3df494a32b
Currently, if a task is stopped (ie. it's in the TASK_STOPPED state), it is considered by the freezer as unfreezeable. However, there may be a race between the freezer and the delivery of the continuation signal to the task resulting in the task running after we have finished freezing the other tasks. This, in turn, may lead to undesirable effects up to and including data corruption. To prevent this from happening we first need to make the freezer consider stopped tasks as freezeable. For this purpose we need to make freezeable() stop returning 0 for these tasks and we need to force them to enter the refrigerator. However, if there's no continuation signal in the meantime, the stopped tasks should remain stopped after all processes have been thawed, so we need to send an additional SIGSTOP to each of them before waking it up. Also, a stopped task that has just been woken up should first check if there's a freezing request for it and go to the refrigerator if that's the case. Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl> Acked-by: Pavel Machek <pavel@ucw.cz> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
217 lines
4.7 KiB
C
217 lines
4.7 KiB
C
/*
|
|
* drivers/power/process.c - Functions for starting/stopping processes on
|
|
* suspend transitions.
|
|
*
|
|
* Originally from swsusp.
|
|
*/
|
|
|
|
|
|
#undef DEBUG
|
|
|
|
#include <linux/smp_lock.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/suspend.h>
|
|
#include <linux/module.h>
|
|
#include <linux/syscalls.h>
|
|
#include <linux/freezer.h>
|
|
|
|
/*
|
|
* Timeout for stopping processes
|
|
*/
|
|
#define TIMEOUT (20 * HZ)
|
|
|
|
#define FREEZER_KERNEL_THREADS 0
|
|
#define FREEZER_USER_SPACE 1
|
|
|
|
static inline int freezeable(struct task_struct * p)
|
|
{
|
|
if ((p == current) ||
|
|
(p->flags & PF_NOFREEZE) ||
|
|
(p->exit_state == EXIT_ZOMBIE) ||
|
|
(p->exit_state == EXIT_DEAD))
|
|
return 0;
|
|
return 1;
|
|
}
|
|
|
|
/* Refrigerator is place where frozen processes are stored :-). */
|
|
void refrigerator(void)
|
|
{
|
|
/* Hmm, should we be allowed to suspend when there are realtime
|
|
processes around? */
|
|
long save;
|
|
save = current->state;
|
|
pr_debug("%s entered refrigerator\n", current->comm);
|
|
|
|
frozen_process(current);
|
|
spin_lock_irq(¤t->sighand->siglock);
|
|
recalc_sigpending(); /* We sent fake signal, clean it up */
|
|
spin_unlock_irq(¤t->sighand->siglock);
|
|
|
|
while (frozen(current)) {
|
|
current->state = TASK_UNINTERRUPTIBLE;
|
|
schedule();
|
|
}
|
|
pr_debug("%s left refrigerator\n", current->comm);
|
|
current->state = save;
|
|
}
|
|
|
|
static inline void freeze_process(struct task_struct *p)
|
|
{
|
|
unsigned long flags;
|
|
|
|
if (!freezing(p)) {
|
|
if (p->state == TASK_STOPPED)
|
|
force_sig_specific(SIGSTOP, p);
|
|
|
|
freeze(p);
|
|
spin_lock_irqsave(&p->sighand->siglock, flags);
|
|
signal_wake_up(p, p->state == TASK_STOPPED);
|
|
spin_unlock_irqrestore(&p->sighand->siglock, flags);
|
|
}
|
|
}
|
|
|
|
static void cancel_freezing(struct task_struct *p)
|
|
{
|
|
unsigned long flags;
|
|
|
|
if (freezing(p)) {
|
|
pr_debug(" clean up: %s\n", p->comm);
|
|
do_not_freeze(p);
|
|
spin_lock_irqsave(&p->sighand->siglock, flags);
|
|
recalc_sigpending_tsk(p);
|
|
spin_unlock_irqrestore(&p->sighand->siglock, flags);
|
|
}
|
|
}
|
|
|
|
static inline int is_user_space(struct task_struct *p)
|
|
{
|
|
return p->mm && !(p->flags & PF_BORROWED_MM);
|
|
}
|
|
|
|
static unsigned int try_to_freeze_tasks(int freeze_user_space)
|
|
{
|
|
struct task_struct *g, *p;
|
|
unsigned long end_time;
|
|
unsigned int todo;
|
|
|
|
end_time = jiffies + TIMEOUT;
|
|
do {
|
|
todo = 0;
|
|
read_lock(&tasklist_lock);
|
|
do_each_thread(g, p) {
|
|
if (!freezeable(p))
|
|
continue;
|
|
|
|
if (frozen(p))
|
|
continue;
|
|
|
|
if (p->state == TASK_TRACED && frozen(p->parent)) {
|
|
cancel_freezing(p);
|
|
continue;
|
|
}
|
|
if (is_user_space(p)) {
|
|
if (!freeze_user_space)
|
|
continue;
|
|
|
|
/* Freeze the task unless there is a vfork
|
|
* completion pending
|
|
*/
|
|
if (!p->vfork_done)
|
|
freeze_process(p);
|
|
} else {
|
|
if (freeze_user_space)
|
|
continue;
|
|
|
|
freeze_process(p);
|
|
}
|
|
todo++;
|
|
} while_each_thread(g, p);
|
|
read_unlock(&tasklist_lock);
|
|
yield(); /* Yield is okay here */
|
|
if (todo && time_after(jiffies, end_time))
|
|
break;
|
|
} while (todo);
|
|
|
|
if (todo) {
|
|
/* This does not unfreeze processes that are already frozen
|
|
* (we have slightly ugly calling convention in that respect,
|
|
* and caller must call thaw_processes() if something fails),
|
|
* but it cleans up leftover PF_FREEZE requests.
|
|
*/
|
|
printk("\n");
|
|
printk(KERN_ERR "Stopping %s timed out after %d seconds "
|
|
"(%d tasks refusing to freeze):\n",
|
|
freeze_user_space ? "user space processes" :
|
|
"kernel threads",
|
|
TIMEOUT / HZ, todo);
|
|
read_lock(&tasklist_lock);
|
|
do_each_thread(g, p) {
|
|
if (is_user_space(p) == !freeze_user_space)
|
|
continue;
|
|
|
|
if (freezeable(p) && !frozen(p))
|
|
printk(KERN_ERR " %s\n", p->comm);
|
|
|
|
cancel_freezing(p);
|
|
} while_each_thread(g, p);
|
|
read_unlock(&tasklist_lock);
|
|
}
|
|
|
|
return todo;
|
|
}
|
|
|
|
/**
|
|
* freeze_processes - tell processes to enter the refrigerator
|
|
*
|
|
* Returns 0 on success, or the number of processes that didn't freeze,
|
|
* although they were told to.
|
|
*/
|
|
int freeze_processes(void)
|
|
{
|
|
unsigned int nr_unfrozen;
|
|
|
|
printk("Stopping tasks ... ");
|
|
nr_unfrozen = try_to_freeze_tasks(FREEZER_USER_SPACE);
|
|
if (nr_unfrozen)
|
|
return nr_unfrozen;
|
|
|
|
sys_sync();
|
|
nr_unfrozen = try_to_freeze_tasks(FREEZER_KERNEL_THREADS);
|
|
if (nr_unfrozen)
|
|
return nr_unfrozen;
|
|
|
|
printk("done.\n");
|
|
BUG_ON(in_atomic());
|
|
return 0;
|
|
}
|
|
|
|
static void thaw_tasks(int thaw_user_space)
|
|
{
|
|
struct task_struct *g, *p;
|
|
|
|
read_lock(&tasklist_lock);
|
|
do_each_thread(g, p) {
|
|
if (!freezeable(p))
|
|
continue;
|
|
|
|
if (is_user_space(p) == !thaw_user_space)
|
|
continue;
|
|
|
|
if (!thaw_process(p))
|
|
printk(KERN_WARNING " Strange, %s not stopped\n",
|
|
p->comm );
|
|
} while_each_thread(g, p);
|
|
read_unlock(&tasklist_lock);
|
|
}
|
|
|
|
void thaw_processes(void)
|
|
{
|
|
printk("Restarting tasks ... ");
|
|
thaw_tasks(FREEZER_KERNEL_THREADS);
|
|
thaw_tasks(FREEZER_USER_SPACE);
|
|
schedule();
|
|
printk("done.\n");
|
|
}
|
|
|
|
EXPORT_SYMBOL(refrigerator);
|