linux/drivers/gpu/drm/rockchip/rockchip_drm_vop.c
Alex Bee 046e0db975 drm: rockchip: set alpha_en to 0 if it is not used
alpha_en should be set to 0 if it is not used, i.e. to disable alpha
blending if it was enabled before and should be disabled now.

Fixes: 2aae8ed1f390 ("drm/rockchip: Add per-pixel alpha support for the PX30 VOP")
Signed-off-by: Alex Bee <knaerzche@gmail.com>
Signed-off-by: Heiko Stuebner <heiko@sntech.de>
Link: https://patchwork.freedesktop.org/patch/msgid/20210528130554.72191-6-knaerzche@gmail.com
2021-05-28 19:28:40 +02:00

2207 lines
58 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright (C) Fuzhou Rockchip Electronics Co.Ltd
* Author:Mark Yao <mark.yao@rock-chips.com>
*/
#include <linux/clk.h>
#include <linux/component.h>
#include <linux/delay.h>
#include <linux/iopoll.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/of_device.h>
#include <linux/overflow.h>
#include <linux/platform_device.h>
#include <linux/pm_runtime.h>
#include <linux/reset.h>
#include <drm/drm.h>
#include <drm/drm_atomic.h>
#include <drm/drm_atomic_uapi.h>
#include <drm/drm_crtc.h>
#include <drm/drm_flip_work.h>
#include <drm/drm_fourcc.h>
#include <drm/drm_gem_atomic_helper.h>
#include <drm/drm_gem_framebuffer_helper.h>
#include <drm/drm_plane_helper.h>
#include <drm/drm_probe_helper.h>
#include <drm/drm_self_refresh_helper.h>
#include <drm/drm_vblank.h>
#ifdef CONFIG_DRM_ANALOGIX_DP
#include <drm/bridge/analogix_dp.h>
#endif
#include "rockchip_drm_drv.h"
#include "rockchip_drm_gem.h"
#include "rockchip_drm_fb.h"
#include "rockchip_drm_vop.h"
#include "rockchip_rgb.h"
#define VOP_WIN_SET(vop, win, name, v) \
vop_reg_set(vop, &win->phy->name, win->base, ~0, v, #name)
#define VOP_SCL_SET(vop, win, name, v) \
vop_reg_set(vop, &win->phy->scl->name, win->base, ~0, v, #name)
#define VOP_SCL_SET_EXT(vop, win, name, v) \
vop_reg_set(vop, &win->phy->scl->ext->name, \
win->base, ~0, v, #name)
#define VOP_WIN_YUV2YUV_SET(vop, win_yuv2yuv, name, v) \
do { \
if (win_yuv2yuv && win_yuv2yuv->name.mask) \
vop_reg_set(vop, &win_yuv2yuv->name, 0, ~0, v, #name); \
} while (0)
#define VOP_WIN_YUV2YUV_COEFFICIENT_SET(vop, win_yuv2yuv, name, v) \
do { \
if (win_yuv2yuv && win_yuv2yuv->phy->name.mask) \
vop_reg_set(vop, &win_yuv2yuv->phy->name, win_yuv2yuv->base, ~0, v, #name); \
} while (0)
#define VOP_INTR_SET_MASK(vop, name, mask, v) \
vop_reg_set(vop, &vop->data->intr->name, 0, mask, v, #name)
#define VOP_REG_SET(vop, group, name, v) \
vop_reg_set(vop, &vop->data->group->name, 0, ~0, v, #name)
#define VOP_INTR_SET_TYPE(vop, name, type, v) \
do { \
int i, reg = 0, mask = 0; \
for (i = 0; i < vop->data->intr->nintrs; i++) { \
if (vop->data->intr->intrs[i] & type) { \
reg |= (v) << i; \
mask |= 1 << i; \
} \
} \
VOP_INTR_SET_MASK(vop, name, mask, reg); \
} while (0)
#define VOP_INTR_GET_TYPE(vop, name, type) \
vop_get_intr_type(vop, &vop->data->intr->name, type)
#define VOP_WIN_GET(vop, win, name) \
vop_read_reg(vop, win->base, &win->phy->name)
#define VOP_WIN_HAS_REG(win, name) \
(!!(win->phy->name.mask))
#define VOP_WIN_GET_YRGBADDR(vop, win) \
vop_readl(vop, win->base + win->phy->yrgb_mst.offset)
#define VOP_WIN_TO_INDEX(vop_win) \
((vop_win) - (vop_win)->vop->win)
#define VOP_AFBC_SET(vop, name, v) \
do { \
if ((vop)->data->afbc) \
vop_reg_set((vop), &(vop)->data->afbc->name, \
0, ~0, v, #name); \
} while (0)
#define to_vop(x) container_of(x, struct vop, crtc)
#define to_vop_win(x) container_of(x, struct vop_win, base)
#define AFBC_FMT_RGB565 0x0
#define AFBC_FMT_U8U8U8U8 0x5
#define AFBC_FMT_U8U8U8 0x4
#define AFBC_TILE_16x16 BIT(4)
/*
* The coefficients of the following matrix are all fixed points.
* The format is S2.10 for the 3x3 part of the matrix, and S9.12 for the offsets.
* They are all represented in two's complement.
*/
static const uint32_t bt601_yuv2rgb[] = {
0x4A8, 0x0, 0x662,
0x4A8, 0x1E6F, 0x1CBF,
0x4A8, 0x812, 0x0,
0x321168, 0x0877CF, 0x2EB127
};
enum vop_pending {
VOP_PENDING_FB_UNREF,
};
struct vop_win {
struct drm_plane base;
const struct vop_win_data *data;
const struct vop_win_yuv2yuv_data *yuv2yuv_data;
struct vop *vop;
};
struct rockchip_rgb;
struct vop {
struct drm_crtc crtc;
struct device *dev;
struct drm_device *drm_dev;
bool is_enabled;
struct completion dsp_hold_completion;
unsigned int win_enabled;
/* protected by dev->event_lock */
struct drm_pending_vblank_event *event;
struct drm_flip_work fb_unref_work;
unsigned long pending;
struct completion line_flag_completion;
const struct vop_data *data;
uint32_t *regsbak;
void __iomem *regs;
void __iomem *lut_regs;
/* physical map length of vop register */
uint32_t len;
/* one time only one process allowed to config the register */
spinlock_t reg_lock;
/* lock vop irq reg */
spinlock_t irq_lock;
/* protects crtc enable/disable */
struct mutex vop_lock;
unsigned int irq;
/* vop AHP clk */
struct clk *hclk;
/* vop dclk */
struct clk *dclk;
/* vop share memory frequency */
struct clk *aclk;
/* vop dclk reset */
struct reset_control *dclk_rst;
/* optional internal rgb encoder */
struct rockchip_rgb *rgb;
struct vop_win win[];
};
static inline void vop_writel(struct vop *vop, uint32_t offset, uint32_t v)
{
writel(v, vop->regs + offset);
vop->regsbak[offset >> 2] = v;
}
static inline uint32_t vop_readl(struct vop *vop, uint32_t offset)
{
return readl(vop->regs + offset);
}
static inline uint32_t vop_read_reg(struct vop *vop, uint32_t base,
const struct vop_reg *reg)
{
return (vop_readl(vop, base + reg->offset) >> reg->shift) & reg->mask;
}
static void vop_reg_set(struct vop *vop, const struct vop_reg *reg,
uint32_t _offset, uint32_t _mask, uint32_t v,
const char *reg_name)
{
int offset, mask, shift;
if (!reg || !reg->mask) {
DRM_DEV_DEBUG(vop->dev, "Warning: not support %s\n", reg_name);
return;
}
offset = reg->offset + _offset;
mask = reg->mask & _mask;
shift = reg->shift;
if (reg->write_mask) {
v = ((v << shift) & 0xffff) | (mask << (shift + 16));
} else {
uint32_t cached_val = vop->regsbak[offset >> 2];
v = (cached_val & ~(mask << shift)) | ((v & mask) << shift);
vop->regsbak[offset >> 2] = v;
}
if (reg->relaxed)
writel_relaxed(v, vop->regs + offset);
else
writel(v, vop->regs + offset);
}
static inline uint32_t vop_get_intr_type(struct vop *vop,
const struct vop_reg *reg, int type)
{
uint32_t i, ret = 0;
uint32_t regs = vop_read_reg(vop, 0, reg);
for (i = 0; i < vop->data->intr->nintrs; i++) {
if ((type & vop->data->intr->intrs[i]) && (regs & 1 << i))
ret |= vop->data->intr->intrs[i];
}
return ret;
}
static inline void vop_cfg_done(struct vop *vop)
{
VOP_REG_SET(vop, common, cfg_done, 1);
}
static bool has_rb_swapped(uint32_t format)
{
switch (format) {
case DRM_FORMAT_XBGR8888:
case DRM_FORMAT_ABGR8888:
case DRM_FORMAT_BGR888:
case DRM_FORMAT_BGR565:
return true;
default:
return false;
}
}
static enum vop_data_format vop_convert_format(uint32_t format)
{
switch (format) {
case DRM_FORMAT_XRGB8888:
case DRM_FORMAT_ARGB8888:
case DRM_FORMAT_XBGR8888:
case DRM_FORMAT_ABGR8888:
return VOP_FMT_ARGB8888;
case DRM_FORMAT_RGB888:
case DRM_FORMAT_BGR888:
return VOP_FMT_RGB888;
case DRM_FORMAT_RGB565:
case DRM_FORMAT_BGR565:
return VOP_FMT_RGB565;
case DRM_FORMAT_NV12:
return VOP_FMT_YUV420SP;
case DRM_FORMAT_NV16:
return VOP_FMT_YUV422SP;
case DRM_FORMAT_NV24:
return VOP_FMT_YUV444SP;
default:
DRM_ERROR("unsupported format[%08x]\n", format);
return -EINVAL;
}
}
static int vop_convert_afbc_format(uint32_t format)
{
switch (format) {
case DRM_FORMAT_XRGB8888:
case DRM_FORMAT_ARGB8888:
case DRM_FORMAT_XBGR8888:
case DRM_FORMAT_ABGR8888:
return AFBC_FMT_U8U8U8U8;
case DRM_FORMAT_RGB888:
case DRM_FORMAT_BGR888:
return AFBC_FMT_U8U8U8;
case DRM_FORMAT_RGB565:
case DRM_FORMAT_BGR565:
return AFBC_FMT_RGB565;
/* either of the below should not be reachable */
default:
DRM_WARN_ONCE("unsupported AFBC format[%08x]\n", format);
return -EINVAL;
}
return -EINVAL;
}
static uint16_t scl_vop_cal_scale(enum scale_mode mode, uint32_t src,
uint32_t dst, bool is_horizontal,
int vsu_mode, int *vskiplines)
{
uint16_t val = 1 << SCL_FT_DEFAULT_FIXPOINT_SHIFT;
if (vskiplines)
*vskiplines = 0;
if (is_horizontal) {
if (mode == SCALE_UP)
val = GET_SCL_FT_BIC(src, dst);
else if (mode == SCALE_DOWN)
val = GET_SCL_FT_BILI_DN(src, dst);
} else {
if (mode == SCALE_UP) {
if (vsu_mode == SCALE_UP_BIL)
val = GET_SCL_FT_BILI_UP(src, dst);
else
val = GET_SCL_FT_BIC(src, dst);
} else if (mode == SCALE_DOWN) {
if (vskiplines) {
*vskiplines = scl_get_vskiplines(src, dst);
val = scl_get_bili_dn_vskip(src, dst,
*vskiplines);
} else {
val = GET_SCL_FT_BILI_DN(src, dst);
}
}
}
return val;
}
static void scl_vop_cal_scl_fac(struct vop *vop, const struct vop_win_data *win,
uint32_t src_w, uint32_t src_h, uint32_t dst_w,
uint32_t dst_h, const struct drm_format_info *info)
{
uint16_t yrgb_hor_scl_mode, yrgb_ver_scl_mode;
uint16_t cbcr_hor_scl_mode = SCALE_NONE;
uint16_t cbcr_ver_scl_mode = SCALE_NONE;
bool is_yuv = false;
uint16_t cbcr_src_w = src_w / info->hsub;
uint16_t cbcr_src_h = src_h / info->vsub;
uint16_t vsu_mode;
uint16_t lb_mode;
uint32_t val;
int vskiplines;
if (info->is_yuv)
is_yuv = true;
if (dst_w > 3840) {
DRM_DEV_ERROR(vop->dev, "Maximum dst width (3840) exceeded\n");
return;
}
if (!win->phy->scl->ext) {
VOP_SCL_SET(vop, win, scale_yrgb_x,
scl_cal_scale2(src_w, dst_w));
VOP_SCL_SET(vop, win, scale_yrgb_y,
scl_cal_scale2(src_h, dst_h));
if (is_yuv) {
VOP_SCL_SET(vop, win, scale_cbcr_x,
scl_cal_scale2(cbcr_src_w, dst_w));
VOP_SCL_SET(vop, win, scale_cbcr_y,
scl_cal_scale2(cbcr_src_h, dst_h));
}
return;
}
yrgb_hor_scl_mode = scl_get_scl_mode(src_w, dst_w);
yrgb_ver_scl_mode = scl_get_scl_mode(src_h, dst_h);
if (is_yuv) {
cbcr_hor_scl_mode = scl_get_scl_mode(cbcr_src_w, dst_w);
cbcr_ver_scl_mode = scl_get_scl_mode(cbcr_src_h, dst_h);
if (cbcr_hor_scl_mode == SCALE_DOWN)
lb_mode = scl_vop_cal_lb_mode(dst_w, true);
else
lb_mode = scl_vop_cal_lb_mode(cbcr_src_w, true);
} else {
if (yrgb_hor_scl_mode == SCALE_DOWN)
lb_mode = scl_vop_cal_lb_mode(dst_w, false);
else
lb_mode = scl_vop_cal_lb_mode(src_w, false);
}
VOP_SCL_SET_EXT(vop, win, lb_mode, lb_mode);
if (lb_mode == LB_RGB_3840X2) {
if (yrgb_ver_scl_mode != SCALE_NONE) {
DRM_DEV_ERROR(vop->dev, "not allow yrgb ver scale\n");
return;
}
if (cbcr_ver_scl_mode != SCALE_NONE) {
DRM_DEV_ERROR(vop->dev, "not allow cbcr ver scale\n");
return;
}
vsu_mode = SCALE_UP_BIL;
} else if (lb_mode == LB_RGB_2560X4) {
vsu_mode = SCALE_UP_BIL;
} else {
vsu_mode = SCALE_UP_BIC;
}
val = scl_vop_cal_scale(yrgb_hor_scl_mode, src_w, dst_w,
true, 0, NULL);
VOP_SCL_SET(vop, win, scale_yrgb_x, val);
val = scl_vop_cal_scale(yrgb_ver_scl_mode, src_h, dst_h,
false, vsu_mode, &vskiplines);
VOP_SCL_SET(vop, win, scale_yrgb_y, val);
VOP_SCL_SET_EXT(vop, win, vsd_yrgb_gt4, vskiplines == 4);
VOP_SCL_SET_EXT(vop, win, vsd_yrgb_gt2, vskiplines == 2);
VOP_SCL_SET_EXT(vop, win, yrgb_hor_scl_mode, yrgb_hor_scl_mode);
VOP_SCL_SET_EXT(vop, win, yrgb_ver_scl_mode, yrgb_ver_scl_mode);
VOP_SCL_SET_EXT(vop, win, yrgb_hsd_mode, SCALE_DOWN_BIL);
VOP_SCL_SET_EXT(vop, win, yrgb_vsd_mode, SCALE_DOWN_BIL);
VOP_SCL_SET_EXT(vop, win, yrgb_vsu_mode, vsu_mode);
if (is_yuv) {
val = scl_vop_cal_scale(cbcr_hor_scl_mode, cbcr_src_w,
dst_w, true, 0, NULL);
VOP_SCL_SET(vop, win, scale_cbcr_x, val);
val = scl_vop_cal_scale(cbcr_ver_scl_mode, cbcr_src_h,
dst_h, false, vsu_mode, &vskiplines);
VOP_SCL_SET(vop, win, scale_cbcr_y, val);
VOP_SCL_SET_EXT(vop, win, vsd_cbcr_gt4, vskiplines == 4);
VOP_SCL_SET_EXT(vop, win, vsd_cbcr_gt2, vskiplines == 2);
VOP_SCL_SET_EXT(vop, win, cbcr_hor_scl_mode, cbcr_hor_scl_mode);
VOP_SCL_SET_EXT(vop, win, cbcr_ver_scl_mode, cbcr_ver_scl_mode);
VOP_SCL_SET_EXT(vop, win, cbcr_hsd_mode, SCALE_DOWN_BIL);
VOP_SCL_SET_EXT(vop, win, cbcr_vsd_mode, SCALE_DOWN_BIL);
VOP_SCL_SET_EXT(vop, win, cbcr_vsu_mode, vsu_mode);
}
}
static void vop_dsp_hold_valid_irq_enable(struct vop *vop)
{
unsigned long flags;
if (WARN_ON(!vop->is_enabled))
return;
spin_lock_irqsave(&vop->irq_lock, flags);
VOP_INTR_SET_TYPE(vop, clear, DSP_HOLD_VALID_INTR, 1);
VOP_INTR_SET_TYPE(vop, enable, DSP_HOLD_VALID_INTR, 1);
spin_unlock_irqrestore(&vop->irq_lock, flags);
}
static void vop_dsp_hold_valid_irq_disable(struct vop *vop)
{
unsigned long flags;
if (WARN_ON(!vop->is_enabled))
return;
spin_lock_irqsave(&vop->irq_lock, flags);
VOP_INTR_SET_TYPE(vop, enable, DSP_HOLD_VALID_INTR, 0);
spin_unlock_irqrestore(&vop->irq_lock, flags);
}
/*
* (1) each frame starts at the start of the Vsync pulse which is signaled by
* the "FRAME_SYNC" interrupt.
* (2) the active data region of each frame ends at dsp_vact_end
* (3) we should program this same number (dsp_vact_end) into dsp_line_frag_num,
* to get "LINE_FLAG" interrupt at the end of the active on screen data.
*
* VOP_INTR_CTRL0.dsp_line_frag_num = VOP_DSP_VACT_ST_END.dsp_vact_end
* Interrupts
* LINE_FLAG -------------------------------+
* FRAME_SYNC ----+ |
* | |
* v v
* | Vsync | Vbp | Vactive | Vfp |
* ^ ^ ^ ^
* | | | |
* | | | |
* dsp_vs_end ------------+ | | | VOP_DSP_VTOTAL_VS_END
* dsp_vact_start --------------+ | | VOP_DSP_VACT_ST_END
* dsp_vact_end ----------------------------+ | VOP_DSP_VACT_ST_END
* dsp_total -------------------------------------+ VOP_DSP_VTOTAL_VS_END
*/
static bool vop_line_flag_irq_is_enabled(struct vop *vop)
{
uint32_t line_flag_irq;
unsigned long flags;
spin_lock_irqsave(&vop->irq_lock, flags);
line_flag_irq = VOP_INTR_GET_TYPE(vop, enable, LINE_FLAG_INTR);
spin_unlock_irqrestore(&vop->irq_lock, flags);
return !!line_flag_irq;
}
static void vop_line_flag_irq_enable(struct vop *vop)
{
unsigned long flags;
if (WARN_ON(!vop->is_enabled))
return;
spin_lock_irqsave(&vop->irq_lock, flags);
VOP_INTR_SET_TYPE(vop, clear, LINE_FLAG_INTR, 1);
VOP_INTR_SET_TYPE(vop, enable, LINE_FLAG_INTR, 1);
spin_unlock_irqrestore(&vop->irq_lock, flags);
}
static void vop_line_flag_irq_disable(struct vop *vop)
{
unsigned long flags;
if (WARN_ON(!vop->is_enabled))
return;
spin_lock_irqsave(&vop->irq_lock, flags);
VOP_INTR_SET_TYPE(vop, enable, LINE_FLAG_INTR, 0);
spin_unlock_irqrestore(&vop->irq_lock, flags);
}
static int vop_core_clks_enable(struct vop *vop)
{
int ret;
ret = clk_enable(vop->hclk);
if (ret < 0)
return ret;
ret = clk_enable(vop->aclk);
if (ret < 0)
goto err_disable_hclk;
return 0;
err_disable_hclk:
clk_disable(vop->hclk);
return ret;
}
static void vop_core_clks_disable(struct vop *vop)
{
clk_disable(vop->aclk);
clk_disable(vop->hclk);
}
static void vop_win_disable(struct vop *vop, const struct vop_win *vop_win)
{
const struct vop_win_data *win = vop_win->data;
if (win->phy->scl && win->phy->scl->ext) {
VOP_SCL_SET_EXT(vop, win, yrgb_hor_scl_mode, SCALE_NONE);
VOP_SCL_SET_EXT(vop, win, yrgb_ver_scl_mode, SCALE_NONE);
VOP_SCL_SET_EXT(vop, win, cbcr_hor_scl_mode, SCALE_NONE);
VOP_SCL_SET_EXT(vop, win, cbcr_ver_scl_mode, SCALE_NONE);
}
VOP_WIN_SET(vop, win, enable, 0);
vop->win_enabled &= ~BIT(VOP_WIN_TO_INDEX(vop_win));
}
static int vop_enable(struct drm_crtc *crtc, struct drm_crtc_state *old_state)
{
struct vop *vop = to_vop(crtc);
int ret, i;
ret = pm_runtime_get_sync(vop->dev);
if (ret < 0) {
DRM_DEV_ERROR(vop->dev, "failed to get pm runtime: %d\n", ret);
return ret;
}
ret = vop_core_clks_enable(vop);
if (WARN_ON(ret < 0))
goto err_put_pm_runtime;
ret = clk_enable(vop->dclk);
if (WARN_ON(ret < 0))
goto err_disable_core;
/*
* Slave iommu shares power, irq and clock with vop. It was associated
* automatically with this master device via common driver code.
* Now that we have enabled the clock we attach it to the shared drm
* mapping.
*/
ret = rockchip_drm_dma_attach_device(vop->drm_dev, vop->dev);
if (ret) {
DRM_DEV_ERROR(vop->dev,
"failed to attach dma mapping, %d\n", ret);
goto err_disable_dclk;
}
spin_lock(&vop->reg_lock);
for (i = 0; i < vop->len; i += 4)
writel_relaxed(vop->regsbak[i / 4], vop->regs + i);
/*
* We need to make sure that all windows are disabled before we
* enable the crtc. Otherwise we might try to scan from a destroyed
* buffer later.
*
* In the case of enable-after-PSR, we don't need to worry about this
* case since the buffer is guaranteed to be valid and disabling the
* window will result in screen glitches on PSR exit.
*/
if (!old_state || !old_state->self_refresh_active) {
for (i = 0; i < vop->data->win_size; i++) {
struct vop_win *vop_win = &vop->win[i];
vop_win_disable(vop, vop_win);
}
}
if (vop->data->afbc) {
struct rockchip_crtc_state *s;
/*
* Disable AFBC and forget there was a vop window with AFBC
*/
VOP_AFBC_SET(vop, enable, 0);
s = to_rockchip_crtc_state(crtc->state);
s->enable_afbc = false;
}
vop_cfg_done(vop);
spin_unlock(&vop->reg_lock);
/*
* At here, vop clock & iommu is enable, R/W vop regs would be safe.
*/
vop->is_enabled = true;
spin_lock(&vop->reg_lock);
VOP_REG_SET(vop, common, standby, 1);
spin_unlock(&vop->reg_lock);
drm_crtc_vblank_on(crtc);
return 0;
err_disable_dclk:
clk_disable(vop->dclk);
err_disable_core:
vop_core_clks_disable(vop);
err_put_pm_runtime:
pm_runtime_put_sync(vop->dev);
return ret;
}
static void rockchip_drm_set_win_enabled(struct drm_crtc *crtc, bool enabled)
{
struct vop *vop = to_vop(crtc);
int i;
spin_lock(&vop->reg_lock);
for (i = 0; i < vop->data->win_size; i++) {
struct vop_win *vop_win = &vop->win[i];
const struct vop_win_data *win = vop_win->data;
VOP_WIN_SET(vop, win, enable,
enabled && (vop->win_enabled & BIT(i)));
}
vop_cfg_done(vop);
spin_unlock(&vop->reg_lock);
}
static void vop_crtc_atomic_disable(struct drm_crtc *crtc,
struct drm_atomic_state *state)
{
struct vop *vop = to_vop(crtc);
WARN_ON(vop->event);
if (crtc->state->self_refresh_active)
rockchip_drm_set_win_enabled(crtc, false);
mutex_lock(&vop->vop_lock);
drm_crtc_vblank_off(crtc);
if (crtc->state->self_refresh_active)
goto out;
/*
* Vop standby will take effect at end of current frame,
* if dsp hold valid irq happen, it means standby complete.
*
* we must wait standby complete when we want to disable aclk,
* if not, memory bus maybe dead.
*/
reinit_completion(&vop->dsp_hold_completion);
vop_dsp_hold_valid_irq_enable(vop);
spin_lock(&vop->reg_lock);
VOP_REG_SET(vop, common, standby, 1);
spin_unlock(&vop->reg_lock);
wait_for_completion(&vop->dsp_hold_completion);
vop_dsp_hold_valid_irq_disable(vop);
vop->is_enabled = false;
/*
* vop standby complete, so iommu detach is safe.
*/
rockchip_drm_dma_detach_device(vop->drm_dev, vop->dev);
clk_disable(vop->dclk);
vop_core_clks_disable(vop);
pm_runtime_put(vop->dev);
out:
mutex_unlock(&vop->vop_lock);
if (crtc->state->event && !crtc->state->active) {
spin_lock_irq(&crtc->dev->event_lock);
drm_crtc_send_vblank_event(crtc, crtc->state->event);
spin_unlock_irq(&crtc->dev->event_lock);
crtc->state->event = NULL;
}
}
static void vop_plane_destroy(struct drm_plane *plane)
{
drm_plane_cleanup(plane);
}
static inline bool rockchip_afbc(u64 modifier)
{
return modifier == ROCKCHIP_AFBC_MOD;
}
static bool rockchip_mod_supported(struct drm_plane *plane,
u32 format, u64 modifier)
{
if (modifier == DRM_FORMAT_MOD_LINEAR)
return true;
if (!rockchip_afbc(modifier)) {
DRM_DEBUG_KMS("Unsupported format modifier 0x%llx\n", modifier);
return false;
}
return vop_convert_afbc_format(format) >= 0;
}
static int vop_plane_atomic_check(struct drm_plane *plane,
struct drm_atomic_state *state)
{
struct drm_plane_state *new_plane_state = drm_atomic_get_new_plane_state(state,
plane);
struct drm_crtc *crtc = new_plane_state->crtc;
struct drm_crtc_state *crtc_state;
struct drm_framebuffer *fb = new_plane_state->fb;
struct vop_win *vop_win = to_vop_win(plane);
const struct vop_win_data *win = vop_win->data;
int ret;
int min_scale = win->phy->scl ? FRAC_16_16(1, 8) :
DRM_PLANE_HELPER_NO_SCALING;
int max_scale = win->phy->scl ? FRAC_16_16(8, 1) :
DRM_PLANE_HELPER_NO_SCALING;
if (!crtc || WARN_ON(!fb))
return 0;
crtc_state = drm_atomic_get_existing_crtc_state(state,
crtc);
if (WARN_ON(!crtc_state))
return -EINVAL;
ret = drm_atomic_helper_check_plane_state(new_plane_state, crtc_state,
min_scale, max_scale,
true, true);
if (ret)
return ret;
if (!new_plane_state->visible)
return 0;
ret = vop_convert_format(fb->format->format);
if (ret < 0)
return ret;
/*
* Src.x1 can be odd when do clip, but yuv plane start point
* need align with 2 pixel.
*/
if (fb->format->is_yuv && ((new_plane_state->src.x1 >> 16) % 2)) {
DRM_ERROR("Invalid Source: Yuv format not support odd xpos\n");
return -EINVAL;
}
if (fb->format->is_yuv && new_plane_state->rotation & DRM_MODE_REFLECT_Y) {
DRM_ERROR("Invalid Source: Yuv format does not support this rotation\n");
return -EINVAL;
}
if (rockchip_afbc(fb->modifier)) {
struct vop *vop = to_vop(crtc);
if (!vop->data->afbc) {
DRM_ERROR("vop does not support AFBC\n");
return -EINVAL;
}
ret = vop_convert_afbc_format(fb->format->format);
if (ret < 0)
return ret;
if (new_plane_state->src.x1 || new_plane_state->src.y1) {
DRM_ERROR("AFBC does not support offset display, xpos=%d, ypos=%d, offset=%d\n",
new_plane_state->src.x1,
new_plane_state->src.y1, fb->offsets[0]);
return -EINVAL;
}
if (new_plane_state->rotation && new_plane_state->rotation != DRM_MODE_ROTATE_0) {
DRM_ERROR("No rotation support in AFBC, rotation=%d\n",
new_plane_state->rotation);
return -EINVAL;
}
}
return 0;
}
static void vop_plane_atomic_disable(struct drm_plane *plane,
struct drm_atomic_state *state)
{
struct drm_plane_state *old_state = drm_atomic_get_old_plane_state(state,
plane);
struct vop_win *vop_win = to_vop_win(plane);
struct vop *vop = to_vop(old_state->crtc);
if (!old_state->crtc)
return;
spin_lock(&vop->reg_lock);
vop_win_disable(vop, vop_win);
spin_unlock(&vop->reg_lock);
}
static void vop_plane_atomic_update(struct drm_plane *plane,
struct drm_atomic_state *state)
{
struct drm_plane_state *new_state = drm_atomic_get_new_plane_state(state,
plane);
struct drm_crtc *crtc = new_state->crtc;
struct vop_win *vop_win = to_vop_win(plane);
const struct vop_win_data *win = vop_win->data;
const struct vop_win_yuv2yuv_data *win_yuv2yuv = vop_win->yuv2yuv_data;
struct vop *vop = to_vop(new_state->crtc);
struct drm_framebuffer *fb = new_state->fb;
unsigned int actual_w, actual_h;
unsigned int dsp_stx, dsp_sty;
uint32_t act_info, dsp_info, dsp_st;
struct drm_rect *src = &new_state->src;
struct drm_rect *dest = &new_state->dst;
struct drm_gem_object *obj, *uv_obj;
struct rockchip_gem_object *rk_obj, *rk_uv_obj;
unsigned long offset;
dma_addr_t dma_addr;
uint32_t val;
bool rb_swap;
int win_index = VOP_WIN_TO_INDEX(vop_win);
int format;
int is_yuv = fb->format->is_yuv;
int i;
/*
* can't update plane when vop is disabled.
*/
if (WARN_ON(!crtc))
return;
if (WARN_ON(!vop->is_enabled))
return;
if (!new_state->visible) {
vop_plane_atomic_disable(plane, state);
return;
}
obj = fb->obj[0];
rk_obj = to_rockchip_obj(obj);
actual_w = drm_rect_width(src) >> 16;
actual_h = drm_rect_height(src) >> 16;
act_info = (actual_h - 1) << 16 | ((actual_w - 1) & 0xffff);
dsp_info = (drm_rect_height(dest) - 1) << 16;
dsp_info |= (drm_rect_width(dest) - 1) & 0xffff;
dsp_stx = dest->x1 + crtc->mode.htotal - crtc->mode.hsync_start;
dsp_sty = dest->y1 + crtc->mode.vtotal - crtc->mode.vsync_start;
dsp_st = dsp_sty << 16 | (dsp_stx & 0xffff);
offset = (src->x1 >> 16) * fb->format->cpp[0];
offset += (src->y1 >> 16) * fb->pitches[0];
dma_addr = rk_obj->dma_addr + offset + fb->offsets[0];
/*
* For y-mirroring we need to move address
* to the beginning of the last line.
*/
if (new_state->rotation & DRM_MODE_REFLECT_Y)
dma_addr += (actual_h - 1) * fb->pitches[0];
format = vop_convert_format(fb->format->format);
spin_lock(&vop->reg_lock);
if (rockchip_afbc(fb->modifier)) {
int afbc_format = vop_convert_afbc_format(fb->format->format);
VOP_AFBC_SET(vop, format, afbc_format | AFBC_TILE_16x16);
VOP_AFBC_SET(vop, hreg_block_split, 0);
VOP_AFBC_SET(vop, win_sel, VOP_WIN_TO_INDEX(vop_win));
VOP_AFBC_SET(vop, hdr_ptr, dma_addr);
VOP_AFBC_SET(vop, pic_size, act_info);
}
VOP_WIN_SET(vop, win, format, format);
VOP_WIN_SET(vop, win, yrgb_vir, DIV_ROUND_UP(fb->pitches[0], 4));
VOP_WIN_SET(vop, win, yrgb_mst, dma_addr);
VOP_WIN_YUV2YUV_SET(vop, win_yuv2yuv, y2r_en, is_yuv);
VOP_WIN_SET(vop, win, y_mir_en,
(new_state->rotation & DRM_MODE_REFLECT_Y) ? 1 : 0);
VOP_WIN_SET(vop, win, x_mir_en,
(new_state->rotation & DRM_MODE_REFLECT_X) ? 1 : 0);
if (is_yuv) {
int hsub = fb->format->hsub;
int vsub = fb->format->vsub;
int bpp = fb->format->cpp[1];
uv_obj = fb->obj[1];
rk_uv_obj = to_rockchip_obj(uv_obj);
offset = (src->x1 >> 16) * bpp / hsub;
offset += (src->y1 >> 16) * fb->pitches[1] / vsub;
dma_addr = rk_uv_obj->dma_addr + offset + fb->offsets[1];
VOP_WIN_SET(vop, win, uv_vir, DIV_ROUND_UP(fb->pitches[1], 4));
VOP_WIN_SET(vop, win, uv_mst, dma_addr);
for (i = 0; i < NUM_YUV2YUV_COEFFICIENTS; i++) {
VOP_WIN_YUV2YUV_COEFFICIENT_SET(vop,
win_yuv2yuv,
y2r_coefficients[i],
bt601_yuv2rgb[i]);
}
}
if (win->phy->scl)
scl_vop_cal_scl_fac(vop, win, actual_w, actual_h,
drm_rect_width(dest), drm_rect_height(dest),
fb->format);
VOP_WIN_SET(vop, win, act_info, act_info);
VOP_WIN_SET(vop, win, dsp_info, dsp_info);
VOP_WIN_SET(vop, win, dsp_st, dsp_st);
rb_swap = has_rb_swapped(fb->format->format);
VOP_WIN_SET(vop, win, rb_swap, rb_swap);
/*
* Blending win0 with the background color doesn't seem to work
* correctly. We only get the background color, no matter the contents
* of the win0 framebuffer. However, blending pre-multiplied color
* with the default opaque black default background color is a no-op,
* so we can just disable blending to get the correct result.
*/
if (fb->format->has_alpha && win_index > 0) {
VOP_WIN_SET(vop, win, dst_alpha_ctl,
DST_FACTOR_M0(ALPHA_SRC_INVERSE));
val = SRC_ALPHA_EN(1) | SRC_COLOR_M0(ALPHA_SRC_PRE_MUL) |
SRC_ALPHA_M0(ALPHA_STRAIGHT) |
SRC_BLEND_M0(ALPHA_PER_PIX) |
SRC_ALPHA_CAL_M0(ALPHA_NO_SATURATION) |
SRC_FACTOR_M0(ALPHA_ONE);
VOP_WIN_SET(vop, win, src_alpha_ctl, val);
VOP_WIN_SET(vop, win, alpha_pre_mul, ALPHA_SRC_PRE_MUL);
VOP_WIN_SET(vop, win, alpha_mode, ALPHA_PER_PIX);
VOP_WIN_SET(vop, win, alpha_en, 1);
} else {
VOP_WIN_SET(vop, win, src_alpha_ctl, SRC_ALPHA_EN(0));
VOP_WIN_SET(vop, win, alpha_en, 0);
}
VOP_WIN_SET(vop, win, enable, 1);
vop->win_enabled |= BIT(win_index);
spin_unlock(&vop->reg_lock);
}
static int vop_plane_atomic_async_check(struct drm_plane *plane,
struct drm_atomic_state *state)
{
struct drm_plane_state *new_plane_state = drm_atomic_get_new_plane_state(state,
plane);
struct vop_win *vop_win = to_vop_win(plane);
const struct vop_win_data *win = vop_win->data;
int min_scale = win->phy->scl ? FRAC_16_16(1, 8) :
DRM_PLANE_HELPER_NO_SCALING;
int max_scale = win->phy->scl ? FRAC_16_16(8, 1) :
DRM_PLANE_HELPER_NO_SCALING;
struct drm_crtc_state *crtc_state;
if (plane != new_plane_state->crtc->cursor)
return -EINVAL;
if (!plane->state)
return -EINVAL;
if (!plane->state->fb)
return -EINVAL;
if (state)
crtc_state = drm_atomic_get_existing_crtc_state(state,
new_plane_state->crtc);
else /* Special case for asynchronous cursor updates. */
crtc_state = plane->crtc->state;
return drm_atomic_helper_check_plane_state(plane->state, crtc_state,
min_scale, max_scale,
true, true);
}
static void vop_plane_atomic_async_update(struct drm_plane *plane,
struct drm_atomic_state *state)
{
struct drm_plane_state *new_state = drm_atomic_get_new_plane_state(state,
plane);
struct vop *vop = to_vop(plane->state->crtc);
struct drm_framebuffer *old_fb = plane->state->fb;
plane->state->crtc_x = new_state->crtc_x;
plane->state->crtc_y = new_state->crtc_y;
plane->state->crtc_h = new_state->crtc_h;
plane->state->crtc_w = new_state->crtc_w;
plane->state->src_x = new_state->src_x;
plane->state->src_y = new_state->src_y;
plane->state->src_h = new_state->src_h;
plane->state->src_w = new_state->src_w;
swap(plane->state->fb, new_state->fb);
if (vop->is_enabled) {
vop_plane_atomic_update(plane, state);
spin_lock(&vop->reg_lock);
vop_cfg_done(vop);
spin_unlock(&vop->reg_lock);
/*
* A scanout can still be occurring, so we can't drop the
* reference to the old framebuffer. To solve this we get a
* reference to old_fb and set a worker to release it later.
* FIXME: if we perform 500 async_update calls before the
* vblank, then we can have 500 different framebuffers waiting
* to be released.
*/
if (old_fb && plane->state->fb != old_fb) {
drm_framebuffer_get(old_fb);
WARN_ON(drm_crtc_vblank_get(plane->state->crtc) != 0);
drm_flip_work_queue(&vop->fb_unref_work, old_fb);
set_bit(VOP_PENDING_FB_UNREF, &vop->pending);
}
}
}
static const struct drm_plane_helper_funcs plane_helper_funcs = {
.atomic_check = vop_plane_atomic_check,
.atomic_update = vop_plane_atomic_update,
.atomic_disable = vop_plane_atomic_disable,
.atomic_async_check = vop_plane_atomic_async_check,
.atomic_async_update = vop_plane_atomic_async_update,
.prepare_fb = drm_gem_plane_helper_prepare_fb,
};
static const struct drm_plane_funcs vop_plane_funcs = {
.update_plane = drm_atomic_helper_update_plane,
.disable_plane = drm_atomic_helper_disable_plane,
.destroy = vop_plane_destroy,
.reset = drm_atomic_helper_plane_reset,
.atomic_duplicate_state = drm_atomic_helper_plane_duplicate_state,
.atomic_destroy_state = drm_atomic_helper_plane_destroy_state,
.format_mod_supported = rockchip_mod_supported,
};
static int vop_crtc_enable_vblank(struct drm_crtc *crtc)
{
struct vop *vop = to_vop(crtc);
unsigned long flags;
if (WARN_ON(!vop->is_enabled))
return -EPERM;
spin_lock_irqsave(&vop->irq_lock, flags);
VOP_INTR_SET_TYPE(vop, clear, FS_INTR, 1);
VOP_INTR_SET_TYPE(vop, enable, FS_INTR, 1);
spin_unlock_irqrestore(&vop->irq_lock, flags);
return 0;
}
static void vop_crtc_disable_vblank(struct drm_crtc *crtc)
{
struct vop *vop = to_vop(crtc);
unsigned long flags;
if (WARN_ON(!vop->is_enabled))
return;
spin_lock_irqsave(&vop->irq_lock, flags);
VOP_INTR_SET_TYPE(vop, enable, FS_INTR, 0);
spin_unlock_irqrestore(&vop->irq_lock, flags);
}
static bool vop_crtc_mode_fixup(struct drm_crtc *crtc,
const struct drm_display_mode *mode,
struct drm_display_mode *adjusted_mode)
{
struct vop *vop = to_vop(crtc);
unsigned long rate;
/*
* Clock craziness.
*
* Key points:
*
* - DRM works in in kHz.
* - Clock framework works in Hz.
* - Rockchip's clock driver picks the clock rate that is the
* same _OR LOWER_ than the one requested.
*
* Action plan:
*
* 1. When DRM gives us a mode, we should add 999 Hz to it. That way
* if the clock we need is 60000001 Hz (~60 MHz) and DRM tells us to
* make 60000 kHz then the clock framework will actually give us
* the right clock.
*
* NOTE: if the PLL (maybe through a divider) could actually make
* a clock rate 999 Hz higher instead of the one we want then this
* could be a problem. Unfortunately there's not much we can do
* since it's baked into DRM to use kHz. It shouldn't matter in
* practice since Rockchip PLLs are controlled by tables and
* even if there is a divider in the middle I wouldn't expect PLL
* rates in the table that are just a few kHz different.
*
* 2. Get the clock framework to round the rate for us to tell us
* what it will actually make.
*
* 3. Store the rounded up rate so that we don't need to worry about
* this in the actual clk_set_rate().
*/
rate = clk_round_rate(vop->dclk, adjusted_mode->clock * 1000 + 999);
adjusted_mode->clock = DIV_ROUND_UP(rate, 1000);
return true;
}
static bool vop_dsp_lut_is_enabled(struct vop *vop)
{
return vop_read_reg(vop, 0, &vop->data->common->dsp_lut_en);
}
static void vop_crtc_write_gamma_lut(struct vop *vop, struct drm_crtc *crtc)
{
struct drm_color_lut *lut = crtc->state->gamma_lut->data;
unsigned int i;
for (i = 0; i < crtc->gamma_size; i++) {
u32 word;
word = (drm_color_lut_extract(lut[i].red, 10) << 20) |
(drm_color_lut_extract(lut[i].green, 10) << 10) |
drm_color_lut_extract(lut[i].blue, 10);
writel(word, vop->lut_regs + i * 4);
}
}
static void vop_crtc_gamma_set(struct vop *vop, struct drm_crtc *crtc,
struct drm_crtc_state *old_state)
{
struct drm_crtc_state *state = crtc->state;
unsigned int idle;
int ret;
if (!vop->lut_regs)
return;
/*
* To disable gamma (gamma_lut is null) or to write
* an update to the LUT, clear dsp_lut_en.
*/
spin_lock(&vop->reg_lock);
VOP_REG_SET(vop, common, dsp_lut_en, 0);
vop_cfg_done(vop);
spin_unlock(&vop->reg_lock);
/*
* In order to write the LUT to the internal memory,
* we need to first make sure the dsp_lut_en bit is cleared.
*/
ret = readx_poll_timeout(vop_dsp_lut_is_enabled, vop,
idle, !idle, 5, 30 * 1000);
if (ret) {
DRM_DEV_ERROR(vop->dev, "display LUT RAM enable timeout!\n");
return;
}
if (!state->gamma_lut)
return;
spin_lock(&vop->reg_lock);
vop_crtc_write_gamma_lut(vop, crtc);
VOP_REG_SET(vop, common, dsp_lut_en, 1);
vop_cfg_done(vop);
spin_unlock(&vop->reg_lock);
}
static void vop_crtc_atomic_begin(struct drm_crtc *crtc,
struct drm_atomic_state *state)
{
struct drm_crtc_state *crtc_state = drm_atomic_get_new_crtc_state(state,
crtc);
struct drm_crtc_state *old_crtc_state = drm_atomic_get_old_crtc_state(state,
crtc);
struct vop *vop = to_vop(crtc);
/*
* Only update GAMMA if the 'active' flag is not changed,
* otherwise it's updated by .atomic_enable.
*/
if (crtc_state->color_mgmt_changed &&
!crtc_state->active_changed)
vop_crtc_gamma_set(vop, crtc, old_crtc_state);
}
static void vop_crtc_atomic_enable(struct drm_crtc *crtc,
struct drm_atomic_state *state)
{
struct drm_crtc_state *old_state = drm_atomic_get_old_crtc_state(state,
crtc);
struct vop *vop = to_vop(crtc);
const struct vop_data *vop_data = vop->data;
struct rockchip_crtc_state *s = to_rockchip_crtc_state(crtc->state);
struct drm_display_mode *adjusted_mode = &crtc->state->adjusted_mode;
u16 hsync_len = adjusted_mode->hsync_end - adjusted_mode->hsync_start;
u16 hdisplay = adjusted_mode->hdisplay;
u16 htotal = adjusted_mode->htotal;
u16 hact_st = adjusted_mode->htotal - adjusted_mode->hsync_start;
u16 hact_end = hact_st + hdisplay;
u16 vdisplay = adjusted_mode->vdisplay;
u16 vtotal = adjusted_mode->vtotal;
u16 vsync_len = adjusted_mode->vsync_end - adjusted_mode->vsync_start;
u16 vact_st = adjusted_mode->vtotal - adjusted_mode->vsync_start;
u16 vact_end = vact_st + vdisplay;
uint32_t pin_pol, val;
int dither_bpc = s->output_bpc ? s->output_bpc : 10;
int ret;
if (old_state && old_state->self_refresh_active) {
drm_crtc_vblank_on(crtc);
rockchip_drm_set_win_enabled(crtc, true);
return;
}
/*
* If we have a GAMMA LUT in the state, then let's make sure
* it's updated. We might be coming out of suspend,
* which means the LUT internal memory needs to be re-written.
*/
if (crtc->state->gamma_lut)
vop_crtc_gamma_set(vop, crtc, old_state);
mutex_lock(&vop->vop_lock);
WARN_ON(vop->event);
ret = vop_enable(crtc, old_state);
if (ret) {
mutex_unlock(&vop->vop_lock);
DRM_DEV_ERROR(vop->dev, "Failed to enable vop (%d)\n", ret);
return;
}
pin_pol = (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC) ?
BIT(HSYNC_POSITIVE) : 0;
pin_pol |= (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC) ?
BIT(VSYNC_POSITIVE) : 0;
VOP_REG_SET(vop, output, pin_pol, pin_pol);
VOP_REG_SET(vop, output, mipi_dual_channel_en, 0);
switch (s->output_type) {
case DRM_MODE_CONNECTOR_LVDS:
VOP_REG_SET(vop, output, rgb_dclk_pol, 1);
VOP_REG_SET(vop, output, rgb_pin_pol, pin_pol);
VOP_REG_SET(vop, output, rgb_en, 1);
break;
case DRM_MODE_CONNECTOR_eDP:
VOP_REG_SET(vop, output, edp_dclk_pol, 1);
VOP_REG_SET(vop, output, edp_pin_pol, pin_pol);
VOP_REG_SET(vop, output, edp_en, 1);
break;
case DRM_MODE_CONNECTOR_HDMIA:
VOP_REG_SET(vop, output, hdmi_dclk_pol, 1);
VOP_REG_SET(vop, output, hdmi_pin_pol, pin_pol);
VOP_REG_SET(vop, output, hdmi_en, 1);
break;
case DRM_MODE_CONNECTOR_DSI:
VOP_REG_SET(vop, output, mipi_dclk_pol, 1);
VOP_REG_SET(vop, output, mipi_pin_pol, pin_pol);
VOP_REG_SET(vop, output, mipi_en, 1);
VOP_REG_SET(vop, output, mipi_dual_channel_en,
!!(s->output_flags & ROCKCHIP_OUTPUT_DSI_DUAL));
break;
case DRM_MODE_CONNECTOR_DisplayPort:
VOP_REG_SET(vop, output, dp_dclk_pol, 0);
VOP_REG_SET(vop, output, dp_pin_pol, pin_pol);
VOP_REG_SET(vop, output, dp_en, 1);
break;
default:
DRM_DEV_ERROR(vop->dev, "unsupported connector_type [%d]\n",
s->output_type);
}
/*
* if vop is not support RGB10 output, need force RGB10 to RGB888.
*/
if (s->output_mode == ROCKCHIP_OUT_MODE_AAAA &&
!(vop_data->feature & VOP_FEATURE_OUTPUT_RGB10))
s->output_mode = ROCKCHIP_OUT_MODE_P888;
if (s->output_mode == ROCKCHIP_OUT_MODE_AAAA && dither_bpc <= 8)
VOP_REG_SET(vop, common, pre_dither_down, 1);
else
VOP_REG_SET(vop, common, pre_dither_down, 0);
if (dither_bpc == 6) {
VOP_REG_SET(vop, common, dither_down_sel, DITHER_DOWN_ALLEGRO);
VOP_REG_SET(vop, common, dither_down_mode, RGB888_TO_RGB666);
VOP_REG_SET(vop, common, dither_down_en, 1);
} else {
VOP_REG_SET(vop, common, dither_down_en, 0);
}
VOP_REG_SET(vop, common, out_mode, s->output_mode);
VOP_REG_SET(vop, modeset, htotal_pw, (htotal << 16) | hsync_len);
val = hact_st << 16;
val |= hact_end;
VOP_REG_SET(vop, modeset, hact_st_end, val);
VOP_REG_SET(vop, modeset, hpost_st_end, val);
VOP_REG_SET(vop, modeset, vtotal_pw, (vtotal << 16) | vsync_len);
val = vact_st << 16;
val |= vact_end;
VOP_REG_SET(vop, modeset, vact_st_end, val);
VOP_REG_SET(vop, modeset, vpost_st_end, val);
VOP_REG_SET(vop, intr, line_flag_num[0], vact_end);
clk_set_rate(vop->dclk, adjusted_mode->clock * 1000);
VOP_REG_SET(vop, common, standby, 0);
mutex_unlock(&vop->vop_lock);
}
static bool vop_fs_irq_is_pending(struct vop *vop)
{
return VOP_INTR_GET_TYPE(vop, status, FS_INTR);
}
static void vop_wait_for_irq_handler(struct vop *vop)
{
bool pending;
int ret;
/*
* Spin until frame start interrupt status bit goes low, which means
* that interrupt handler was invoked and cleared it. The timeout of
* 10 msecs is really too long, but it is just a safety measure if
* something goes really wrong. The wait will only happen in the very
* unlikely case of a vblank happening exactly at the same time and
* shouldn't exceed microseconds range.
*/
ret = readx_poll_timeout_atomic(vop_fs_irq_is_pending, vop, pending,
!pending, 0, 10 * 1000);
if (ret)
DRM_DEV_ERROR(vop->dev, "VOP vblank IRQ stuck for 10 ms\n");
synchronize_irq(vop->irq);
}
static int vop_crtc_atomic_check(struct drm_crtc *crtc,
struct drm_atomic_state *state)
{
struct drm_crtc_state *crtc_state = drm_atomic_get_new_crtc_state(state,
crtc);
struct vop *vop = to_vop(crtc);
struct drm_plane *plane;
struct drm_plane_state *plane_state;
struct rockchip_crtc_state *s;
int afbc_planes = 0;
if (vop->lut_regs && crtc_state->color_mgmt_changed &&
crtc_state->gamma_lut) {
unsigned int len;
len = drm_color_lut_size(crtc_state->gamma_lut);
if (len != crtc->gamma_size) {
DRM_DEBUG_KMS("Invalid LUT size; got %d, expected %d\n",
len, crtc->gamma_size);
return -EINVAL;
}
}
drm_atomic_crtc_state_for_each_plane(plane, crtc_state) {
plane_state =
drm_atomic_get_plane_state(crtc_state->state, plane);
if (IS_ERR(plane_state)) {
DRM_DEBUG_KMS("Cannot get plane state for plane %s\n",
plane->name);
return PTR_ERR(plane_state);
}
if (drm_is_afbc(plane_state->fb->modifier))
++afbc_planes;
}
if (afbc_planes > 1) {
DRM_DEBUG_KMS("Invalid number of AFBC planes; got %d, expected at most 1\n", afbc_planes);
return -EINVAL;
}
s = to_rockchip_crtc_state(crtc_state);
s->enable_afbc = afbc_planes > 0;
return 0;
}
static void vop_crtc_atomic_flush(struct drm_crtc *crtc,
struct drm_atomic_state *state)
{
struct drm_crtc_state *old_crtc_state = drm_atomic_get_old_crtc_state(state,
crtc);
struct drm_atomic_state *old_state = old_crtc_state->state;
struct drm_plane_state *old_plane_state, *new_plane_state;
struct vop *vop = to_vop(crtc);
struct drm_plane *plane;
struct rockchip_crtc_state *s;
int i;
if (WARN_ON(!vop->is_enabled))
return;
spin_lock(&vop->reg_lock);
/* Enable AFBC if there is some AFBC window, disable otherwise. */
s = to_rockchip_crtc_state(crtc->state);
VOP_AFBC_SET(vop, enable, s->enable_afbc);
vop_cfg_done(vop);
spin_unlock(&vop->reg_lock);
/*
* There is a (rather unlikely) possiblity that a vblank interrupt
* fired before we set the cfg_done bit. To avoid spuriously
* signalling flip completion we need to wait for it to finish.
*/
vop_wait_for_irq_handler(vop);
spin_lock_irq(&crtc->dev->event_lock);
if (crtc->state->event) {
WARN_ON(drm_crtc_vblank_get(crtc) != 0);
WARN_ON(vop->event);
vop->event = crtc->state->event;
crtc->state->event = NULL;
}
spin_unlock_irq(&crtc->dev->event_lock);
for_each_oldnew_plane_in_state(old_state, plane, old_plane_state,
new_plane_state, i) {
if (!old_plane_state->fb)
continue;
if (old_plane_state->fb == new_plane_state->fb)
continue;
drm_framebuffer_get(old_plane_state->fb);
WARN_ON(drm_crtc_vblank_get(crtc) != 0);
drm_flip_work_queue(&vop->fb_unref_work, old_plane_state->fb);
set_bit(VOP_PENDING_FB_UNREF, &vop->pending);
}
}
static const struct drm_crtc_helper_funcs vop_crtc_helper_funcs = {
.mode_fixup = vop_crtc_mode_fixup,
.atomic_check = vop_crtc_atomic_check,
.atomic_begin = vop_crtc_atomic_begin,
.atomic_flush = vop_crtc_atomic_flush,
.atomic_enable = vop_crtc_atomic_enable,
.atomic_disable = vop_crtc_atomic_disable,
};
static void vop_crtc_destroy(struct drm_crtc *crtc)
{
drm_crtc_cleanup(crtc);
}
static struct drm_crtc_state *vop_crtc_duplicate_state(struct drm_crtc *crtc)
{
struct rockchip_crtc_state *rockchip_state;
rockchip_state = kzalloc(sizeof(*rockchip_state), GFP_KERNEL);
if (!rockchip_state)
return NULL;
__drm_atomic_helper_crtc_duplicate_state(crtc, &rockchip_state->base);
return &rockchip_state->base;
}
static void vop_crtc_destroy_state(struct drm_crtc *crtc,
struct drm_crtc_state *state)
{
struct rockchip_crtc_state *s = to_rockchip_crtc_state(state);
__drm_atomic_helper_crtc_destroy_state(&s->base);
kfree(s);
}
static void vop_crtc_reset(struct drm_crtc *crtc)
{
struct rockchip_crtc_state *crtc_state =
kzalloc(sizeof(*crtc_state), GFP_KERNEL);
if (crtc->state)
vop_crtc_destroy_state(crtc, crtc->state);
__drm_atomic_helper_crtc_reset(crtc, &crtc_state->base);
}
#ifdef CONFIG_DRM_ANALOGIX_DP
static struct drm_connector *vop_get_edp_connector(struct vop *vop)
{
struct drm_connector *connector;
struct drm_connector_list_iter conn_iter;
drm_connector_list_iter_begin(vop->drm_dev, &conn_iter);
drm_for_each_connector_iter(connector, &conn_iter) {
if (connector->connector_type == DRM_MODE_CONNECTOR_eDP) {
drm_connector_list_iter_end(&conn_iter);
return connector;
}
}
drm_connector_list_iter_end(&conn_iter);
return NULL;
}
static int vop_crtc_set_crc_source(struct drm_crtc *crtc,
const char *source_name)
{
struct vop *vop = to_vop(crtc);
struct drm_connector *connector;
int ret;
connector = vop_get_edp_connector(vop);
if (!connector)
return -EINVAL;
if (source_name && strcmp(source_name, "auto") == 0)
ret = analogix_dp_start_crc(connector);
else if (!source_name)
ret = analogix_dp_stop_crc(connector);
else
ret = -EINVAL;
return ret;
}
static int
vop_crtc_verify_crc_source(struct drm_crtc *crtc, const char *source_name,
size_t *values_cnt)
{
if (source_name && strcmp(source_name, "auto") != 0)
return -EINVAL;
*values_cnt = 3;
return 0;
}
#else
static int vop_crtc_set_crc_source(struct drm_crtc *crtc,
const char *source_name)
{
return -ENODEV;
}
static int
vop_crtc_verify_crc_source(struct drm_crtc *crtc, const char *source_name,
size_t *values_cnt)
{
return -ENODEV;
}
#endif
static const struct drm_crtc_funcs vop_crtc_funcs = {
.set_config = drm_atomic_helper_set_config,
.page_flip = drm_atomic_helper_page_flip,
.destroy = vop_crtc_destroy,
.reset = vop_crtc_reset,
.atomic_duplicate_state = vop_crtc_duplicate_state,
.atomic_destroy_state = vop_crtc_destroy_state,
.enable_vblank = vop_crtc_enable_vblank,
.disable_vblank = vop_crtc_disable_vblank,
.set_crc_source = vop_crtc_set_crc_source,
.verify_crc_source = vop_crtc_verify_crc_source,
};
static void vop_fb_unref_worker(struct drm_flip_work *work, void *val)
{
struct vop *vop = container_of(work, struct vop, fb_unref_work);
struct drm_framebuffer *fb = val;
drm_crtc_vblank_put(&vop->crtc);
drm_framebuffer_put(fb);
}
static void vop_handle_vblank(struct vop *vop)
{
struct drm_device *drm = vop->drm_dev;
struct drm_crtc *crtc = &vop->crtc;
spin_lock(&drm->event_lock);
if (vop->event) {
drm_crtc_send_vblank_event(crtc, vop->event);
drm_crtc_vblank_put(crtc);
vop->event = NULL;
}
spin_unlock(&drm->event_lock);
if (test_and_clear_bit(VOP_PENDING_FB_UNREF, &vop->pending))
drm_flip_work_commit(&vop->fb_unref_work, system_unbound_wq);
}
static irqreturn_t vop_isr(int irq, void *data)
{
struct vop *vop = data;
struct drm_crtc *crtc = &vop->crtc;
uint32_t active_irqs;
int ret = IRQ_NONE;
/*
* The irq is shared with the iommu. If the runtime-pm state of the
* vop-device is disabled the irq has to be targeted at the iommu.
*/
if (!pm_runtime_get_if_in_use(vop->dev))
return IRQ_NONE;
if (vop_core_clks_enable(vop)) {
DRM_DEV_ERROR_RATELIMITED(vop->dev, "couldn't enable clocks\n");
goto out;
}
/*
* interrupt register has interrupt status, enable and clear bits, we
* must hold irq_lock to avoid a race with enable/disable_vblank().
*/
spin_lock(&vop->irq_lock);
active_irqs = VOP_INTR_GET_TYPE(vop, status, INTR_MASK);
/* Clear all active interrupt sources */
if (active_irqs)
VOP_INTR_SET_TYPE(vop, clear, active_irqs, 1);
spin_unlock(&vop->irq_lock);
/* This is expected for vop iommu irqs, since the irq is shared */
if (!active_irqs)
goto out_disable;
if (active_irqs & DSP_HOLD_VALID_INTR) {
complete(&vop->dsp_hold_completion);
active_irqs &= ~DSP_HOLD_VALID_INTR;
ret = IRQ_HANDLED;
}
if (active_irqs & LINE_FLAG_INTR) {
complete(&vop->line_flag_completion);
active_irqs &= ~LINE_FLAG_INTR;
ret = IRQ_HANDLED;
}
if (active_irqs & FS_INTR) {
drm_crtc_handle_vblank(crtc);
vop_handle_vblank(vop);
active_irqs &= ~FS_INTR;
ret = IRQ_HANDLED;
}
/* Unhandled irqs are spurious. */
if (active_irqs)
DRM_DEV_ERROR(vop->dev, "Unknown VOP IRQs: %#02x\n",
active_irqs);
out_disable:
vop_core_clks_disable(vop);
out:
pm_runtime_put(vop->dev);
return ret;
}
static void vop_plane_add_properties(struct drm_plane *plane,
const struct vop_win_data *win_data)
{
unsigned int flags = 0;
flags |= VOP_WIN_HAS_REG(win_data, x_mir_en) ? DRM_MODE_REFLECT_X : 0;
flags |= VOP_WIN_HAS_REG(win_data, y_mir_en) ? DRM_MODE_REFLECT_Y : 0;
if (flags)
drm_plane_create_rotation_property(plane, DRM_MODE_ROTATE_0,
DRM_MODE_ROTATE_0 | flags);
}
static int vop_create_crtc(struct vop *vop)
{
const struct vop_data *vop_data = vop->data;
struct device *dev = vop->dev;
struct drm_device *drm_dev = vop->drm_dev;
struct drm_plane *primary = NULL, *cursor = NULL, *plane, *tmp;
struct drm_crtc *crtc = &vop->crtc;
struct device_node *port;
int ret;
int i;
/*
* Create drm_plane for primary and cursor planes first, since we need
* to pass them to drm_crtc_init_with_planes, which sets the
* "possible_crtcs" to the newly initialized crtc.
*/
for (i = 0; i < vop_data->win_size; i++) {
struct vop_win *vop_win = &vop->win[i];
const struct vop_win_data *win_data = vop_win->data;
if (win_data->type != DRM_PLANE_TYPE_PRIMARY &&
win_data->type != DRM_PLANE_TYPE_CURSOR)
continue;
ret = drm_universal_plane_init(vop->drm_dev, &vop_win->base,
0, &vop_plane_funcs,
win_data->phy->data_formats,
win_data->phy->nformats,
win_data->phy->format_modifiers,
win_data->type, NULL);
if (ret) {
DRM_DEV_ERROR(vop->dev, "failed to init plane %d\n",
ret);
goto err_cleanup_planes;
}
plane = &vop_win->base;
drm_plane_helper_add(plane, &plane_helper_funcs);
vop_plane_add_properties(plane, win_data);
if (plane->type == DRM_PLANE_TYPE_PRIMARY)
primary = plane;
else if (plane->type == DRM_PLANE_TYPE_CURSOR)
cursor = plane;
}
ret = drm_crtc_init_with_planes(drm_dev, crtc, primary, cursor,
&vop_crtc_funcs, NULL);
if (ret)
goto err_cleanup_planes;
drm_crtc_helper_add(crtc, &vop_crtc_helper_funcs);
if (vop->lut_regs) {
drm_mode_crtc_set_gamma_size(crtc, vop_data->lut_size);
drm_crtc_enable_color_mgmt(crtc, 0, false, vop_data->lut_size);
}
/*
* Create drm_planes for overlay windows with possible_crtcs restricted
* to the newly created crtc.
*/
for (i = 0; i < vop_data->win_size; i++) {
struct vop_win *vop_win = &vop->win[i];
const struct vop_win_data *win_data = vop_win->data;
unsigned long possible_crtcs = drm_crtc_mask(crtc);
if (win_data->type != DRM_PLANE_TYPE_OVERLAY)
continue;
ret = drm_universal_plane_init(vop->drm_dev, &vop_win->base,
possible_crtcs,
&vop_plane_funcs,
win_data->phy->data_formats,
win_data->phy->nformats,
win_data->phy->format_modifiers,
win_data->type, NULL);
if (ret) {
DRM_DEV_ERROR(vop->dev, "failed to init overlay %d\n",
ret);
goto err_cleanup_crtc;
}
drm_plane_helper_add(&vop_win->base, &plane_helper_funcs);
vop_plane_add_properties(&vop_win->base, win_data);
}
port = of_get_child_by_name(dev->of_node, "port");
if (!port) {
DRM_DEV_ERROR(vop->dev, "no port node found in %pOF\n",
dev->of_node);
ret = -ENOENT;
goto err_cleanup_crtc;
}
drm_flip_work_init(&vop->fb_unref_work, "fb_unref",
vop_fb_unref_worker);
init_completion(&vop->dsp_hold_completion);
init_completion(&vop->line_flag_completion);
crtc->port = port;
ret = drm_self_refresh_helper_init(crtc);
if (ret)
DRM_DEV_DEBUG_KMS(vop->dev,
"Failed to init %s with SR helpers %d, ignoring\n",
crtc->name, ret);
return 0;
err_cleanup_crtc:
drm_crtc_cleanup(crtc);
err_cleanup_planes:
list_for_each_entry_safe(plane, tmp, &drm_dev->mode_config.plane_list,
head)
drm_plane_cleanup(plane);
return ret;
}
static void vop_destroy_crtc(struct vop *vop)
{
struct drm_crtc *crtc = &vop->crtc;
struct drm_device *drm_dev = vop->drm_dev;
struct drm_plane *plane, *tmp;
drm_self_refresh_helper_cleanup(crtc);
of_node_put(crtc->port);
/*
* We need to cleanup the planes now. Why?
*
* The planes are "&vop->win[i].base". That means the memory is
* all part of the big "struct vop" chunk of memory. That memory
* was devm allocated and associated with this component. We need to
* free it ourselves before vop_unbind() finishes.
*/
list_for_each_entry_safe(plane, tmp, &drm_dev->mode_config.plane_list,
head)
vop_plane_destroy(plane);
/*
* Destroy CRTC after vop_plane_destroy() since vop_disable_plane()
* references the CRTC.
*/
drm_crtc_cleanup(crtc);
drm_flip_work_cleanup(&vop->fb_unref_work);
}
static int vop_initial(struct vop *vop)
{
struct reset_control *ahb_rst;
int i, ret;
vop->hclk = devm_clk_get(vop->dev, "hclk_vop");
if (IS_ERR(vop->hclk)) {
DRM_DEV_ERROR(vop->dev, "failed to get hclk source\n");
return PTR_ERR(vop->hclk);
}
vop->aclk = devm_clk_get(vop->dev, "aclk_vop");
if (IS_ERR(vop->aclk)) {
DRM_DEV_ERROR(vop->dev, "failed to get aclk source\n");
return PTR_ERR(vop->aclk);
}
vop->dclk = devm_clk_get(vop->dev, "dclk_vop");
if (IS_ERR(vop->dclk)) {
DRM_DEV_ERROR(vop->dev, "failed to get dclk source\n");
return PTR_ERR(vop->dclk);
}
ret = pm_runtime_get_sync(vop->dev);
if (ret < 0) {
DRM_DEV_ERROR(vop->dev, "failed to get pm runtime: %d\n", ret);
return ret;
}
ret = clk_prepare(vop->dclk);
if (ret < 0) {
DRM_DEV_ERROR(vop->dev, "failed to prepare dclk\n");
goto err_put_pm_runtime;
}
/* Enable both the hclk and aclk to setup the vop */
ret = clk_prepare_enable(vop->hclk);
if (ret < 0) {
DRM_DEV_ERROR(vop->dev, "failed to prepare/enable hclk\n");
goto err_unprepare_dclk;
}
ret = clk_prepare_enable(vop->aclk);
if (ret < 0) {
DRM_DEV_ERROR(vop->dev, "failed to prepare/enable aclk\n");
goto err_disable_hclk;
}
/*
* do hclk_reset, reset all vop registers.
*/
ahb_rst = devm_reset_control_get(vop->dev, "ahb");
if (IS_ERR(ahb_rst)) {
DRM_DEV_ERROR(vop->dev, "failed to get ahb reset\n");
ret = PTR_ERR(ahb_rst);
goto err_disable_aclk;
}
reset_control_assert(ahb_rst);
usleep_range(10, 20);
reset_control_deassert(ahb_rst);
VOP_INTR_SET_TYPE(vop, clear, INTR_MASK, 1);
VOP_INTR_SET_TYPE(vop, enable, INTR_MASK, 0);
for (i = 0; i < vop->len; i += sizeof(u32))
vop->regsbak[i / 4] = readl_relaxed(vop->regs + i);
VOP_REG_SET(vop, misc, global_regdone_en, 1);
VOP_REG_SET(vop, common, dsp_blank, 0);
for (i = 0; i < vop->data->win_size; i++) {
struct vop_win *vop_win = &vop->win[i];
const struct vop_win_data *win = vop_win->data;
int channel = i * 2 + 1;
VOP_WIN_SET(vop, win, channel, (channel + 1) << 4 | channel);
vop_win_disable(vop, vop_win);
VOP_WIN_SET(vop, win, gate, 1);
}
vop_cfg_done(vop);
/*
* do dclk_reset, let all config take affect.
*/
vop->dclk_rst = devm_reset_control_get(vop->dev, "dclk");
if (IS_ERR(vop->dclk_rst)) {
DRM_DEV_ERROR(vop->dev, "failed to get dclk reset\n");
ret = PTR_ERR(vop->dclk_rst);
goto err_disable_aclk;
}
reset_control_assert(vop->dclk_rst);
usleep_range(10, 20);
reset_control_deassert(vop->dclk_rst);
clk_disable(vop->hclk);
clk_disable(vop->aclk);
vop->is_enabled = false;
pm_runtime_put_sync(vop->dev);
return 0;
err_disable_aclk:
clk_disable_unprepare(vop->aclk);
err_disable_hclk:
clk_disable_unprepare(vop->hclk);
err_unprepare_dclk:
clk_unprepare(vop->dclk);
err_put_pm_runtime:
pm_runtime_put_sync(vop->dev);
return ret;
}
/*
* Initialize the vop->win array elements.
*/
static void vop_win_init(struct vop *vop)
{
const struct vop_data *vop_data = vop->data;
unsigned int i;
for (i = 0; i < vop_data->win_size; i++) {
struct vop_win *vop_win = &vop->win[i];
const struct vop_win_data *win_data = &vop_data->win[i];
vop_win->data = win_data;
vop_win->vop = vop;
if (vop_data->win_yuv2yuv)
vop_win->yuv2yuv_data = &vop_data->win_yuv2yuv[i];
}
}
/**
* rockchip_drm_wait_vact_end
* @crtc: CRTC to enable line flag
* @mstimeout: millisecond for timeout
*
* Wait for vact_end line flag irq or timeout.
*
* Returns:
* Zero on success, negative errno on failure.
*/
int rockchip_drm_wait_vact_end(struct drm_crtc *crtc, unsigned int mstimeout)
{
struct vop *vop = to_vop(crtc);
unsigned long jiffies_left;
int ret = 0;
if (!crtc || !vop->is_enabled)
return -ENODEV;
mutex_lock(&vop->vop_lock);
if (mstimeout <= 0) {
ret = -EINVAL;
goto out;
}
if (vop_line_flag_irq_is_enabled(vop)) {
ret = -EBUSY;
goto out;
}
reinit_completion(&vop->line_flag_completion);
vop_line_flag_irq_enable(vop);
jiffies_left = wait_for_completion_timeout(&vop->line_flag_completion,
msecs_to_jiffies(mstimeout));
vop_line_flag_irq_disable(vop);
if (jiffies_left == 0) {
DRM_DEV_ERROR(vop->dev, "Timeout waiting for IRQ\n");
ret = -ETIMEDOUT;
goto out;
}
out:
mutex_unlock(&vop->vop_lock);
return ret;
}
EXPORT_SYMBOL(rockchip_drm_wait_vact_end);
static int vop_bind(struct device *dev, struct device *master, void *data)
{
struct platform_device *pdev = to_platform_device(dev);
const struct vop_data *vop_data;
struct drm_device *drm_dev = data;
struct vop *vop;
struct resource *res;
int ret, irq;
vop_data = of_device_get_match_data(dev);
if (!vop_data)
return -ENODEV;
/* Allocate vop struct and its vop_win array */
vop = devm_kzalloc(dev, struct_size(vop, win, vop_data->win_size),
GFP_KERNEL);
if (!vop)
return -ENOMEM;
vop->dev = dev;
vop->data = vop_data;
vop->drm_dev = drm_dev;
dev_set_drvdata(dev, vop);
vop_win_init(vop);
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
vop->len = resource_size(res);
vop->regs = devm_ioremap_resource(dev, res);
if (IS_ERR(vop->regs))
return PTR_ERR(vop->regs);
res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
if (res) {
if (!vop_data->lut_size) {
DRM_DEV_ERROR(dev, "no gamma LUT size defined\n");
return -EINVAL;
}
vop->lut_regs = devm_ioremap_resource(dev, res);
if (IS_ERR(vop->lut_regs))
return PTR_ERR(vop->lut_regs);
}
vop->regsbak = devm_kzalloc(dev, vop->len, GFP_KERNEL);
if (!vop->regsbak)
return -ENOMEM;
irq = platform_get_irq(pdev, 0);
if (irq < 0) {
DRM_DEV_ERROR(dev, "cannot find irq for vop\n");
return irq;
}
vop->irq = (unsigned int)irq;
spin_lock_init(&vop->reg_lock);
spin_lock_init(&vop->irq_lock);
mutex_init(&vop->vop_lock);
ret = vop_create_crtc(vop);
if (ret)
return ret;
pm_runtime_enable(&pdev->dev);
ret = vop_initial(vop);
if (ret < 0) {
DRM_DEV_ERROR(&pdev->dev,
"cannot initial vop dev - err %d\n", ret);
goto err_disable_pm_runtime;
}
ret = devm_request_irq(dev, vop->irq, vop_isr,
IRQF_SHARED, dev_name(dev), vop);
if (ret)
goto err_disable_pm_runtime;
if (vop->data->feature & VOP_FEATURE_INTERNAL_RGB) {
vop->rgb = rockchip_rgb_init(dev, &vop->crtc, vop->drm_dev);
if (IS_ERR(vop->rgb)) {
ret = PTR_ERR(vop->rgb);
goto err_disable_pm_runtime;
}
}
return 0;
err_disable_pm_runtime:
pm_runtime_disable(&pdev->dev);
vop_destroy_crtc(vop);
return ret;
}
static void vop_unbind(struct device *dev, struct device *master, void *data)
{
struct vop *vop = dev_get_drvdata(dev);
if (vop->rgb)
rockchip_rgb_fini(vop->rgb);
pm_runtime_disable(dev);
vop_destroy_crtc(vop);
clk_unprepare(vop->aclk);
clk_unprepare(vop->hclk);
clk_unprepare(vop->dclk);
}
const struct component_ops vop_component_ops = {
.bind = vop_bind,
.unbind = vop_unbind,
};
EXPORT_SYMBOL_GPL(vop_component_ops);