Manivannan Sadhasivam 7b844cf445 mtd: parsers: afs: Fix freeing the part name memory in failure
In the case of failure while parsing the partitions, the iterator should
be pre decremented by one before starting to free the memory allocated
by kstrdup(). Because in the failure case, kstrdup() will not succeed
and thus no memory will be allocated for the current iteration.

Fixes: 1fca1f6abb38 ("mtd: afs: simplify partition parsing")
Signed-off-by: Manivannan Sadhasivam <manivannan.sadhasivam@linaro.org>
Reviewed-by: Linus Walleij <linus.walleij@linaro.org>
Cc: Linus Walleij <linus.walleij@linaro.org>
Signed-off-by: Miquel Raynal <miquel.raynal@bootlin.com>
Link: https://lore.kernel.org/linux-mtd/20210104041137.113075-5-manivannan.sadhasivam@linaro.org
2021-02-01 18:58:38 +01:00

396 lines
9.1 KiB
C

// SPDX-License-Identifier: GPL-2.0-or-later
/*======================================================================
drivers/mtd/afs.c: ARM Flash Layout/Partitioning
Copyright © 2000 ARM Limited
Copyright (C) 2019 Linus Walleij
This is access code for flashes using ARM's flash partitioning
standards.
======================================================================*/
#include <linux/module.h>
#include <linux/types.h>
#include <linux/kernel.h>
#include <linux/slab.h>
#include <linux/string.h>
#include <linux/init.h>
#include <linux/mtd/mtd.h>
#include <linux/mtd/map.h>
#include <linux/mtd/partitions.h>
#define AFSV1_FOOTER_MAGIC 0xA0FFFF9F
#define AFSV2_FOOTER_MAGIC1 0x464C5348 /* "FLSH" */
#define AFSV2_FOOTER_MAGIC2 0x464F4F54 /* "FOOT" */
struct footer_v1 {
u32 image_info_base; /* Address of first word of ImageFooter */
u32 image_start; /* Start of area reserved by this footer */
u32 signature; /* 'Magic' number proves it's a footer */
u32 type; /* Area type: ARM Image, SIB, customer */
u32 checksum; /* Just this structure */
};
struct image_info_v1 {
u32 bootFlags; /* Boot flags, compression etc. */
u32 imageNumber; /* Unique number, selects for boot etc. */
u32 loadAddress; /* Address program should be loaded to */
u32 length; /* Actual size of image */
u32 address; /* Image is executed from here */
char name[16]; /* Null terminated */
u32 headerBase; /* Flash Address of any stripped header */
u32 header_length; /* Length of header in memory */
u32 headerType; /* AIF, RLF, s-record etc. */
u32 checksum; /* Image checksum (inc. this struct) */
};
static u32 word_sum(void *words, int num)
{
u32 *p = words;
u32 sum = 0;
while (num--)
sum += *p++;
return sum;
}
static u32 word_sum_v2(u32 *p, u32 num)
{
u32 sum = 0;
int i;
for (i = 0; i < num; i++) {
u32 val;
val = p[i];
if (val > ~sum)
sum++;
sum += val;
}
return ~sum;
}
static bool afs_is_v1(struct mtd_info *mtd, u_int off)
{
/* The magic is 12 bytes from the end of the erase block */
u_int ptr = off + mtd->erasesize - 12;
u32 magic;
size_t sz;
int ret;
ret = mtd_read(mtd, ptr, 4, &sz, (u_char *)&magic);
if (ret < 0) {
printk(KERN_ERR "AFS: mtd read failed at 0x%x: %d\n",
ptr, ret);
return false;
}
if (ret >= 0 && sz != 4)
return false;
return (magic == AFSV1_FOOTER_MAGIC);
}
static bool afs_is_v2(struct mtd_info *mtd, u_int off)
{
/* The magic is the 8 last bytes of the erase block */
u_int ptr = off + mtd->erasesize - 8;
u32 foot[2];
size_t sz;
int ret;
ret = mtd_read(mtd, ptr, 8, &sz, (u_char *)foot);
if (ret < 0) {
printk(KERN_ERR "AFS: mtd read failed at 0x%x: %d\n",
ptr, ret);
return false;
}
if (ret >= 0 && sz != 8)
return false;
return (foot[0] == AFSV2_FOOTER_MAGIC1 &&
foot[1] == AFSV2_FOOTER_MAGIC2);
}
static int afs_parse_v1_partition(struct mtd_info *mtd,
u_int off, struct mtd_partition *part)
{
struct footer_v1 fs;
struct image_info_v1 iis;
u_int mask;
/*
* Static checks cannot see that we bail out if we have an error
* reading the footer.
*/
u_int iis_ptr;
u_int img_ptr;
u_int ptr;
size_t sz;
int ret;
int i;
/*
* This is the address mask; we use this to mask off out of
* range address bits.
*/
mask = mtd->size - 1;
ptr = off + mtd->erasesize - sizeof(fs);
ret = mtd_read(mtd, ptr, sizeof(fs), &sz, (u_char *)&fs);
if (ret >= 0 && sz != sizeof(fs))
ret = -EINVAL;
if (ret < 0) {
printk(KERN_ERR "AFS: mtd read failed at 0x%x: %d\n",
ptr, ret);
return ret;
}
/*
* Check the checksum.
*/
if (word_sum(&fs, sizeof(fs) / sizeof(u32)) != 0xffffffff)
return -EINVAL;
/*
* Hide the SIB (System Information Block)
*/
if (fs.type == 2)
return 0;
iis_ptr = fs.image_info_base & mask;
img_ptr = fs.image_start & mask;
/*
* Check the image info base. This can not
* be located after the footer structure.
*/
if (iis_ptr >= ptr)
return 0;
/*
* Check the start of this image. The image
* data can not be located after this block.
*/
if (img_ptr > off)
return 0;
/* Read the image info block */
memset(&iis, 0, sizeof(iis));
ret = mtd_read(mtd, iis_ptr, sizeof(iis), &sz, (u_char *)&iis);
if (ret < 0) {
printk(KERN_ERR "AFS: mtd read failed at 0x%x: %d\n",
iis_ptr, ret);
return -EINVAL;
}
if (sz != sizeof(iis))
return -EINVAL;
/*
* Validate the name - it must be NUL terminated.
*/
for (i = 0; i < sizeof(iis.name); i++)
if (iis.name[i] == '\0')
break;
if (i > sizeof(iis.name))
return -EINVAL;
part->name = kstrdup(iis.name, GFP_KERNEL);
if (!part->name)
return -ENOMEM;
part->size = (iis.length + mtd->erasesize - 1) & ~(mtd->erasesize - 1);
part->offset = img_ptr;
part->mask_flags = 0;
printk(" mtd: at 0x%08x, %5lluKiB, %8u, %s\n",
img_ptr, part->size / 1024,
iis.imageNumber, part->name);
return 0;
}
static int afs_parse_v2_partition(struct mtd_info *mtd,
u_int off, struct mtd_partition *part)
{
u_int ptr;
u32 footer[12];
u32 imginfo[36];
char *name;
u32 version;
u32 entrypoint;
u32 attributes;
u32 region_count;
u32 block_start;
u32 block_end;
u32 crc;
size_t sz;
int ret;
int i;
int pad = 0;
pr_debug("Parsing v2 partition @%08x-%08x\n",
off, off + mtd->erasesize);
/* First read the footer */
ptr = off + mtd->erasesize - sizeof(footer);
ret = mtd_read(mtd, ptr, sizeof(footer), &sz, (u_char *)footer);
if ((ret < 0) || (ret >= 0 && sz != sizeof(footer))) {
pr_err("AFS: mtd read failed at 0x%x: %d\n",
ptr, ret);
return -EIO;
}
name = (char *) &footer[0];
version = footer[9];
ptr = off + mtd->erasesize - sizeof(footer) - footer[8];
pr_debug("found image \"%s\", version %08x, info @%08x\n",
name, version, ptr);
/* Then read the image information */
ret = mtd_read(mtd, ptr, sizeof(imginfo), &sz, (u_char *)imginfo);
if ((ret < 0) || (ret >= 0 && sz != sizeof(imginfo))) {
pr_err("AFS: mtd read failed at 0x%x: %d\n",
ptr, ret);
return -EIO;
}
/* 32bit platforms have 4 bytes padding */
crc = word_sum_v2(&imginfo[1], 34);
if (!crc) {
pr_debug("Padding 1 word (4 bytes)\n");
pad = 1;
} else {
/* 64bit platforms have 8 bytes padding */
crc = word_sum_v2(&imginfo[2], 34);
if (!crc) {
pr_debug("Padding 2 words (8 bytes)\n");
pad = 2;
}
}
if (crc) {
pr_err("AFS: bad checksum on v2 image info: %08x\n", crc);
return -EINVAL;
}
entrypoint = imginfo[pad];
attributes = imginfo[pad+1];
region_count = imginfo[pad+2];
block_start = imginfo[20];
block_end = imginfo[21];
pr_debug("image entry=%08x, attr=%08x, regions=%08x, "
"bs=%08x, be=%08x\n",
entrypoint, attributes, region_count,
block_start, block_end);
for (i = 0; i < region_count; i++) {
u32 region_load_addr = imginfo[pad + 3 + i*4];
u32 region_size = imginfo[pad + 4 + i*4];
u32 region_offset = imginfo[pad + 5 + i*4];
u32 region_start;
u32 region_end;
pr_debug(" region %d: address: %08x, size: %08x, "
"offset: %08x\n",
i,
region_load_addr,
region_size,
region_offset);
region_start = off + region_offset;
region_end = region_start + region_size;
/* Align partition to end of erase block */
region_end += (mtd->erasesize - 1);
region_end &= ~(mtd->erasesize -1);
pr_debug(" partition start = %08x, partition end = %08x\n",
region_start, region_end);
/* Create one partition per region */
part->name = kstrdup(name, GFP_KERNEL);
if (!part->name)
return -ENOMEM;
part->offset = region_start;
part->size = region_end - region_start;
part->mask_flags = 0;
}
return 0;
}
static int parse_afs_partitions(struct mtd_info *mtd,
const struct mtd_partition **pparts,
struct mtd_part_parser_data *data)
{
struct mtd_partition *parts;
u_int off, sz;
int ret = 0;
int i;
/* Count the partitions by looping over all erase blocks */
for (i = off = sz = 0; off < mtd->size; off += mtd->erasesize) {
if (afs_is_v1(mtd, off)) {
sz += sizeof(struct mtd_partition);
i += 1;
}
if (afs_is_v2(mtd, off)) {
sz += sizeof(struct mtd_partition);
i += 1;
}
}
if (!i)
return 0;
parts = kzalloc(sz, GFP_KERNEL);
if (!parts)
return -ENOMEM;
/*
* Identify the partitions
*/
for (i = off = 0; off < mtd->size; off += mtd->erasesize) {
if (afs_is_v1(mtd, off)) {
ret = afs_parse_v1_partition(mtd, off, &parts[i]);
if (ret)
goto out_free_parts;
i++;
}
if (afs_is_v2(mtd, off)) {
ret = afs_parse_v2_partition(mtd, off, &parts[i]);
if (ret)
goto out_free_parts;
i++;
}
}
*pparts = parts;
return i;
out_free_parts:
while (--i >= 0)
kfree(parts[i].name);
kfree(parts);
*pparts = NULL;
return ret;
}
static const struct of_device_id mtd_parser_afs_of_match_table[] = {
{ .compatible = "arm,arm-firmware-suite" },
{},
};
MODULE_DEVICE_TABLE(of, mtd_parser_afs_of_match_table);
static struct mtd_part_parser afs_parser = {
.parse_fn = parse_afs_partitions,
.name = "afs",
.of_match_table = mtd_parser_afs_of_match_table,
};
module_mtd_part_parser(afs_parser);
MODULE_AUTHOR("ARM Ltd");
MODULE_DESCRIPTION("ARM Firmware Suite partition parser");
MODULE_LICENSE("GPL");