1; cstate < limit; cstate++) {
if (acpi_state_table.states[cstate].address == mwait_hint)
return false;
}
return true;
}
#else /* !CONFIG_ACPI_PROCESSOR_CSTATE */
static inline bool intel_idle_acpi_cst_extract(void) { return false; }
static inline void intel_idle_init_cstates_acpi(struct cpuidle_driver *drv) { }
static inline bool intel_idle_off_by_default(u32 mwait_hint) { return false; }
#endif /* !CONFIG_ACPI_PROCESSOR_CSTATE */
/*
* intel_idle_cpuidle_devices_uninit()
* Unregisters the cpuidle devices.
*/
static void intel_idle_cpuidle_devices_uninit(void)
{
int i;
struct cpuidle_device *dev;
for_each_online_cpu(i) {
dev = per_cpu_ptr(intel_idle_cpuidle_devices, i);
cpuidle_unregister_device(dev);
}
}
/*
* ivt_idle_state_table_update(void)
*
* Tune IVT multi-socket targets
* Assumption: num_sockets == (max_package_num + 1)
*/
static void ivt_idle_state_table_update(void)
{
/* IVT uses a different table for 1-2, 3-4, and > 4 sockets */
int cpu, package_num, num_sockets = 1;
for_each_online_cpu(cpu) {
package_num = topology_physical_package_id(cpu);
if (package_num + 1 > num_sockets) {
num_sockets = package_num + 1;
if (num_sockets > 4) {
cpuidle_state_table = ivt_cstates_8s;
return;
}
}
}
if (num_sockets > 2)
cpuidle_state_table = ivt_cstates_4s;
/* else, 1 and 2 socket systems use default ivt_cstates */
}
/*
* Translate IRTL (Interrupt Response Time Limit) MSR to usec
*/
static unsigned int irtl_ns_units[] = {
1, 32, 1024, 32768, 1048576, 33554432, 0, 0 };
static unsigned long long irtl_2_usec(unsigned long long irtl)
{
unsigned long long ns;
if (!irtl)
return 0;
ns = irtl_ns_units[(irtl >> 10) & 0x7];
return div64_u64((irtl & 0x3FF) * ns, 1000);
}
/*
* bxt_idle_state_table_update(void)
*
* On BXT, we trust the IRTL to show the definitive maximum latency
* We use the same value for target_residency.
*/
static void bxt_idle_state_table_update(void)
{
unsigned long long msr;
unsigned int usec;
rdmsrl(MSR_PKGC6_IRTL, msr);
usec = irtl_2_usec(msr);
if (usec) {
bxt_cstates[2].exit_latency = usec;
bxt_cstates[2].target_residency = usec;
}
rdmsrl(MSR_PKGC7_IRTL, msr);
usec = irtl_2_usec(msr);
if (usec) {
bxt_cstates[3].exit_latency = usec;
bxt_cstates[3].target_residency = usec;
}
rdmsrl(MSR_PKGC8_IRTL, msr);
usec = irtl_2_usec(msr);
if (usec) {
bxt_cstates[4].exit_latency = usec;
bxt_cstates[4].target_residency = usec;
}
rdmsrl(MSR_PKGC9_IRTL, msr);
usec = irtl_2_usec(msr);
if (usec) {
bxt_cstates[5].exit_latency = usec;
bxt_cstates[5].target_residency = usec;
}
rdmsrl(MSR_PKGC10_IRTL, msr);
usec = irtl_2_usec(msr);
if (usec) {
bxt_cstates[6].exit_latency = usec;
bxt_cstates[6].target_residency = usec;
}
}
/*
* sklh_idle_state_table_update(void)
*
* On SKL-H (model 0x5e) disable C8 and C9 if:
* C10 is enabled and SGX disabled
*/
static void sklh_idle_state_table_update(void)
{
unsigned long long msr;
unsigned int eax, ebx, ecx, edx;
/* if PC10 disabled via cmdline intel_idle.max_cstate=7 or shallower */
if (max_cstate <= 7)
return;
/* if PC10 not present in CPUID.MWAIT.EDX */
if ((mwait_substates & (0xF << 28)) == 0)
return;
rdmsrl(MSR_PKG_CST_CONFIG_CONTROL, msr);
/* PC10 is not enabled in PKG C-state limit */
if ((msr & 0xF) != 8)
return;
ecx = 0;
cpuid(7, &eax, &ebx, &ecx, &edx);
/* if SGX is present */
if (ebx & (1 << 2)) {
rdmsrl(MSR_IA32_FEATURE_CONTROL, msr);
/* if SGX is enabled */
if (msr & (1 << 18))
return;
}
skl_cstates[5].flags |= CPUIDLE_FLAG_UNUSABLE; /* C8-SKL */
skl_cstates[6].flags |= CPUIDLE_FLAG_UNUSABLE; /* C9-SKL */
}
static void intel_idle_init_cstates_icpu(struct cpuidle_driver *drv)
{
int cstate;
switch (boot_cpu_data.x86_model) {
case INTEL_FAM6_IVYBRIDGE_X:
ivt_idle_state_table_update();
break;
case INTEL_FAM6_ATOM_GOLDMONT:
case INTEL_FAM6_ATOM_GOLDMONT_PLUS:
bxt_idle_state_table_update();
break;
case INTEL_FAM6_SKYLAKE:
sklh_idle_state_table_update();
break;
}
for (cstate = 0; cstate < CPUIDLE_STATE_MAX; ++cstate) {
unsigned int mwait_hint;
if (intel_idle_max_cstate_reached(cstate))
break;
if (!cpuidle_state_table[cstate].enter &&
!cpuidle_state_table[cstate].enter_s2idle)
break;
/* If marked as unusable, skip this state. */
if (cpuidle_state_table[cstate].flags & CPUIDLE_FLAG_UNUSABLE) {
pr_debug("state %s is disabled\n",
cpuidle_state_table[cstate].name);
continue;
}
mwait_hint = flg2MWAIT(cpuidle_state_table[cstate].flags);
if (!intel_idle_verify_cstate(mwait_hint))
continue;
/* Structure copy. */
drv->states[drv->state_count] = cpuidle_state_table[cstate];
if (icpu->use_acpi && intel_idle_off_by_default(mwait_hint) &&
!(cpuidle_state_table[cstate].flags & CPUIDLE_FLAG_ALWAYS_ENABLE))
drv->states[drv->state_count].flags |= CPUIDLE_FLAG_OFF;
drv->state_count++;
}
if (icpu->byt_auto_demotion_disable_flag) {
wrmsrl(MSR_CC6_DEMOTION_POLICY_CONFIG, 0);
wrmsrl(MSR_MC6_DEMOTION_POLICY_CONFIG, 0);
}
}
/*
* intel_idle_cpuidle_driver_init()
* allocate, initialize cpuidle_states
*/
static void __init intel_idle_cpuidle_driver_init(struct cpuidle_driver *drv)
{
cpuidle_poll_state_init(drv);
drv->state_count = 1;
if (icpu)
intel_idle_init_cstates_icpu(drv);
else
intel_idle_init_cstates_acpi(drv);
}
/*
* intel_idle_cpu_init()
* allocate, initialize, register cpuidle_devices
* @cpu: cpu/core to initialize
*/
static int intel_idle_cpu_init(unsigned int cpu)
{
struct cpuidle_device *dev;
dev = per_cpu_ptr(intel_idle_cpuidle_devices, cpu);
dev->cpu = cpu;
if (cpuidle_register_device(dev)) {
pr_debug("cpuidle_register_device %d failed!\n", cpu);
return -EIO;
}
if (!icpu)
return 0;
if (icpu->auto_demotion_disable_flags)
auto_demotion_disable();
if (icpu->disable_promotion_to_c1e)
c1e_promotion_disable();
return 0;
}
static int intel_idle_cpu_online(unsigned int cpu)
{
struct cpuidle_device *dev;
if (lapic_timer_reliable_states != LAPIC_TIMER_ALWAYS_RELIABLE)
tick_broadcast_enable();
/*
* Some systems can hotplug a cpu at runtime after
* the kernel has booted, we have to initialize the
* driver in this case
*/
dev = per_cpu_ptr(intel_idle_cpuidle_devices, cpu);
if (!dev->registered)
return intel_idle_cpu_init(cpu);
return 0;
}
static int __init intel_idle_init(void)
{
const struct x86_cpu_id *id;
unsigned int eax, ebx, ecx;
int retval;
/* Do not load intel_idle at all for now if idle= is passed */
if (boot_option_idle_override != IDLE_NO_OVERRIDE)
return -ENODEV;
if (max_cstate == 0) {
pr_debug("disabled\n");
return -EPERM;
}
id = x86_match_cpu(intel_idle_ids);
if (id) {
if (!boot_cpu_has(X86_FEATURE_MWAIT)) {
pr_debug("Please enable MWAIT in BIOS SETUP\n");
return -ENODEV;
}
} else {
id = x86_match_cpu(intel_mwait_ids);
if (!id)
return -ENODEV;
}
if (boot_cpu_data.cpuid_level < CPUID_MWAIT_LEAF)
return -ENODEV;
cpuid(CPUID_MWAIT_LEAF, &eax, &ebx, &ecx, &mwait_substates);
if (!(ecx & CPUID5_ECX_EXTENSIONS_SUPPORTED) ||
!(ecx & CPUID5_ECX_INTERRUPT_BREAK) ||
!mwait_substates)
return -ENODEV;
pr_debug("MWAIT substates: 0x%x\n", mwait_substates);
icpu = (const struct idle_cpu *)id->driver_data;
if (icpu) {
cpuidle_state_table = icpu->state_table;
if (icpu->use_acpi)
intel_idle_acpi_cst_extract();
} else if (!intel_idle_acpi_cst_extract()) {
return -ENODEV;
}
pr_debug("v" INTEL_IDLE_VERSION " model 0x%X\n",
boot_cpu_data.x86_model);
intel_idle_cpuidle_devices = alloc_percpu(struct cpuidle_device);
if (!intel_idle_cpuidle_devices)
return -ENOMEM;
intel_idle_cpuidle_driver_init(&intel_idle_driver);
retval = cpuidle_register_driver(&intel_idle_driver);
if (retval) {
struct cpuidle_driver *drv = cpuidle_get_driver();
printk(KERN_DEBUG pr_fmt("intel_idle yielding to %s\n"),
drv ? drv->name : "none");
goto init_driver_fail;
}
if (boot_cpu_has(X86_FEATURE_ARAT)) /* Always Reliable APIC Timer */
lapic_timer_reliable_states = LAPIC_TIMER_ALWAYS_RELIABLE;
retval = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "idle/intel:online",
intel_idle_cpu_online, NULL);
if (retval < 0)
goto hp_setup_fail;
pr_debug("lapic_timer_reliable_states 0x%x\n",
lapic_timer_reliable_states);
return 0;
hp_setup_fail:
intel_idle_cpuidle_devices_uninit();
cpuidle_unregister_driver(&intel_idle_driver);
init_driver_fail:
free_percpu(intel_idle_cpuidle_devices);
return retval;
}
device_initcall(intel_idle_init);
/*
* We are not really modular, but we used to support that. Meaning we also
* support "intel_idle.max_cstate=..." at boot and also a read-only export of
* it at /sys/module/intel_idle/parameters/max_cstate -- so using module_param
* is the easiest way (currently) to continue doing that.
*/
module_param(max_cstate, int, 0444);