linux/arch/parisc/kernel/drivers.c
Uwe Kleine-König fc7a6209d5 bus: Make remove callback return void
The driver core ignores the return value of this callback because there
is only little it can do when a device disappears.

This is the final bit of a long lasting cleanup quest where several
buses were converted to also return void from their remove callback.
Additionally some resource leaks were fixed that were caused by drivers
returning an error code in the expectation that the driver won't go
away.

With struct bus_type::remove returning void it's prevented that newly
implemented buses return an ignored error code and so don't anticipate
wrong expectations for driver authors.

Reviewed-by: Tom Rix <trix@redhat.com> (For fpga)
Reviewed-by: Mathieu Poirier <mathieu.poirier@linaro.org>
Reviewed-by: Cornelia Huck <cohuck@redhat.com> (For drivers/s390 and drivers/vfio)
Acked-by: Russell King (Oracle) <rmk+kernel@armlinux.org.uk> (For ARM, Amba and related parts)
Acked-by: Mark Brown <broonie@kernel.org>
Acked-by: Chen-Yu Tsai <wens@csie.org> (for sunxi-rsb)
Acked-by: Pali Rohár <pali@kernel.org>
Acked-by: Mauro Carvalho Chehab <mchehab@kernel.org> (for media)
Acked-by: Hans de Goede <hdegoede@redhat.com> (For drivers/platform)
Acked-by: Alexandre Belloni <alexandre.belloni@bootlin.com>
Acked-By: Vinod Koul <vkoul@kernel.org>
Acked-by: Juergen Gross <jgross@suse.com> (For xen)
Acked-by: Lee Jones <lee.jones@linaro.org> (For mfd)
Acked-by: Johannes Thumshirn <jth@kernel.org> (For mcb)
Acked-by: Johan Hovold <johan@kernel.org>
Acked-by: Srinivas Kandagatla <srinivas.kandagatla@linaro.org> (For slimbus)
Acked-by: Kirti Wankhede <kwankhede@nvidia.com> (For vfio)
Acked-by: Maximilian Luz <luzmaximilian@gmail.com>
Acked-by: Heikki Krogerus <heikki.krogerus@linux.intel.com> (For ulpi and typec)
Acked-by: Samuel Iglesias Gonsálvez <siglesias@igalia.com> (For ipack)
Acked-by: Geoff Levand <geoff@infradead.org> (For ps3)
Acked-by: Yehezkel Bernat <YehezkelShB@gmail.com> (For thunderbolt)
Acked-by: Alexander Shishkin <alexander.shishkin@linux.intel.com> (For intel_th)
Acked-by: Dominik Brodowski <linux@dominikbrodowski.net> (For pcmcia)
Acked-by: Rafael J. Wysocki <rafael@kernel.org> (For ACPI)
Acked-by: Bjorn Andersson <bjorn.andersson@linaro.org> (rpmsg and apr)
Acked-by: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com> (For intel-ish-hid)
Acked-by: Dan Williams <dan.j.williams@intel.com> (For CXL, DAX, and NVDIMM)
Acked-by: William Breathitt Gray <vilhelm.gray@gmail.com> (For isa)
Acked-by: Stefan Richter <stefanr@s5r6.in-berlin.de> (For firewire)
Acked-by: Benjamin Tissoires <benjamin.tissoires@redhat.com> (For hid)
Acked-by: Thorsten Scherer <t.scherer@eckelmann.de> (For siox)
Acked-by: Sven Van Asbroeck <TheSven73@gmail.com> (For anybuss)
Acked-by: Ulf Hansson <ulf.hansson@linaro.org> (For MMC)
Acked-by: Wolfram Sang <wsa@kernel.org> # for I2C
Acked-by: Sudeep Holla <sudeep.holla@arm.com>
Acked-by: Geert Uytterhoeven <geert@linux-m68k.org>
Acked-by: Dmitry Torokhov <dmitry.torokhov@gmail.com>
Acked-by: Finn Thain <fthain@linux-m68k.org>
Signed-off-by: Uwe Kleine-König <u.kleine-koenig@pengutronix.de>
Link: https://lore.kernel.org/r/20210713193522.1770306-6-u.kleine-koenig@pengutronix.de
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-07-21 11:53:42 +02:00

1105 lines
29 KiB
C

// SPDX-License-Identifier: GPL-2.0-or-later
/*
* drivers.c
*
* Copyright (c) 1999 The Puffin Group
* Copyright (c) 2001 Matthew Wilcox for Hewlett Packard
* Copyright (c) 2001 Helge Deller <deller@gmx.de>
* Copyright (c) 2001,2002 Ryan Bradetich
* Copyright (c) 2004-2005 Thibaut VARENE <varenet@parisc-linux.org>
*
* The file handles registering devices and drivers, then matching them.
* It's the closest we get to a dating agency.
*
* If you're thinking about modifying this file, here are some gotchas to
* bear in mind:
* - 715/Mirage device paths have a dummy device between Lasi and its children
* - The EISA adapter may show up as a sibling or child of Wax
* - Dino has an optionally functional serial port. If firmware enables it,
* it shows up as a child of Dino. If firmware disables it, the buswalk
* finds it and it shows up as a child of Cujo
* - Dino has both parisc and pci devices as children
* - parisc devices are discovered in a random order, including children
* before parents in some cases.
*/
#include <linux/slab.h>
#include <linux/types.h>
#include <linux/kernel.h>
#include <linux/pci.h>
#include <linux/spinlock.h>
#include <linux/string.h>
#include <linux/export.h>
#include <linux/dma-map-ops.h>
#include <asm/hardware.h>
#include <asm/io.h>
#include <asm/pdc.h>
#include <asm/parisc-device.h>
#include <asm/ropes.h>
/* See comments in include/asm-parisc/pci.h */
const struct dma_map_ops *hppa_dma_ops __ro_after_init;
EXPORT_SYMBOL(hppa_dma_ops);
static struct device root = {
.init_name = "parisc",
};
static inline int check_dev(struct device *dev)
{
if (dev->bus == &parisc_bus_type) {
struct parisc_device *pdev;
pdev = to_parisc_device(dev);
return pdev->id.hw_type != HPHW_FAULTY;
}
return 1;
}
static struct device *
parse_tree_node(struct device *parent, int index, struct hardware_path *modpath);
struct recurse_struct {
void * obj;
int (*fn)(struct device *, void *);
};
static int descend_children(struct device * dev, void * data)
{
struct recurse_struct * recurse_data = (struct recurse_struct *)data;
if (recurse_data->fn(dev, recurse_data->obj))
return 1;
else
return device_for_each_child(dev, recurse_data, descend_children);
}
/**
* for_each_padev - Iterate over all devices in the tree
* @fn: Function to call for each device.
* @data: Data to pass to the called function.
*
* This performs a depth-first traversal of the tree, calling the
* function passed for each node. It calls the function for parents
* before children.
*/
static int for_each_padev(int (*fn)(struct device *, void *), void * data)
{
struct recurse_struct recurse_data = {
.obj = data,
.fn = fn,
};
return device_for_each_child(&root, &recurse_data, descend_children);
}
/**
* match_device - Report whether this driver can handle this device
* @driver: the PA-RISC driver to try
* @dev: the PA-RISC device to try
*/
static int match_device(struct parisc_driver *driver, struct parisc_device *dev)
{
const struct parisc_device_id *ids;
for (ids = driver->id_table; ids->sversion; ids++) {
if ((ids->sversion != SVERSION_ANY_ID) &&
(ids->sversion != dev->id.sversion))
continue;
if ((ids->hw_type != HWTYPE_ANY_ID) &&
(ids->hw_type != dev->id.hw_type))
continue;
if ((ids->hversion != HVERSION_ANY_ID) &&
(ids->hversion != dev->id.hversion))
continue;
return 1;
}
return 0;
}
static int parisc_driver_probe(struct device *dev)
{
int rc;
struct parisc_device *pa_dev = to_parisc_device(dev);
struct parisc_driver *pa_drv = to_parisc_driver(dev->driver);
rc = pa_drv->probe(pa_dev);
if (!rc)
pa_dev->driver = pa_drv;
return rc;
}
static void __exit parisc_driver_remove(struct device *dev)
{
struct parisc_device *pa_dev = to_parisc_device(dev);
struct parisc_driver *pa_drv = to_parisc_driver(dev->driver);
if (pa_drv->remove)
pa_drv->remove(pa_dev);
}
/**
* register_parisc_driver - Register this driver if it can handle a device
* @driver: the PA-RISC driver to try
*/
int register_parisc_driver(struct parisc_driver *driver)
{
/* FIXME: we need this because apparently the sti
* driver can be registered twice */
if (driver->drv.name) {
pr_warn("BUG: skipping previously registered driver %s\n",
driver->name);
return 1;
}
if (!driver->probe) {
pr_warn("BUG: driver %s has no probe routine\n", driver->name);
return 1;
}
driver->drv.bus = &parisc_bus_type;
/* We install our own probe and remove routines */
WARN_ON(driver->drv.probe != NULL);
WARN_ON(driver->drv.remove != NULL);
driver->drv.name = driver->name;
return driver_register(&driver->drv);
}
EXPORT_SYMBOL(register_parisc_driver);
struct match_count {
struct parisc_driver * driver;
int count;
};
static int match_and_count(struct device * dev, void * data)
{
struct match_count * m = data;
struct parisc_device * pdev = to_parisc_device(dev);
if (check_dev(dev)) {
if (match_device(m->driver, pdev))
m->count++;
}
return 0;
}
/**
* count_parisc_driver - count # of devices this driver would match
* @driver: the PA-RISC driver to try
*
* Use by IOMMU support to "guess" the right size IOPdir.
* Formula is something like memsize/(num_iommu * entry_size).
*/
int __init count_parisc_driver(struct parisc_driver *driver)
{
struct match_count m = {
.driver = driver,
.count = 0,
};
for_each_padev(match_and_count, &m);
return m.count;
}
/**
* unregister_parisc_driver - Unregister this driver from the list of drivers
* @driver: the PA-RISC driver to unregister
*/
int unregister_parisc_driver(struct parisc_driver *driver)
{
driver_unregister(&driver->drv);
return 0;
}
EXPORT_SYMBOL(unregister_parisc_driver);
struct find_data {
unsigned long hpa;
struct parisc_device * dev;
};
static int find_device(struct device * dev, void * data)
{
struct parisc_device * pdev = to_parisc_device(dev);
struct find_data * d = (struct find_data*)data;
if (check_dev(dev)) {
if (pdev->hpa.start == d->hpa) {
d->dev = pdev;
return 1;
}
}
return 0;
}
static struct parisc_device *find_device_by_addr(unsigned long hpa)
{
struct find_data d = {
.hpa = hpa,
};
int ret;
ret = for_each_padev(find_device, &d);
return ret ? d.dev : NULL;
}
static int __init is_IKE_device(struct device *dev, void *data)
{
struct parisc_device *pdev = to_parisc_device(dev);
if (!check_dev(dev))
return 0;
if (pdev->id.hw_type != HPHW_BCPORT)
return 0;
if (IS_IKE(pdev) ||
(pdev->id.hversion == REO_MERCED_PORT) ||
(pdev->id.hversion == REOG_MERCED_PORT)) {
return 1;
}
return 0;
}
int __init machine_has_merced_bus(void)
{
int ret;
ret = for_each_padev(is_IKE_device, NULL);
return ret ? 1 : 0;
}
/**
* find_pa_parent_type - Find a parent of a specific type
* @dev: The device to start searching from
* @type: The device type to search for.
*
* Walks up the device tree looking for a device of the specified type.
* If it finds it, it returns it. If not, it returns NULL.
*/
const struct parisc_device *
find_pa_parent_type(const struct parisc_device *padev, int type)
{
const struct device *dev = &padev->dev;
while (dev != &root) {
struct parisc_device *candidate = to_parisc_device(dev);
if (candidate->id.hw_type == type)
return candidate;
dev = dev->parent;
}
return NULL;
}
/*
* get_node_path fills in @path with the firmware path to the device.
* Note that if @node is a parisc device, we don't fill in the 'mod' field.
* This is because both callers pass the parent and fill in the mod
* themselves. If @node is a PCI device, we do fill it in, even though this
* is inconsistent.
*/
static void get_node_path(struct device *dev, struct hardware_path *path)
{
int i = 5;
memset(&path->bc, -1, 6);
if (dev_is_pci(dev)) {
unsigned int devfn = to_pci_dev(dev)->devfn;
path->mod = PCI_FUNC(devfn);
path->bc[i--] = PCI_SLOT(devfn);
dev = dev->parent;
}
while (dev != &root) {
if (dev_is_pci(dev)) {
unsigned int devfn = to_pci_dev(dev)->devfn;
path->bc[i--] = PCI_SLOT(devfn) | (PCI_FUNC(devfn)<< 5);
} else if (dev->bus == &parisc_bus_type) {
path->bc[i--] = to_parisc_device(dev)->hw_path;
}
dev = dev->parent;
}
}
static char *print_hwpath(struct hardware_path *path, char *output)
{
int i;
for (i = 0; i < 6; i++) {
if (path->bc[i] == -1)
continue;
output += sprintf(output, "%u/", (unsigned char) path->bc[i]);
}
output += sprintf(output, "%u", (unsigned char) path->mod);
return output;
}
/**
* print_pa_hwpath - Returns hardware path for PA devices
* dev: The device to return the path for
* output: Pointer to a previously-allocated array to place the path in.
*
* This function fills in the output array with a human-readable path
* to a PA device. This string is compatible with that used by PDC, and
* may be printed on the outside of the box.
*/
char *print_pa_hwpath(struct parisc_device *dev, char *output)
{
struct hardware_path path;
get_node_path(dev->dev.parent, &path);
path.mod = dev->hw_path;
return print_hwpath(&path, output);
}
EXPORT_SYMBOL(print_pa_hwpath);
#if defined(CONFIG_PCI) || defined(CONFIG_ISA)
/**
* get_pci_node_path - Determines the hardware path for a PCI device
* @pdev: The device to return the path for
* @path: Pointer to a previously-allocated array to place the path in.
*
* This function fills in the hardware_path structure with the route to
* the specified PCI device. This structure is suitable for passing to
* PDC calls.
*/
void get_pci_node_path(struct pci_dev *pdev, struct hardware_path *path)
{
get_node_path(&pdev->dev, path);
}
EXPORT_SYMBOL(get_pci_node_path);
/**
* print_pci_hwpath - Returns hardware path for PCI devices
* dev: The device to return the path for
* output: Pointer to a previously-allocated array to place the path in.
*
* This function fills in the output array with a human-readable path
* to a PCI device. This string is compatible with that used by PDC, and
* may be printed on the outside of the box.
*/
char *print_pci_hwpath(struct pci_dev *dev, char *output)
{
struct hardware_path path;
get_pci_node_path(dev, &path);
return print_hwpath(&path, output);
}
EXPORT_SYMBOL(print_pci_hwpath);
#endif /* defined(CONFIG_PCI) || defined(CONFIG_ISA) */
static void setup_bus_id(struct parisc_device *padev)
{
struct hardware_path path;
char name[28];
char *output = name;
int i;
get_node_path(padev->dev.parent, &path);
for (i = 0; i < 6; i++) {
if (path.bc[i] == -1)
continue;
output += sprintf(output, "%u:", (unsigned char) path.bc[i]);
}
sprintf(output, "%u", (unsigned char) padev->hw_path);
dev_set_name(&padev->dev, name);
}
struct parisc_device * __init create_tree_node(char id, struct device *parent)
{
struct parisc_device *dev = kzalloc(sizeof(*dev), GFP_KERNEL);
if (!dev)
return NULL;
dev->hw_path = id;
dev->id.hw_type = HPHW_FAULTY;
dev->dev.parent = parent;
setup_bus_id(dev);
dev->dev.bus = &parisc_bus_type;
dev->dma_mask = 0xffffffffUL; /* PARISC devices are 32-bit */
/* make the generic dma mask a pointer to the parisc one */
dev->dev.dma_mask = &dev->dma_mask;
dev->dev.coherent_dma_mask = dev->dma_mask;
if (device_register(&dev->dev)) {
kfree(dev);
return NULL;
}
return dev;
}
struct match_id_data {
char id;
struct parisc_device * dev;
};
static int match_by_id(struct device * dev, void * data)
{
struct parisc_device * pdev = to_parisc_device(dev);
struct match_id_data * d = data;
if (pdev->hw_path == d->id) {
d->dev = pdev;
return 1;
}
return 0;
}
/**
* alloc_tree_node - returns a device entry in the iotree
* @parent: the parent node in the tree
* @id: the element of the module path for this entry
*
* Checks all the children of @parent for a matching @id. If none
* found, it allocates a new device and returns it.
*/
static struct parisc_device * __init alloc_tree_node(
struct device *parent, char id)
{
struct match_id_data d = {
.id = id,
};
if (device_for_each_child(parent, &d, match_by_id))
return d.dev;
else
return create_tree_node(id, parent);
}
static struct parisc_device *create_parisc_device(struct hardware_path *modpath)
{
int i;
struct device *parent = &root;
for (i = 0; i < 6; i++) {
if (modpath->bc[i] == -1)
continue;
parent = &alloc_tree_node(parent, modpath->bc[i])->dev;
}
return alloc_tree_node(parent, modpath->mod);
}
struct parisc_device * __init
alloc_pa_dev(unsigned long hpa, struct hardware_path *mod_path)
{
int status;
unsigned long bytecnt;
u8 iodc_data[32];
struct parisc_device *dev;
const char *name;
/* Check to make sure this device has not already been added - Ryan */
if (find_device_by_addr(hpa) != NULL)
return NULL;
status = pdc_iodc_read(&bytecnt, hpa, 0, &iodc_data, 32);
if (status != PDC_OK)
return NULL;
dev = create_parisc_device(mod_path);
if (dev->id.hw_type != HPHW_FAULTY) {
pr_err("Two devices have hardware path [%s]. IODC data for second device: %7phN\n"
"Rearranging GSC cards sometimes helps\n",
parisc_pathname(dev), iodc_data);
return NULL;
}
dev->id.hw_type = iodc_data[3] & 0x1f;
dev->id.hversion = (iodc_data[0] << 4) | ((iodc_data[1] & 0xf0) >> 4);
dev->id.hversion_rev = iodc_data[1] & 0x0f;
dev->id.sversion = ((iodc_data[4] & 0x0f) << 16) |
(iodc_data[5] << 8) | iodc_data[6];
dev->hpa.name = parisc_pathname(dev);
dev->hpa.start = hpa;
/* This is awkward. The STI spec says that gfx devices may occupy
* 32MB or 64MB. Unfortunately, we don't know how to tell whether
* it's the former or the latter. Assumptions either way can hurt us.
*/
if (hpa == 0xf4000000 || hpa == 0xf8000000) {
dev->hpa.end = hpa + 0x03ffffff;
} else if (hpa == 0xf6000000 || hpa == 0xfa000000) {
dev->hpa.end = hpa + 0x01ffffff;
} else {
dev->hpa.end = hpa + 0xfff;
}
dev->hpa.flags = IORESOURCE_MEM;
name = parisc_hardware_description(&dev->id);
if (name) {
strlcpy(dev->name, name, sizeof(dev->name));
}
/* Silently fail things like mouse ports which are subsumed within
* the keyboard controller
*/
if ((hpa & 0xfff) == 0 && insert_resource(&iomem_resource, &dev->hpa))
pr_warn("Unable to claim HPA %lx for device %s\n", hpa, name);
return dev;
}
static int parisc_generic_match(struct device *dev, struct device_driver *drv)
{
return match_device(to_parisc_driver(drv), to_parisc_device(dev));
}
static ssize_t make_modalias(struct device *dev, char *buf)
{
const struct parisc_device *padev = to_parisc_device(dev);
const struct parisc_device_id *id = &padev->id;
return sprintf(buf, "parisc:t%02Xhv%04Xrev%02Xsv%08X\n",
(u8)id->hw_type, (u16)id->hversion, (u8)id->hversion_rev,
(u32)id->sversion);
}
static int parisc_uevent(struct device *dev, struct kobj_uevent_env *env)
{
const struct parisc_device *padev;
char modalias[40];
if (!dev)
return -ENODEV;
padev = to_parisc_device(dev);
if (!padev)
return -ENODEV;
if (add_uevent_var(env, "PARISC_NAME=%s", padev->name))
return -ENOMEM;
make_modalias(dev, modalias);
if (add_uevent_var(env, "MODALIAS=%s", modalias))
return -ENOMEM;
return 0;
}
#define pa_dev_attr(name, field, format_string) \
static ssize_t name##_show(struct device *dev, struct device_attribute *attr, char *buf) \
{ \
struct parisc_device *padev = to_parisc_device(dev); \
return sprintf(buf, format_string, padev->field); \
} \
static DEVICE_ATTR_RO(name);
#define pa_dev_attr_id(field, format) pa_dev_attr(field, id.field, format)
pa_dev_attr(irq, irq, "%u\n");
pa_dev_attr_id(hw_type, "0x%02x\n");
pa_dev_attr(rev, id.hversion_rev, "0x%x\n");
pa_dev_attr_id(hversion, "0x%03x\n");
pa_dev_attr_id(sversion, "0x%05x\n");
static ssize_t modalias_show(struct device *dev, struct device_attribute *attr, char *buf)
{
return make_modalias(dev, buf);
}
static DEVICE_ATTR_RO(modalias);
static struct attribute *parisc_device_attrs[] = {
&dev_attr_irq.attr,
&dev_attr_hw_type.attr,
&dev_attr_rev.attr,
&dev_attr_hversion.attr,
&dev_attr_sversion.attr,
&dev_attr_modalias.attr,
NULL,
};
ATTRIBUTE_GROUPS(parisc_device);
struct bus_type parisc_bus_type = {
.name = "parisc",
.match = parisc_generic_match,
.uevent = parisc_uevent,
.dev_groups = parisc_device_groups,
.probe = parisc_driver_probe,
.remove = __exit_p(parisc_driver_remove),
};
/**
* register_parisc_device - Locate a driver to manage this device.
* @dev: The parisc device.
*
* Search the driver list for a driver that is willing to manage
* this device.
*/
int __init register_parisc_device(struct parisc_device *dev)
{
if (!dev)
return 0;
if (dev->driver)
return 1;
return 0;
}
/**
* match_pci_device - Matches a pci device against a given hardware path
* entry.
* @dev: the generic device (known to be contained by a pci_dev).
* @index: the current BC index
* @modpath: the hardware path.
* @return: true if the device matches the hardware path.
*/
static int match_pci_device(struct device *dev, int index,
struct hardware_path *modpath)
{
struct pci_dev *pdev = to_pci_dev(dev);
int id;
if (index == 5) {
/* we are at the end of the path, and on the actual device */
unsigned int devfn = pdev->devfn;
return ((modpath->bc[5] == PCI_SLOT(devfn)) &&
(modpath->mod == PCI_FUNC(devfn)));
}
/* index might be out of bounds for bc[] */
if (index >= 6)
return 0;
id = PCI_SLOT(pdev->devfn) | (PCI_FUNC(pdev->devfn) << 5);
return (modpath->bc[index] == id);
}
/**
* match_parisc_device - Matches a parisc device against a given hardware
* path entry.
* @dev: the generic device (known to be contained by a parisc_device).
* @index: the current BC index
* @modpath: the hardware path.
* @return: true if the device matches the hardware path.
*/
static int match_parisc_device(struct device *dev, int index,
struct hardware_path *modpath)
{
struct parisc_device *curr = to_parisc_device(dev);
char id = (index == 6) ? modpath->mod : modpath->bc[index];
return (curr->hw_path == id);
}
struct parse_tree_data {
int index;
struct hardware_path * modpath;
struct device * dev;
};
static int check_parent(struct device * dev, void * data)
{
struct parse_tree_data * d = data;
if (check_dev(dev)) {
if (dev->bus == &parisc_bus_type) {
if (match_parisc_device(dev, d->index, d->modpath))
d->dev = dev;
} else if (dev_is_pci(dev)) {
if (match_pci_device(dev, d->index, d->modpath))
d->dev = dev;
} else if (dev->bus == NULL) {
/* we are on a bus bridge */
struct device *new = parse_tree_node(dev, d->index, d->modpath);
if (new)
d->dev = new;
}
}
return d->dev != NULL;
}
/**
* parse_tree_node - returns a device entry in the iotree
* @parent: the parent node in the tree
* @index: the current BC index
* @modpath: the hardware_path struct to match a device against
* @return: The corresponding device if found, NULL otherwise.
*
* Checks all the children of @parent for a matching @id. If none
* found, it returns NULL.
*/
static struct device *
parse_tree_node(struct device *parent, int index, struct hardware_path *modpath)
{
struct parse_tree_data d = {
.index = index,
.modpath = modpath,
};
struct recurse_struct recurse_data = {
.obj = &d,
.fn = check_parent,
};
if (device_for_each_child(parent, &recurse_data, descend_children))
/* nothing */;
return d.dev;
}
/**
* hwpath_to_device - Finds the generic device corresponding to a given hardware path.
* @modpath: the hardware path.
* @return: The target device, NULL if not found.
*/
struct device *hwpath_to_device(struct hardware_path *modpath)
{
int i;
struct device *parent = &root;
for (i = 0; i < 6; i++) {
if (modpath->bc[i] == -1)
continue;
parent = parse_tree_node(parent, i, modpath);
if (!parent)
return NULL;
}
if (dev_is_pci(parent)) /* pci devices already parse MOD */
return parent;
else
return parse_tree_node(parent, 6, modpath);
}
EXPORT_SYMBOL(hwpath_to_device);
/**
* device_to_hwpath - Populates the hwpath corresponding to the given device.
* @param dev the target device
* @param path pointer to a previously allocated hwpath struct to be filled in
*/
void device_to_hwpath(struct device *dev, struct hardware_path *path)
{
struct parisc_device *padev;
if (dev->bus == &parisc_bus_type) {
padev = to_parisc_device(dev);
get_node_path(dev->parent, path);
path->mod = padev->hw_path;
} else if (dev_is_pci(dev)) {
get_node_path(dev, path);
}
}
EXPORT_SYMBOL(device_to_hwpath);
#define BC_PORT_MASK 0x8
#define BC_LOWER_PORT 0x8
#define BUS_CONVERTER(dev) \
((dev->id.hw_type == HPHW_IOA) || (dev->id.hw_type == HPHW_BCPORT))
#define IS_LOWER_PORT(dev) \
((gsc_readl(dev->hpa.start + offsetof(struct bc_module, io_status)) \
& BC_PORT_MASK) == BC_LOWER_PORT)
#define MAX_NATIVE_DEVICES 64
#define NATIVE_DEVICE_OFFSET 0x1000
#define FLEX_MASK F_EXTEND(0xfffc0000)
#define IO_IO_LOW offsetof(struct bc_module, io_io_low)
#define IO_IO_HIGH offsetof(struct bc_module, io_io_high)
#define READ_IO_IO_LOW(dev) (unsigned long)(signed int)gsc_readl(dev->hpa.start + IO_IO_LOW)
#define READ_IO_IO_HIGH(dev) (unsigned long)(signed int)gsc_readl(dev->hpa.start + IO_IO_HIGH)
static void walk_native_bus(unsigned long io_io_low, unsigned long io_io_high,
struct device *parent);
static void __init walk_lower_bus(struct parisc_device *dev)
{
unsigned long io_io_low, io_io_high;
if (!BUS_CONVERTER(dev) || IS_LOWER_PORT(dev))
return;
if (dev->id.hw_type == HPHW_IOA) {
io_io_low = (unsigned long)(signed int)(READ_IO_IO_LOW(dev) << 16);
io_io_high = io_io_low + MAX_NATIVE_DEVICES * NATIVE_DEVICE_OFFSET;
} else {
io_io_low = (READ_IO_IO_LOW(dev) + ~FLEX_MASK) & FLEX_MASK;
io_io_high = (READ_IO_IO_HIGH(dev)+ ~FLEX_MASK) & FLEX_MASK;
}
walk_native_bus(io_io_low, io_io_high, &dev->dev);
}
/**
* walk_native_bus -- Probe a bus for devices
* @io_io_low: Base address of this bus.
* @io_io_high: Last address of this bus.
* @parent: The parent bus device.
*
* A native bus (eg Runway or GSC) may have up to 64 devices on it,
* spaced at intervals of 0x1000 bytes. PDC may not inform us of these
* devices, so we have to probe for them. Unfortunately, we may find
* devices which are not physically connected (such as extra serial &
* keyboard ports). This problem is not yet solved.
*/
static void __init walk_native_bus(unsigned long io_io_low,
unsigned long io_io_high, struct device *parent)
{
int i, devices_found = 0;
unsigned long hpa = io_io_low;
struct hardware_path path;
get_node_path(parent, &path);
do {
for(i = 0; i < MAX_NATIVE_DEVICES; i++, hpa += NATIVE_DEVICE_OFFSET) {
struct parisc_device *dev;
/* Was the device already added by Firmware? */
dev = find_device_by_addr(hpa);
if (!dev) {
path.mod = i;
dev = alloc_pa_dev(hpa, &path);
if (!dev)
continue;
register_parisc_device(dev);
devices_found++;
}
walk_lower_bus(dev);
}
} while(!devices_found && hpa < io_io_high);
}
#define CENTRAL_BUS_ADDR F_EXTEND(0xfff80000)
/**
* walk_central_bus - Find devices attached to the central bus
*
* PDC doesn't tell us about all devices in the system. This routine
* finds devices connected to the central bus.
*/
void __init walk_central_bus(void)
{
walk_native_bus(CENTRAL_BUS_ADDR,
CENTRAL_BUS_ADDR + (MAX_NATIVE_DEVICES * NATIVE_DEVICE_OFFSET),
&root);
}
static void print_parisc_device(struct parisc_device *dev)
{
char hw_path[64];
static int count;
print_pa_hwpath(dev, hw_path);
pr_info("%d. %s at %pap [%s] { %d, 0x%x, 0x%.3x, 0x%.5x }",
++count, dev->name, &(dev->hpa.start), hw_path, dev->id.hw_type,
dev->id.hversion_rev, dev->id.hversion, dev->id.sversion);
if (dev->num_addrs) {
int k;
pr_cont(", additional addresses: ");
for (k = 0; k < dev->num_addrs; k++)
pr_cont("0x%lx ", dev->addr[k]);
}
pr_cont("\n");
}
/**
* init_parisc_bus - Some preparation to be done before inventory
*/
void __init init_parisc_bus(void)
{
if (bus_register(&parisc_bus_type))
panic("Could not register PA-RISC bus type\n");
if (device_register(&root))
panic("Could not register PA-RISC root device\n");
get_device(&root);
}
static __init void qemu_header(void)
{
int num;
unsigned long *p;
pr_info("--- cut here ---\n");
pr_info("/* AUTO-GENERATED HEADER FILE FOR SEABIOS FIRMWARE */\n");
pr_cont("/* generated with Linux kernel */\n");
pr_cont("/* search for PARISC_QEMU_MACHINE_HEADER in Linux */\n\n");
pr_info("#define PARISC_MODEL \"%s\"\n\n",
boot_cpu_data.pdc.sys_model_name);
pr_info("#define PARISC_PDC_MODEL 0x%lx, 0x%lx, 0x%lx, "
"0x%lx, 0x%lx, 0x%lx, 0x%lx, 0x%lx, 0x%lx\n\n",
#define p ((unsigned long *)&boot_cpu_data.pdc.model)
p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7], p[8]);
#undef p
pr_info("#define PARISC_PDC_VERSION 0x%04lx\n\n",
boot_cpu_data.pdc.versions);
pr_info("#define PARISC_PDC_CPUID 0x%04lx\n\n",
boot_cpu_data.pdc.cpuid);
pr_info("#define PARISC_PDC_CAPABILITIES 0x%04lx\n\n",
boot_cpu_data.pdc.capabilities);
pr_info("#define PARISC_PDC_ENTRY_ORG 0x%04lx\n\n",
#ifdef CONFIG_64BIT
(unsigned long)(PAGE0->mem_pdc_hi) << 32 |
#endif
(unsigned long)PAGE0->mem_pdc);
pr_info("#define PARISC_PDC_CACHE_INFO");
p = (unsigned long *) &cache_info;
for (num = 0; num < sizeof(cache_info); num += sizeof(unsigned long)) {
if (((num % 5) == 0)) {
pr_cont(" \\\n");
pr_info("\t");
}
pr_cont("%s0x%04lx",
num?", ":"", *p++);
}
pr_cont("\n\n");
}
static __init int qemu_print_hpa(struct device *lin_dev, void *data)
{
struct parisc_device *dev = to_parisc_device(lin_dev);
unsigned long hpa = dev->hpa.start;
pr_cont("\t{\t.hpa = 0x%08lx,\\\n", hpa);
pr_cont("\t\t.iodc = &iodc_data_hpa_%08lx,\\\n", hpa);
pr_cont("\t\t.mod_info = &mod_info_hpa_%08lx,\\\n", hpa);
pr_cont("\t\t.mod_path = &mod_path_hpa_%08lx,\\\n", hpa);
pr_cont("\t\t.num_addr = HPA_%08lx_num_addr,\\\n", hpa);
pr_cont("\t\t.add_addr = { HPA_%08lx_add_addr } },\\\n", hpa);
return 0;
}
static __init void qemu_footer(void)
{
pr_info("\n\n#define PARISC_DEVICE_LIST \\\n");
for_each_padev(qemu_print_hpa, NULL);
pr_cont("\t{ 0, }\n");
pr_info("--- cut here ---\n");
}
/* print iodc data of the various hpa modules for qemu inclusion */
static __init int qemu_print_iodc_data(struct device *lin_dev, void *data)
{
struct parisc_device *dev = to_parisc_device(lin_dev);
unsigned long count;
unsigned long hpa = dev->hpa.start;
int status;
struct pdc_iodc iodc_data;
int mod_index;
struct pdc_system_map_mod_info pdc_mod_info;
struct pdc_module_path mod_path;
status = pdc_iodc_read(&count, hpa, 0,
&iodc_data, sizeof(iodc_data));
if (status != PDC_OK) {
pr_info("No IODC data for hpa 0x%08lx\n", hpa);
return 0;
}
pr_info("\n");
pr_info("#define HPA_%08lx_DESCRIPTION \"%s\"\n",
hpa, parisc_hardware_description(&dev->id));
mod_index = 0;
do {
status = pdc_system_map_find_mods(&pdc_mod_info,
&mod_path, mod_index++);
} while (status == PDC_OK && pdc_mod_info.mod_addr != hpa);
pr_info("static struct pdc_system_map_mod_info"
" mod_info_hpa_%08lx = {\n", hpa);
#define DO(member) \
pr_cont("\t." #member " = 0x%x,\n", \
(unsigned int)pdc_mod_info.member)
DO(mod_addr);
DO(mod_pgs);
DO(add_addrs);
pr_cont("};\n");
#undef DO
pr_info("static struct pdc_module_path "
"mod_path_hpa_%08lx = {\n", hpa);
pr_cont("\t.path = { ");
pr_cont(".flags = 0x%x, ", mod_path.path.flags);
pr_cont(".bc = { 0x%x, 0x%x, 0x%x, 0x%x, 0x%x, 0x%x }, ",
(unsigned char)mod_path.path.bc[0],
(unsigned char)mod_path.path.bc[1],
(unsigned char)mod_path.path.bc[2],
(unsigned char)mod_path.path.bc[3],
(unsigned char)mod_path.path.bc[4],
(unsigned char)mod_path.path.bc[5]);
pr_cont(".mod = 0x%x ", mod_path.path.mod);
pr_cont(" },\n");
pr_cont("\t.layers = { 0x%x, 0x%x, 0x%x, 0x%x, 0x%x, 0x%x }\n",
mod_path.layers[0], mod_path.layers[1], mod_path.layers[2],
mod_path.layers[3], mod_path.layers[4], mod_path.layers[5]);
pr_cont("};\n");
pr_info("static struct pdc_iodc iodc_data_hpa_%08lx = {\n", hpa);
#define DO(member) \
pr_cont("\t." #member " = 0x%04lx,\n", \
(unsigned long)iodc_data.member)
DO(hversion_model);
DO(hversion);
DO(spa);
DO(type);
DO(sversion_rev);
DO(sversion_model);
DO(sversion_opt);
DO(rev);
DO(dep);
DO(features);
DO(checksum);
DO(length);
#undef DO
pr_cont("\t/* pad: 0x%04x, 0x%04x */\n",
iodc_data.pad[0], iodc_data.pad[1]);
pr_cont("};\n");
pr_info("#define HPA_%08lx_num_addr %d\n", hpa, dev->num_addrs);
pr_info("#define HPA_%08lx_add_addr ", hpa);
count = 0;
if (dev->num_addrs == 0)
pr_cont("0");
while (count < dev->num_addrs) {
pr_cont("0x%08lx, ", dev->addr[count]);
count++;
}
pr_cont("\n\n");
return 0;
}
static int print_one_device(struct device * dev, void * data)
{
struct parisc_device * pdev = to_parisc_device(dev);
if (check_dev(dev))
print_parisc_device(pdev);
return 0;
}
/**
* print_parisc_devices - Print out a list of devices found in this system
*/
void __init print_parisc_devices(void)
{
for_each_padev(print_one_device, NULL);
#define PARISC_QEMU_MACHINE_HEADER 0
if (PARISC_QEMU_MACHINE_HEADER) {
qemu_header();
for_each_padev(qemu_print_iodc_data, NULL);
qemu_footer();
}
}