linux/fs/bcachefs/bkey_sort.c
Kent Overstreet 26609b619f bcachefs: Make bkey types globally unique
this lets us get rid of a lot of extra switch statements - in a lot of
places we dispatch on the btree node type, and then the key type, so
this is a nice cleanup across a lot of code.

Also improve the on disk format versioning stuff.

Signed-off-by: Kent Overstreet <kent.overstreet@linux.dev>
2023-10-22 17:08:12 -04:00

654 lines
15 KiB
C

// SPDX-License-Identifier: GPL-2.0
#include "bcachefs.h"
#include "bkey_sort.h"
#include "bset.h"
#include "extents.h"
/* too many iterators, need to clean this up */
/* btree_node_iter_large: */
#define btree_node_iter_cmp_heap(h, _l, _r) btree_node_iter_cmp(b, _l, _r)
static inline bool
bch2_btree_node_iter_large_end(struct btree_node_iter_large *iter)
{
return !iter->used;
}
static inline struct bkey_packed *
bch2_btree_node_iter_large_peek_all(struct btree_node_iter_large *iter,
struct btree *b)
{
return bch2_btree_node_iter_large_end(iter)
? NULL
: __btree_node_offset_to_key(b, iter->data->k);
}
static void
bch2_btree_node_iter_large_advance(struct btree_node_iter_large *iter,
struct btree *b)
{
iter->data->k += __btree_node_offset_to_key(b, iter->data->k)->u64s;
EBUG_ON(!iter->used);
EBUG_ON(iter->data->k > iter->data->end);
if (iter->data->k == iter->data->end)
heap_del(iter, 0, btree_node_iter_cmp_heap, NULL);
else
heap_sift_down(iter, 0, btree_node_iter_cmp_heap, NULL);
}
static inline struct bkey_packed *
bch2_btree_node_iter_large_next_all(struct btree_node_iter_large *iter,
struct btree *b)
{
struct bkey_packed *ret = bch2_btree_node_iter_large_peek_all(iter, b);
if (ret)
bch2_btree_node_iter_large_advance(iter, b);
return ret;
}
void bch2_btree_node_iter_large_push(struct btree_node_iter_large *iter,
struct btree *b,
const struct bkey_packed *k,
const struct bkey_packed *end)
{
if (k != end) {
struct btree_node_iter_set n =
((struct btree_node_iter_set) {
__btree_node_key_to_offset(b, k),
__btree_node_key_to_offset(b, end)
});
__heap_add(iter, n, btree_node_iter_cmp_heap, NULL);
}
}
static void sort_key_next(struct btree_node_iter_large *iter,
struct btree *b,
struct btree_node_iter_set *i)
{
i->k += __btree_node_offset_to_key(b, i->k)->u64s;
if (i->k == i->end)
*i = iter->data[--iter->used];
}
/* regular sort_iters */
typedef int (*sort_cmp_fn)(struct btree *,
struct bkey_packed *,
struct bkey_packed *);
static inline void __sort_iter_sift(struct sort_iter *iter,
unsigned from,
sort_cmp_fn cmp)
{
unsigned i;
for (i = from;
i + 1 < iter->used &&
cmp(iter->b, iter->data[i].k, iter->data[i + 1].k) > 0;
i++)
swap(iter->data[i], iter->data[i + 1]);
}
static inline void sort_iter_sift(struct sort_iter *iter, sort_cmp_fn cmp)
{
__sort_iter_sift(iter, 0, cmp);
}
static inline void sort_iter_sort(struct sort_iter *iter, sort_cmp_fn cmp)
{
unsigned i = iter->used;
while (i--)
__sort_iter_sift(iter, i, cmp);
}
static inline struct bkey_packed *sort_iter_peek(struct sort_iter *iter)
{
return iter->used ? iter->data->k : NULL;
}
static inline void sort_iter_advance(struct sort_iter *iter, sort_cmp_fn cmp)
{
iter->data->k = bkey_next(iter->data->k);
BUG_ON(iter->data->k > iter->data->end);
if (iter->data->k == iter->data->end)
array_remove_item(iter->data, iter->used, 0);
else
sort_iter_sift(iter, cmp);
}
static inline struct bkey_packed *sort_iter_next(struct sort_iter *iter,
sort_cmp_fn cmp)
{
struct bkey_packed *ret = sort_iter_peek(iter);
if (ret)
sort_iter_advance(iter, cmp);
return ret;
}
/*
* Returns true if l > r - unless l == r, in which case returns true if l is
* older than r.
*
* Necessary for btree_sort_fixup() - if there are multiple keys that compare
* equal in different sets, we have to process them newest to oldest.
*/
#define key_sort_cmp(h, l, r) \
({ \
bkey_cmp_packed(b, \
__btree_node_offset_to_key(b, (l).k), \
__btree_node_offset_to_key(b, (r).k)) \
\
?: (l).k - (r).k; \
})
static inline bool should_drop_next_key(struct btree_node_iter_large *iter,
struct btree *b)
{
struct btree_node_iter_set *l = iter->data, *r = iter->data + 1;
struct bkey_packed *k = __btree_node_offset_to_key(b, l->k);
if (bkey_whiteout(k))
return true;
if (iter->used < 2)
return false;
if (iter->used > 2 &&
key_sort_cmp(iter, r[0], r[1]) >= 0)
r++;
/*
* key_sort_cmp() ensures that when keys compare equal the older key
* comes first; so if l->k compares equal to r->k then l->k is older and
* should be dropped.
*/
return !bkey_cmp_packed(b,
__btree_node_offset_to_key(b, l->k),
__btree_node_offset_to_key(b, r->k));
}
struct btree_nr_keys bch2_key_sort_fix_overlapping(struct bset *dst,
struct btree *b,
struct btree_node_iter_large *iter)
{
struct bkey_packed *out = dst->start;
struct btree_nr_keys nr;
memset(&nr, 0, sizeof(nr));
heap_resort(iter, key_sort_cmp, NULL);
while (!bch2_btree_node_iter_large_end(iter)) {
if (!should_drop_next_key(iter, b)) {
struct bkey_packed *k =
__btree_node_offset_to_key(b, iter->data->k);
bkey_copy(out, k);
btree_keys_account_key_add(&nr, 0, out);
out = bkey_next(out);
}
sort_key_next(iter, b, iter->data);
heap_sift_down(iter, 0, key_sort_cmp, NULL);
}
dst->u64s = cpu_to_le16((u64 *) out - dst->_data);
return nr;
}
/*
* If keys compare equal, compare by pointer order:
*
* Necessary for sort_fix_overlapping() - if there are multiple keys that
* compare equal in different sets, we have to process them newest to oldest.
*/
#define extent_sort_cmp(h, l, r) \
({ \
struct bkey _ul = bkey_unpack_key(b, \
__btree_node_offset_to_key(b, (l).k)); \
struct bkey _ur = bkey_unpack_key(b, \
__btree_node_offset_to_key(b, (r).k)); \
\
bkey_cmp(bkey_start_pos(&_ul), \
bkey_start_pos(&_ur)) ?: (r).k - (l).k; \
})
static inline void extent_sort_sift(struct btree_node_iter_large *iter,
struct btree *b, size_t i)
{
heap_sift_down(iter, i, extent_sort_cmp, NULL);
}
static inline void extent_sort_next(struct btree_node_iter_large *iter,
struct btree *b,
struct btree_node_iter_set *i)
{
sort_key_next(iter, b, i);
heap_sift_down(iter, i - iter->data, extent_sort_cmp, NULL);
}
static void extent_sort_append(struct bch_fs *c,
struct btree *b,
struct btree_nr_keys *nr,
struct bkey_packed *start,
struct bkey_packed **prev,
struct bkey_packed *k)
{
struct bkey_format *f = &b->format;
BKEY_PADDED(k) tmp;
if (bkey_whiteout(k))
return;
bch2_bkey_unpack(b, &tmp.k, k);
if (*prev &&
bch2_bkey_merge(c, (void *) *prev, &tmp.k))
return;
if (*prev) {
bch2_bkey_pack(*prev, (void *) *prev, f);
btree_keys_account_key_add(nr, 0, *prev);
*prev = bkey_next(*prev);
} else {
*prev = start;
}
bkey_copy(*prev, &tmp.k);
}
struct btree_nr_keys bch2_extent_sort_fix_overlapping(struct bch_fs *c,
struct bset *dst,
struct btree *b,
struct btree_node_iter_large *iter)
{
struct bkey_format *f = &b->format;
struct btree_node_iter_set *_l = iter->data, *_r;
struct bkey_packed *prev = NULL, *out, *lk, *rk;
struct bkey l_unpacked, r_unpacked;
struct bkey_s l, r;
struct btree_nr_keys nr;
memset(&nr, 0, sizeof(nr));
heap_resort(iter, extent_sort_cmp, NULL);
while (!bch2_btree_node_iter_large_end(iter)) {
lk = __btree_node_offset_to_key(b, _l->k);
if (iter->used == 1) {
extent_sort_append(c, b, &nr, dst->start, &prev, lk);
extent_sort_next(iter, b, _l);
continue;
}
_r = iter->data + 1;
if (iter->used > 2 &&
extent_sort_cmp(iter, _r[0], _r[1]) >= 0)
_r++;
rk = __btree_node_offset_to_key(b, _r->k);
l = __bkey_disassemble(b, lk, &l_unpacked);
r = __bkey_disassemble(b, rk, &r_unpacked);
/* If current key and next key don't overlap, just append */
if (bkey_cmp(l.k->p, bkey_start_pos(r.k)) <= 0) {
extent_sort_append(c, b, &nr, dst->start, &prev, lk);
extent_sort_next(iter, b, _l);
continue;
}
/* Skip 0 size keys */
if (!r.k->size) {
extent_sort_next(iter, b, _r);
continue;
}
/*
* overlap: keep the newer key and trim the older key so they
* don't overlap. comparing pointers tells us which one is
* newer, since the bsets are appended one after the other.
*/
/* can't happen because of comparison func */
BUG_ON(_l->k < _r->k &&
!bkey_cmp(bkey_start_pos(l.k), bkey_start_pos(r.k)));
if (_l->k > _r->k) {
/* l wins, trim r */
if (bkey_cmp(l.k->p, r.k->p) >= 0) {
sort_key_next(iter, b, _r);
} else {
__bch2_cut_front(l.k->p, r);
extent_save(b, rk, r.k);
}
extent_sort_sift(iter, b, _r - iter->data);
} else if (bkey_cmp(l.k->p, r.k->p) > 0) {
BKEY_PADDED(k) tmp;
/*
* r wins, but it overlaps in the middle of l - split l:
*/
bkey_reassemble(&tmp.k, l.s_c);
bch2_cut_back(bkey_start_pos(r.k), &tmp.k.k);
__bch2_cut_front(r.k->p, l);
extent_save(b, lk, l.k);
extent_sort_sift(iter, b, 0);
extent_sort_append(c, b, &nr, dst->start, &prev,
bkey_to_packed(&tmp.k));
} else {
bch2_cut_back(bkey_start_pos(r.k), l.k);
extent_save(b, lk, l.k);
}
}
if (prev) {
bch2_bkey_pack(prev, (void *) prev, f);
btree_keys_account_key_add(&nr, 0, prev);
out = bkey_next(prev);
} else {
out = dst->start;
}
dst->u64s = cpu_to_le16((u64 *) out - dst->_data);
return nr;
}
/* Sort + repack in a new format: */
struct btree_nr_keys
bch2_sort_repack(struct bset *dst, struct btree *src,
struct btree_node_iter *src_iter,
struct bkey_format *out_f,
bool filter_whiteouts)
{
struct bkey_format *in_f = &src->format;
struct bkey_packed *in, *out = vstruct_last(dst);
struct btree_nr_keys nr;
memset(&nr, 0, sizeof(nr));
while ((in = bch2_btree_node_iter_next_all(src_iter, src))) {
if (filter_whiteouts && bkey_whiteout(in))
continue;
if (bch2_bkey_transform(out_f, out, bkey_packed(in)
? in_f : &bch2_bkey_format_current, in))
out->format = KEY_FORMAT_LOCAL_BTREE;
else
bch2_bkey_unpack(src, (void *) out, in);
btree_keys_account_key_add(&nr, 0, out);
out = bkey_next(out);
}
dst->u64s = cpu_to_le16((u64 *) out - dst->_data);
return nr;
}
/* Sort, repack, and merge: */
struct btree_nr_keys
bch2_sort_repack_merge(struct bch_fs *c,
struct bset *dst, struct btree *src,
struct btree_node_iter *iter,
struct bkey_format *out_f,
bool filter_whiteouts)
{
struct bkey_packed *k, *prev = NULL, *out;
struct btree_nr_keys nr;
BKEY_PADDED(k) tmp;
memset(&nr, 0, sizeof(nr));
while ((k = bch2_btree_node_iter_next_all(iter, src))) {
if (filter_whiteouts && bkey_whiteout(k))
continue;
/*
* The filter might modify pointers, so we have to unpack the
* key and values to &tmp.k:
*/
bch2_bkey_unpack(src, &tmp.k, k);
if (filter_whiteouts &&
bch2_bkey_normalize(c, bkey_i_to_s(&tmp.k)))
continue;
/* prev is always unpacked, for key merging: */
if (prev &&
bch2_bkey_merge(c, (void *) prev, &tmp.k) ==
BCH_MERGE_MERGE)
continue;
/*
* the current key becomes the new prev: advance prev, then
* copy the current key - but first pack prev (in place):
*/
if (prev) {
bch2_bkey_pack(prev, (void *) prev, out_f);
btree_keys_account_key_add(&nr, 0, prev);
prev = bkey_next(prev);
} else {
prev = vstruct_last(dst);
}
bkey_copy(prev, &tmp.k);
}
if (prev) {
bch2_bkey_pack(prev, (void *) prev, out_f);
btree_keys_account_key_add(&nr, 0, prev);
out = bkey_next(prev);
} else {
out = vstruct_last(dst);
}
dst->u64s = cpu_to_le16((u64 *) out - dst->_data);
return nr;
}
static inline int sort_keys_cmp(struct btree *b,
struct bkey_packed *l,
struct bkey_packed *r)
{
return bkey_cmp_packed(b, l, r) ?:
(int) bkey_whiteout(r) - (int) bkey_whiteout(l) ?:
(int) l->needs_whiteout - (int) r->needs_whiteout;
}
unsigned bch2_sort_keys(struct bkey_packed *dst,
struct sort_iter *iter,
bool filter_whiteouts)
{
const struct bkey_format *f = &iter->b->format;
struct bkey_packed *in, *next, *out = dst;
sort_iter_sort(iter, sort_keys_cmp);
while ((in = sort_iter_next(iter, sort_keys_cmp))) {
if (bkey_whiteout(in) &&
(filter_whiteouts || !in->needs_whiteout))
continue;
if (bkey_whiteout(in) &&
(next = sort_iter_peek(iter)) &&
!bkey_cmp_packed(iter->b, in, next)) {
BUG_ON(in->needs_whiteout &&
next->needs_whiteout);
/*
* XXX racy, called with read lock from write path
*
* leads to spurious BUG_ON() in bkey_unpack_key() in
* debug mode
*/
next->needs_whiteout |= in->needs_whiteout;
continue;
}
if (bkey_whiteout(in)) {
memcpy_u64s(out, in, bkeyp_key_u64s(f, in));
set_bkeyp_val_u64s(f, out, 0);
} else {
bkey_copy(out, in);
}
out = bkey_next(out);
}
return (u64 *) out - (u64 *) dst;
}
static inline int sort_extents_cmp(struct btree *b,
struct bkey_packed *l,
struct bkey_packed *r)
{
return bkey_cmp_packed(b, l, r) ?:
(int) bkey_deleted(l) - (int) bkey_deleted(r);
}
unsigned bch2_sort_extents(struct bkey_packed *dst,
struct sort_iter *iter,
bool filter_whiteouts)
{
struct bkey_packed *in, *out = dst;
sort_iter_sort(iter, sort_extents_cmp);
while ((in = sort_iter_next(iter, sort_extents_cmp))) {
if (bkey_deleted(in))
continue;
if (bkey_whiteout(in) &&
(filter_whiteouts || !in->needs_whiteout))
continue;
bkey_copy(out, in);
out = bkey_next(out);
}
return (u64 *) out - (u64 *) dst;
}
static inline int sort_key_whiteouts_cmp(struct btree *b,
struct bkey_packed *l,
struct bkey_packed *r)
{
return bkey_cmp_packed(b, l, r);
}
unsigned bch2_sort_key_whiteouts(struct bkey_packed *dst,
struct sort_iter *iter)
{
struct bkey_packed *in, *out = dst;
sort_iter_sort(iter, sort_key_whiteouts_cmp);
while ((in = sort_iter_next(iter, sort_key_whiteouts_cmp))) {
bkey_copy(out, in);
out = bkey_next(out);
}
return (u64 *) out - (u64 *) dst;
}
static inline int sort_extent_whiteouts_cmp(struct btree *b,
struct bkey_packed *l,
struct bkey_packed *r)
{
struct bkey ul = bkey_unpack_key(b, l);
struct bkey ur = bkey_unpack_key(b, r);
return bkey_cmp(bkey_start_pos(&ul), bkey_start_pos(&ur));
}
unsigned bch2_sort_extent_whiteouts(struct bkey_packed *dst,
struct sort_iter *iter)
{
const struct bkey_format *f = &iter->b->format;
struct bkey_packed *in, *out = dst;
struct bkey_i l, r;
bool prev = false, l_packed = false;
u64 max_packed_size = bkey_field_max(f, BKEY_FIELD_SIZE);
u64 max_packed_offset = bkey_field_max(f, BKEY_FIELD_OFFSET);
u64 new_size;
max_packed_size = min_t(u64, max_packed_size, KEY_SIZE_MAX);
sort_iter_sort(iter, sort_extent_whiteouts_cmp);
while ((in = sort_iter_next(iter, sort_extent_whiteouts_cmp))) {
if (bkey_deleted(in))
continue;
EBUG_ON(bkeyp_val_u64s(f, in));
EBUG_ON(in->type != KEY_TYPE_discard);
r.k = bkey_unpack_key(iter->b, in);
if (prev &&
bkey_cmp(l.k.p, bkey_start_pos(&r.k)) >= 0) {
if (bkey_cmp(l.k.p, r.k.p) >= 0)
continue;
new_size = l_packed
? min(max_packed_size, max_packed_offset -
bkey_start_offset(&l.k))
: KEY_SIZE_MAX;
new_size = min(new_size, r.k.p.offset -
bkey_start_offset(&l.k));
BUG_ON(new_size < l.k.size);
bch2_key_resize(&l.k, new_size);
if (bkey_cmp(l.k.p, r.k.p) >= 0)
continue;
bch2_cut_front(l.k.p, &r);
}
if (prev) {
if (!bch2_bkey_pack(out, &l, f)) {
BUG_ON(l_packed);
bkey_copy(out, &l);
}
out = bkey_next(out);
}
l = r;
prev = true;
l_packed = bkey_packed(in);
}
if (prev) {
if (!bch2_bkey_pack(out, &l, f)) {
BUG_ON(l_packed);
bkey_copy(out, &l);
}
out = bkey_next(out);
}
return (u64 *) out - (u64 *) dst;
}