3eb0314dc1
Signed-off-by: Chris Mason <chris.mason@oracle.com>
1564 lines
45 KiB
C
1564 lines
45 KiB
C
#include <linux/module.h>
|
|
#include "ctree.h"
|
|
#include "disk-io.h"
|
|
#include "transaction.h"
|
|
|
|
static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
|
|
*root, struct btrfs_path *path, int level);
|
|
static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root
|
|
*root, struct btrfs_key *ins_key,
|
|
struct btrfs_path *path, int data_size);
|
|
static int push_node_left(struct btrfs_trans_handle *trans, struct btrfs_root
|
|
*root, struct buffer_head *dst, struct buffer_head
|
|
*src);
|
|
static int balance_node_right(struct btrfs_trans_handle *trans, struct
|
|
btrfs_root *root, struct buffer_head *dst_buf,
|
|
struct buffer_head *src_buf);
|
|
static int del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root,
|
|
struct btrfs_path *path, int level, int slot);
|
|
|
|
inline void btrfs_init_path(struct btrfs_path *p)
|
|
{
|
|
memset(p, 0, sizeof(*p));
|
|
}
|
|
|
|
struct btrfs_path *btrfs_alloc_path(void)
|
|
{
|
|
struct btrfs_path *path;
|
|
path = kmem_cache_alloc(btrfs_path_cachep, GFP_NOFS);
|
|
if (path)
|
|
btrfs_init_path(path);
|
|
return path;
|
|
}
|
|
|
|
void btrfs_free_path(struct btrfs_path *p)
|
|
{
|
|
btrfs_release_path(NULL, p);
|
|
kmem_cache_free(btrfs_path_cachep, p);
|
|
}
|
|
|
|
void btrfs_release_path(struct btrfs_root *root, struct btrfs_path *p)
|
|
{
|
|
int i;
|
|
for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
|
|
if (!p->nodes[i])
|
|
break;
|
|
btrfs_block_release(root, p->nodes[i]);
|
|
}
|
|
memset(p, 0, sizeof(*p));
|
|
}
|
|
|
|
static int btrfs_cow_block(struct btrfs_trans_handle *trans, struct btrfs_root
|
|
*root, struct buffer_head *buf, struct buffer_head
|
|
*parent, int parent_slot, struct buffer_head
|
|
**cow_ret)
|
|
{
|
|
struct buffer_head *cow;
|
|
struct btrfs_node *cow_node;
|
|
|
|
if (btrfs_header_generation(btrfs_buffer_header(buf)) ==
|
|
trans->transid) {
|
|
*cow_ret = buf;
|
|
return 0;
|
|
}
|
|
cow = btrfs_alloc_free_block(trans, root);
|
|
cow_node = btrfs_buffer_node(cow);
|
|
if (buf->b_size != root->blocksize || cow->b_size != root->blocksize)
|
|
WARN_ON(1);
|
|
memcpy(cow_node, btrfs_buffer_node(buf), root->blocksize);
|
|
btrfs_set_header_blocknr(&cow_node->header, cow->b_blocknr);
|
|
btrfs_set_header_generation(&cow_node->header, trans->transid);
|
|
btrfs_inc_ref(trans, root, buf);
|
|
if (buf == root->node) {
|
|
root->node = cow;
|
|
get_bh(cow);
|
|
if (buf != root->commit_root) {
|
|
btrfs_free_extent(trans, root, buf->b_blocknr, 1, 1);
|
|
}
|
|
btrfs_block_release(root, buf);
|
|
} else {
|
|
btrfs_set_node_blockptr(btrfs_buffer_node(parent), parent_slot,
|
|
cow->b_blocknr);
|
|
btrfs_mark_buffer_dirty(parent);
|
|
btrfs_free_extent(trans, root, buf->b_blocknr, 1, 1);
|
|
}
|
|
btrfs_block_release(root, buf);
|
|
mark_buffer_dirty(cow);
|
|
*cow_ret = cow;
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* The leaf data grows from end-to-front in the node.
|
|
* this returns the address of the start of the last item,
|
|
* which is the stop of the leaf data stack
|
|
*/
|
|
static inline unsigned int leaf_data_end(struct btrfs_root *root,
|
|
struct btrfs_leaf *leaf)
|
|
{
|
|
u32 nr = btrfs_header_nritems(&leaf->header);
|
|
if (nr == 0)
|
|
return BTRFS_LEAF_DATA_SIZE(root);
|
|
return btrfs_item_offset(leaf->items + nr - 1);
|
|
}
|
|
|
|
/*
|
|
* compare two keys in a memcmp fashion
|
|
*/
|
|
static int comp_keys(struct btrfs_disk_key *disk, struct btrfs_key *k2)
|
|
{
|
|
struct btrfs_key k1;
|
|
|
|
btrfs_disk_key_to_cpu(&k1, disk);
|
|
|
|
if (k1.objectid > k2->objectid)
|
|
return 1;
|
|
if (k1.objectid < k2->objectid)
|
|
return -1;
|
|
if (k1.offset > k2->offset)
|
|
return 1;
|
|
if (k1.offset < k2->offset)
|
|
return -1;
|
|
if (k1.flags > k2->flags)
|
|
return 1;
|
|
if (k1.flags < k2->flags)
|
|
return -1;
|
|
return 0;
|
|
}
|
|
|
|
static int check_node(struct btrfs_root *root, struct btrfs_path *path,
|
|
int level)
|
|
{
|
|
int i;
|
|
struct btrfs_node *parent = NULL;
|
|
struct btrfs_node *node = btrfs_buffer_node(path->nodes[level]);
|
|
int parent_slot;
|
|
u32 nritems = btrfs_header_nritems(&node->header);
|
|
|
|
if (path->nodes[level + 1])
|
|
parent = btrfs_buffer_node(path->nodes[level + 1]);
|
|
parent_slot = path->slots[level + 1];
|
|
BUG_ON(nritems == 0);
|
|
if (parent) {
|
|
struct btrfs_disk_key *parent_key;
|
|
parent_key = &parent->ptrs[parent_slot].key;
|
|
BUG_ON(memcmp(parent_key, &node->ptrs[0].key,
|
|
sizeof(struct btrfs_disk_key)));
|
|
BUG_ON(btrfs_node_blockptr(parent, parent_slot) !=
|
|
btrfs_header_blocknr(&node->header));
|
|
}
|
|
BUG_ON(nritems > BTRFS_NODEPTRS_PER_BLOCK(root));
|
|
for (i = 0; nritems > 1 && i < nritems - 2; i++) {
|
|
struct btrfs_key cpukey;
|
|
btrfs_disk_key_to_cpu(&cpukey, &node->ptrs[i + 1].key);
|
|
BUG_ON(comp_keys(&node->ptrs[i].key, &cpukey) >= 0);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int check_leaf(struct btrfs_root *root, struct btrfs_path *path,
|
|
int level)
|
|
{
|
|
int i;
|
|
struct btrfs_leaf *leaf = btrfs_buffer_leaf(path->nodes[level]);
|
|
struct btrfs_node *parent = NULL;
|
|
int parent_slot;
|
|
u32 nritems = btrfs_header_nritems(&leaf->header);
|
|
|
|
if (path->nodes[level + 1])
|
|
parent = btrfs_buffer_node(path->nodes[level + 1]);
|
|
parent_slot = path->slots[level + 1];
|
|
BUG_ON(btrfs_leaf_free_space(root, leaf) < 0);
|
|
|
|
if (nritems == 0)
|
|
return 0;
|
|
|
|
if (parent) {
|
|
struct btrfs_disk_key *parent_key;
|
|
parent_key = &parent->ptrs[parent_slot].key;
|
|
BUG_ON(memcmp(parent_key, &leaf->items[0].key,
|
|
sizeof(struct btrfs_disk_key)));
|
|
BUG_ON(btrfs_node_blockptr(parent, parent_slot) !=
|
|
btrfs_header_blocknr(&leaf->header));
|
|
}
|
|
for (i = 0; nritems > 1 && i < nritems - 2; i++) {
|
|
struct btrfs_key cpukey;
|
|
btrfs_disk_key_to_cpu(&cpukey, &leaf->items[i + 1].key);
|
|
BUG_ON(comp_keys(&leaf->items[i].key,
|
|
&cpukey) >= 0);
|
|
BUG_ON(btrfs_item_offset(leaf->items + i) !=
|
|
btrfs_item_end(leaf->items + i + 1));
|
|
if (i == 0) {
|
|
BUG_ON(btrfs_item_offset(leaf->items + i) +
|
|
btrfs_item_size(leaf->items + i) !=
|
|
BTRFS_LEAF_DATA_SIZE(root));
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int check_block(struct btrfs_root *root, struct btrfs_path *path,
|
|
int level)
|
|
{
|
|
struct btrfs_node *node = btrfs_buffer_node(path->nodes[level]);
|
|
if (memcmp(node->header.fsid, root->fs_info->disk_super->fsid,
|
|
sizeof(node->header.fsid)))
|
|
BUG();
|
|
if (level == 0)
|
|
return check_leaf(root, path, level);
|
|
return check_node(root, path, level);
|
|
}
|
|
|
|
/*
|
|
* search for key in the array p. items p are item_size apart
|
|
* and there are 'max' items in p
|
|
* the slot in the array is returned via slot, and it points to
|
|
* the place where you would insert key if it is not found in
|
|
* the array.
|
|
*
|
|
* slot may point to max if the key is bigger than all of the keys
|
|
*/
|
|
static int generic_bin_search(char *p, int item_size, struct btrfs_key *key,
|
|
int max, int *slot)
|
|
{
|
|
int low = 0;
|
|
int high = max;
|
|
int mid;
|
|
int ret;
|
|
struct btrfs_disk_key *tmp;
|
|
|
|
while(low < high) {
|
|
mid = (low + high) / 2;
|
|
tmp = (struct btrfs_disk_key *)(p + mid * item_size);
|
|
ret = comp_keys(tmp, key);
|
|
|
|
if (ret < 0)
|
|
low = mid + 1;
|
|
else if (ret > 0)
|
|
high = mid;
|
|
else {
|
|
*slot = mid;
|
|
return 0;
|
|
}
|
|
}
|
|
*slot = low;
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* simple bin_search frontend that does the right thing for
|
|
* leaves vs nodes
|
|
*/
|
|
static int bin_search(struct btrfs_node *c, struct btrfs_key *key, int *slot)
|
|
{
|
|
if (btrfs_is_leaf(c)) {
|
|
struct btrfs_leaf *l = (struct btrfs_leaf *)c;
|
|
return generic_bin_search((void *)l->items,
|
|
sizeof(struct btrfs_item),
|
|
key, btrfs_header_nritems(&c->header),
|
|
slot);
|
|
} else {
|
|
return generic_bin_search((void *)c->ptrs,
|
|
sizeof(struct btrfs_key_ptr),
|
|
key, btrfs_header_nritems(&c->header),
|
|
slot);
|
|
}
|
|
return -1;
|
|
}
|
|
|
|
static struct buffer_head *read_node_slot(struct btrfs_root *root,
|
|
struct buffer_head *parent_buf,
|
|
int slot)
|
|
{
|
|
struct btrfs_node *node = btrfs_buffer_node(parent_buf);
|
|
if (slot < 0)
|
|
return NULL;
|
|
if (slot >= btrfs_header_nritems(&node->header))
|
|
return NULL;
|
|
return read_tree_block(root, btrfs_node_blockptr(node, slot));
|
|
}
|
|
|
|
static int balance_level(struct btrfs_trans_handle *trans, struct btrfs_root
|
|
*root, struct btrfs_path *path, int level)
|
|
{
|
|
struct buffer_head *right_buf;
|
|
struct buffer_head *mid_buf;
|
|
struct buffer_head *left_buf;
|
|
struct buffer_head *parent_buf = NULL;
|
|
struct btrfs_node *right = NULL;
|
|
struct btrfs_node *mid;
|
|
struct btrfs_node *left = NULL;
|
|
struct btrfs_node *parent = NULL;
|
|
int ret = 0;
|
|
int wret;
|
|
int pslot;
|
|
int orig_slot = path->slots[level];
|
|
u64 orig_ptr;
|
|
|
|
if (level == 0)
|
|
return 0;
|
|
|
|
mid_buf = path->nodes[level];
|
|
mid = btrfs_buffer_node(mid_buf);
|
|
orig_ptr = btrfs_node_blockptr(mid, orig_slot);
|
|
|
|
if (level < BTRFS_MAX_LEVEL - 1)
|
|
parent_buf = path->nodes[level + 1];
|
|
pslot = path->slots[level + 1];
|
|
|
|
/*
|
|
* deal with the case where there is only one pointer in the root
|
|
* by promoting the node below to a root
|
|
*/
|
|
if (!parent_buf) {
|
|
struct buffer_head *child;
|
|
u64 blocknr = mid_buf->b_blocknr;
|
|
|
|
if (btrfs_header_nritems(&mid->header) != 1)
|
|
return 0;
|
|
|
|
/* promote the child to a root */
|
|
child = read_node_slot(root, mid_buf, 0);
|
|
BUG_ON(!child);
|
|
root->node = child;
|
|
path->nodes[level] = NULL;
|
|
clean_tree_block(trans, root, mid_buf);
|
|
wait_on_buffer(mid_buf);
|
|
/* once for the path */
|
|
btrfs_block_release(root, mid_buf);
|
|
/* once for the root ptr */
|
|
btrfs_block_release(root, mid_buf);
|
|
return btrfs_free_extent(trans, root, blocknr, 1, 1);
|
|
}
|
|
parent = btrfs_buffer_node(parent_buf);
|
|
|
|
if (btrfs_header_nritems(&mid->header) >
|
|
BTRFS_NODEPTRS_PER_BLOCK(root) / 4)
|
|
return 0;
|
|
|
|
left_buf = read_node_slot(root, parent_buf, pslot - 1);
|
|
right_buf = read_node_slot(root, parent_buf, pslot + 1);
|
|
|
|
/* first, try to make some room in the middle buffer */
|
|
if (left_buf) {
|
|
btrfs_cow_block(trans, root, left_buf, parent_buf, pslot - 1,
|
|
&left_buf);
|
|
left = btrfs_buffer_node(left_buf);
|
|
orig_slot += btrfs_header_nritems(&left->header);
|
|
wret = push_node_left(trans, root, left_buf, mid_buf);
|
|
if (wret < 0)
|
|
ret = wret;
|
|
}
|
|
|
|
/*
|
|
* then try to empty the right most buffer into the middle
|
|
*/
|
|
if (right_buf) {
|
|
btrfs_cow_block(trans, root, right_buf, parent_buf, pslot + 1,
|
|
&right_buf);
|
|
right = btrfs_buffer_node(right_buf);
|
|
wret = push_node_left(trans, root, mid_buf, right_buf);
|
|
if (wret < 0)
|
|
ret = wret;
|
|
if (btrfs_header_nritems(&right->header) == 0) {
|
|
u64 blocknr = right_buf->b_blocknr;
|
|
clean_tree_block(trans, root, right_buf);
|
|
wait_on_buffer(right_buf);
|
|
btrfs_block_release(root, right_buf);
|
|
right_buf = NULL;
|
|
right = NULL;
|
|
wret = del_ptr(trans, root, path, level + 1, pslot +
|
|
1);
|
|
if (wret)
|
|
ret = wret;
|
|
wret = btrfs_free_extent(trans, root, blocknr, 1, 1);
|
|
if (wret)
|
|
ret = wret;
|
|
} else {
|
|
btrfs_memcpy(root, parent,
|
|
&parent->ptrs[pslot + 1].key,
|
|
&right->ptrs[0].key,
|
|
sizeof(struct btrfs_disk_key));
|
|
btrfs_mark_buffer_dirty(parent_buf);
|
|
}
|
|
}
|
|
if (btrfs_header_nritems(&mid->header) == 1) {
|
|
/*
|
|
* we're not allowed to leave a node with one item in the
|
|
* tree during a delete. A deletion from lower in the tree
|
|
* could try to delete the only pointer in this node.
|
|
* So, pull some keys from the left.
|
|
* There has to be a left pointer at this point because
|
|
* otherwise we would have pulled some pointers from the
|
|
* right
|
|
*/
|
|
BUG_ON(!left_buf);
|
|
wret = balance_node_right(trans, root, mid_buf, left_buf);
|
|
if (wret < 0)
|
|
ret = wret;
|
|
BUG_ON(wret == 1);
|
|
}
|
|
if (btrfs_header_nritems(&mid->header) == 0) {
|
|
/* we've managed to empty the middle node, drop it */
|
|
u64 blocknr = mid_buf->b_blocknr;
|
|
clean_tree_block(trans, root, mid_buf);
|
|
wait_on_buffer(mid_buf);
|
|
btrfs_block_release(root, mid_buf);
|
|
mid_buf = NULL;
|
|
mid = NULL;
|
|
wret = del_ptr(trans, root, path, level + 1, pslot);
|
|
if (wret)
|
|
ret = wret;
|
|
wret = btrfs_free_extent(trans, root, blocknr, 1, 1);
|
|
if (wret)
|
|
ret = wret;
|
|
} else {
|
|
/* update the parent key to reflect our changes */
|
|
btrfs_memcpy(root, parent,
|
|
&parent->ptrs[pslot].key, &mid->ptrs[0].key,
|
|
sizeof(struct btrfs_disk_key));
|
|
btrfs_mark_buffer_dirty(parent_buf);
|
|
}
|
|
|
|
/* update the path */
|
|
if (left_buf) {
|
|
if (btrfs_header_nritems(&left->header) > orig_slot) {
|
|
get_bh(left_buf);
|
|
path->nodes[level] = left_buf;
|
|
path->slots[level + 1] -= 1;
|
|
path->slots[level] = orig_slot;
|
|
if (mid_buf)
|
|
btrfs_block_release(root, mid_buf);
|
|
} else {
|
|
orig_slot -= btrfs_header_nritems(&left->header);
|
|
path->slots[level] = orig_slot;
|
|
}
|
|
}
|
|
/* double check we haven't messed things up */
|
|
check_block(root, path, level);
|
|
if (orig_ptr !=
|
|
btrfs_node_blockptr(btrfs_buffer_node(path->nodes[level]),
|
|
path->slots[level]))
|
|
BUG();
|
|
|
|
if (right_buf)
|
|
btrfs_block_release(root, right_buf);
|
|
if (left_buf)
|
|
btrfs_block_release(root, left_buf);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* look for key in the tree. path is filled in with nodes along the way
|
|
* if key is found, we return zero and you can find the item in the leaf
|
|
* level of the path (level 0)
|
|
*
|
|
* If the key isn't found, the path points to the slot where it should
|
|
* be inserted, and 1 is returned. If there are other errors during the
|
|
* search a negative error number is returned.
|
|
*
|
|
* if ins_len > 0, nodes and leaves will be split as we walk down the
|
|
* tree. if ins_len < 0, nodes will be merged as we walk down the tree (if
|
|
* possible)
|
|
*/
|
|
int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root
|
|
*root, struct btrfs_key *key, struct btrfs_path *p, int
|
|
ins_len, int cow)
|
|
{
|
|
struct buffer_head *b;
|
|
struct buffer_head *cow_buf;
|
|
struct btrfs_node *c;
|
|
int slot;
|
|
int ret;
|
|
int level;
|
|
|
|
WARN_ON(p->nodes[0] != NULL);
|
|
WARN_ON(!mutex_is_locked(&root->fs_info->fs_mutex));
|
|
again:
|
|
b = root->node;
|
|
get_bh(b);
|
|
while (b) {
|
|
c = btrfs_buffer_node(b);
|
|
level = btrfs_header_level(&c->header);
|
|
if (cow) {
|
|
int wret;
|
|
wret = btrfs_cow_block(trans, root, b,
|
|
p->nodes[level + 1],
|
|
p->slots[level + 1],
|
|
&cow_buf);
|
|
b = cow_buf;
|
|
c = btrfs_buffer_node(b);
|
|
}
|
|
BUG_ON(!cow && ins_len);
|
|
if (level != btrfs_header_level(&c->header))
|
|
WARN_ON(1);
|
|
level = btrfs_header_level(&c->header);
|
|
p->nodes[level] = b;
|
|
ret = check_block(root, p, level);
|
|
if (ret)
|
|
return -1;
|
|
ret = bin_search(c, key, &slot);
|
|
if (!btrfs_is_leaf(c)) {
|
|
if (ret && slot > 0)
|
|
slot -= 1;
|
|
p->slots[level] = slot;
|
|
if (ins_len > 0 && btrfs_header_nritems(&c->header) >=
|
|
BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
|
|
int sret = split_node(trans, root, p, level);
|
|
BUG_ON(sret > 0);
|
|
if (sret)
|
|
return sret;
|
|
b = p->nodes[level];
|
|
c = btrfs_buffer_node(b);
|
|
slot = p->slots[level];
|
|
} else if (ins_len < 0) {
|
|
int sret = balance_level(trans, root, p,
|
|
level);
|
|
if (sret)
|
|
return sret;
|
|
b = p->nodes[level];
|
|
if (!b)
|
|
goto again;
|
|
c = btrfs_buffer_node(b);
|
|
slot = p->slots[level];
|
|
BUG_ON(btrfs_header_nritems(&c->header) == 1);
|
|
}
|
|
b = read_tree_block(root, btrfs_node_blockptr(c, slot));
|
|
} else {
|
|
struct btrfs_leaf *l = (struct btrfs_leaf *)c;
|
|
p->slots[level] = slot;
|
|
if (ins_len > 0 && btrfs_leaf_free_space(root, l) <
|
|
sizeof(struct btrfs_item) + ins_len) {
|
|
int sret = split_leaf(trans, root, key,
|
|
p, ins_len);
|
|
BUG_ON(sret > 0);
|
|
if (sret)
|
|
return sret;
|
|
}
|
|
return ret;
|
|
}
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* adjust the pointers going up the tree, starting at level
|
|
* making sure the right key of each node is points to 'key'.
|
|
* This is used after shifting pointers to the left, so it stops
|
|
* fixing up pointers when a given leaf/node is not in slot 0 of the
|
|
* higher levels
|
|
*
|
|
* If this fails to write a tree block, it returns -1, but continues
|
|
* fixing up the blocks in ram so the tree is consistent.
|
|
*/
|
|
static int fixup_low_keys(struct btrfs_trans_handle *trans, struct btrfs_root
|
|
*root, struct btrfs_path *path, struct btrfs_disk_key
|
|
*key, int level)
|
|
{
|
|
int i;
|
|
int ret = 0;
|
|
for (i = level; i < BTRFS_MAX_LEVEL; i++) {
|
|
struct btrfs_node *t;
|
|
int tslot = path->slots[i];
|
|
if (!path->nodes[i])
|
|
break;
|
|
t = btrfs_buffer_node(path->nodes[i]);
|
|
btrfs_memcpy(root, t, &t->ptrs[tslot].key, key, sizeof(*key));
|
|
btrfs_mark_buffer_dirty(path->nodes[i]);
|
|
if (tslot != 0)
|
|
break;
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* try to push data from one node into the next node left in the
|
|
* tree.
|
|
*
|
|
* returns 0 if some ptrs were pushed left, < 0 if there was some horrible
|
|
* error, and > 0 if there was no room in the left hand block.
|
|
*/
|
|
static int push_node_left(struct btrfs_trans_handle *trans, struct btrfs_root
|
|
*root, struct buffer_head *dst_buf, struct
|
|
buffer_head *src_buf)
|
|
{
|
|
struct btrfs_node *src = btrfs_buffer_node(src_buf);
|
|
struct btrfs_node *dst = btrfs_buffer_node(dst_buf);
|
|
int push_items = 0;
|
|
int src_nritems;
|
|
int dst_nritems;
|
|
int ret = 0;
|
|
|
|
src_nritems = btrfs_header_nritems(&src->header);
|
|
dst_nritems = btrfs_header_nritems(&dst->header);
|
|
push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
|
|
if (push_items <= 0) {
|
|
return 1;
|
|
}
|
|
|
|
if (src_nritems < push_items)
|
|
push_items = src_nritems;
|
|
|
|
btrfs_memcpy(root, dst, dst->ptrs + dst_nritems, src->ptrs,
|
|
push_items * sizeof(struct btrfs_key_ptr));
|
|
if (push_items < src_nritems) {
|
|
btrfs_memmove(root, src, src->ptrs, src->ptrs + push_items,
|
|
(src_nritems - push_items) *
|
|
sizeof(struct btrfs_key_ptr));
|
|
}
|
|
btrfs_set_header_nritems(&src->header, src_nritems - push_items);
|
|
btrfs_set_header_nritems(&dst->header, dst_nritems + push_items);
|
|
btrfs_mark_buffer_dirty(src_buf);
|
|
btrfs_mark_buffer_dirty(dst_buf);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* try to push data from one node into the next node right in the
|
|
* tree.
|
|
*
|
|
* returns 0 if some ptrs were pushed, < 0 if there was some horrible
|
|
* error, and > 0 if there was no room in the right hand block.
|
|
*
|
|
* this will only push up to 1/2 the contents of the left node over
|
|
*/
|
|
static int balance_node_right(struct btrfs_trans_handle *trans, struct
|
|
btrfs_root *root, struct buffer_head *dst_buf,
|
|
struct buffer_head *src_buf)
|
|
{
|
|
struct btrfs_node *src = btrfs_buffer_node(src_buf);
|
|
struct btrfs_node *dst = btrfs_buffer_node(dst_buf);
|
|
int push_items = 0;
|
|
int max_push;
|
|
int src_nritems;
|
|
int dst_nritems;
|
|
int ret = 0;
|
|
|
|
src_nritems = btrfs_header_nritems(&src->header);
|
|
dst_nritems = btrfs_header_nritems(&dst->header);
|
|
push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
|
|
if (push_items <= 0) {
|
|
return 1;
|
|
}
|
|
|
|
max_push = src_nritems / 2 + 1;
|
|
/* don't try to empty the node */
|
|
if (max_push > src_nritems)
|
|
return 1;
|
|
if (max_push < push_items)
|
|
push_items = max_push;
|
|
|
|
btrfs_memmove(root, dst, dst->ptrs + push_items, dst->ptrs,
|
|
dst_nritems * sizeof(struct btrfs_key_ptr));
|
|
|
|
btrfs_memcpy(root, dst, dst->ptrs,
|
|
src->ptrs + src_nritems - push_items,
|
|
push_items * sizeof(struct btrfs_key_ptr));
|
|
|
|
btrfs_set_header_nritems(&src->header, src_nritems - push_items);
|
|
btrfs_set_header_nritems(&dst->header, dst_nritems + push_items);
|
|
|
|
btrfs_mark_buffer_dirty(src_buf);
|
|
btrfs_mark_buffer_dirty(dst_buf);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* helper function to insert a new root level in the tree.
|
|
* A new node is allocated, and a single item is inserted to
|
|
* point to the existing root
|
|
*
|
|
* returns zero on success or < 0 on failure.
|
|
*/
|
|
static int insert_new_root(struct btrfs_trans_handle *trans, struct btrfs_root
|
|
*root, struct btrfs_path *path, int level)
|
|
{
|
|
struct buffer_head *t;
|
|
struct btrfs_node *lower;
|
|
struct btrfs_node *c;
|
|
struct btrfs_disk_key *lower_key;
|
|
|
|
BUG_ON(path->nodes[level]);
|
|
BUG_ON(path->nodes[level-1] != root->node);
|
|
|
|
t = btrfs_alloc_free_block(trans, root);
|
|
c = btrfs_buffer_node(t);
|
|
memset(c, 0, root->blocksize);
|
|
btrfs_set_header_nritems(&c->header, 1);
|
|
btrfs_set_header_level(&c->header, level);
|
|
btrfs_set_header_blocknr(&c->header, t->b_blocknr);
|
|
btrfs_set_header_generation(&c->header, trans->transid);
|
|
btrfs_set_header_parentid(&c->header,
|
|
btrfs_header_parentid(btrfs_buffer_header(root->node)));
|
|
lower = btrfs_buffer_node(path->nodes[level-1]);
|
|
memcpy(c->header.fsid, root->fs_info->disk_super->fsid,
|
|
sizeof(c->header.fsid));
|
|
if (btrfs_is_leaf(lower))
|
|
lower_key = &((struct btrfs_leaf *)lower)->items[0].key;
|
|
else
|
|
lower_key = &lower->ptrs[0].key;
|
|
btrfs_memcpy(root, c, &c->ptrs[0].key, lower_key,
|
|
sizeof(struct btrfs_disk_key));
|
|
btrfs_set_node_blockptr(c, 0, path->nodes[level - 1]->b_blocknr);
|
|
|
|
btrfs_mark_buffer_dirty(t);
|
|
|
|
/* the super has an extra ref to root->node */
|
|
btrfs_block_release(root, root->node);
|
|
root->node = t;
|
|
get_bh(t);
|
|
path->nodes[level] = t;
|
|
path->slots[level] = 0;
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* worker function to insert a single pointer in a node.
|
|
* the node should have enough room for the pointer already
|
|
*
|
|
* slot and level indicate where you want the key to go, and
|
|
* blocknr is the block the key points to.
|
|
*
|
|
* returns zero on success and < 0 on any error
|
|
*/
|
|
static int insert_ptr(struct btrfs_trans_handle *trans, struct btrfs_root
|
|
*root, struct btrfs_path *path, struct btrfs_disk_key
|
|
*key, u64 blocknr, int slot, int level)
|
|
{
|
|
struct btrfs_node *lower;
|
|
int nritems;
|
|
|
|
BUG_ON(!path->nodes[level]);
|
|
lower = btrfs_buffer_node(path->nodes[level]);
|
|
nritems = btrfs_header_nritems(&lower->header);
|
|
if (slot > nritems)
|
|
BUG();
|
|
if (nritems == BTRFS_NODEPTRS_PER_BLOCK(root))
|
|
BUG();
|
|
if (slot != nritems) {
|
|
btrfs_memmove(root, lower, lower->ptrs + slot + 1,
|
|
lower->ptrs + slot,
|
|
(nritems - slot) * sizeof(struct btrfs_key_ptr));
|
|
}
|
|
btrfs_memcpy(root, lower, &lower->ptrs[slot].key,
|
|
key, sizeof(struct btrfs_disk_key));
|
|
btrfs_set_node_blockptr(lower, slot, blocknr);
|
|
btrfs_set_header_nritems(&lower->header, nritems + 1);
|
|
btrfs_mark_buffer_dirty(path->nodes[level]);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* split the node at the specified level in path in two.
|
|
* The path is corrected to point to the appropriate node after the split
|
|
*
|
|
* Before splitting this tries to make some room in the node by pushing
|
|
* left and right, if either one works, it returns right away.
|
|
*
|
|
* returns 0 on success and < 0 on failure
|
|
*/
|
|
static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
|
|
*root, struct btrfs_path *path, int level)
|
|
{
|
|
struct buffer_head *t;
|
|
struct btrfs_node *c;
|
|
struct buffer_head *split_buffer;
|
|
struct btrfs_node *split;
|
|
int mid;
|
|
int ret;
|
|
int wret;
|
|
u32 c_nritems;
|
|
|
|
t = path->nodes[level];
|
|
c = btrfs_buffer_node(t);
|
|
if (t == root->node) {
|
|
/* trying to split the root, lets make a new one */
|
|
ret = insert_new_root(trans, root, path, level + 1);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
c_nritems = btrfs_header_nritems(&c->header);
|
|
split_buffer = btrfs_alloc_free_block(trans, root);
|
|
split = btrfs_buffer_node(split_buffer);
|
|
btrfs_set_header_flags(&split->header, btrfs_header_flags(&c->header));
|
|
btrfs_set_header_level(&split->header, btrfs_header_level(&c->header));
|
|
btrfs_set_header_blocknr(&split->header, split_buffer->b_blocknr);
|
|
btrfs_set_header_generation(&split->header, trans->transid);
|
|
btrfs_set_header_parentid(&split->header,
|
|
btrfs_header_parentid(btrfs_buffer_header(root->node)));
|
|
memcpy(split->header.fsid, root->fs_info->disk_super->fsid,
|
|
sizeof(split->header.fsid));
|
|
mid = (c_nritems + 1) / 2;
|
|
btrfs_memcpy(root, split, split->ptrs, c->ptrs + mid,
|
|
(c_nritems - mid) * sizeof(struct btrfs_key_ptr));
|
|
btrfs_set_header_nritems(&split->header, c_nritems - mid);
|
|
btrfs_set_header_nritems(&c->header, mid);
|
|
ret = 0;
|
|
|
|
btrfs_mark_buffer_dirty(t);
|
|
btrfs_mark_buffer_dirty(split_buffer);
|
|
wret = insert_ptr(trans, root, path, &split->ptrs[0].key,
|
|
split_buffer->b_blocknr, path->slots[level + 1] + 1,
|
|
level + 1);
|
|
if (wret)
|
|
ret = wret;
|
|
|
|
if (path->slots[level] >= mid) {
|
|
path->slots[level] -= mid;
|
|
btrfs_block_release(root, t);
|
|
path->nodes[level] = split_buffer;
|
|
path->slots[level + 1] += 1;
|
|
} else {
|
|
btrfs_block_release(root, split_buffer);
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* how many bytes are required to store the items in a leaf. start
|
|
* and nr indicate which items in the leaf to check. This totals up the
|
|
* space used both by the item structs and the item data
|
|
*/
|
|
static int leaf_space_used(struct btrfs_leaf *l, int start, int nr)
|
|
{
|
|
int data_len;
|
|
int nritems = btrfs_header_nritems(&l->header);
|
|
int end = min(nritems, start + nr) - 1;
|
|
|
|
if (!nr)
|
|
return 0;
|
|
data_len = btrfs_item_end(l->items + start);
|
|
data_len = data_len - btrfs_item_offset(l->items + end);
|
|
data_len += sizeof(struct btrfs_item) * nr;
|
|
WARN_ON(data_len < 0);
|
|
return data_len;
|
|
}
|
|
|
|
/*
|
|
* The space between the end of the leaf items and
|
|
* the start of the leaf data. IOW, how much room
|
|
* the leaf has left for both items and data
|
|
*/
|
|
int btrfs_leaf_free_space(struct btrfs_root *root, struct btrfs_leaf *leaf)
|
|
{
|
|
int nritems = btrfs_header_nritems(&leaf->header);
|
|
return BTRFS_LEAF_DATA_SIZE(root) - leaf_space_used(leaf, 0, nritems);
|
|
}
|
|
|
|
/*
|
|
* push some data in the path leaf to the right, trying to free up at
|
|
* least data_size bytes. returns zero if the push worked, nonzero otherwise
|
|
*
|
|
* returns 1 if the push failed because the other node didn't have enough
|
|
* room, 0 if everything worked out and < 0 if there were major errors.
|
|
*/
|
|
static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root
|
|
*root, struct btrfs_path *path, int data_size)
|
|
{
|
|
struct buffer_head *left_buf = path->nodes[0];
|
|
struct btrfs_leaf *left = btrfs_buffer_leaf(left_buf);
|
|
struct btrfs_leaf *right;
|
|
struct buffer_head *right_buf;
|
|
struct buffer_head *upper;
|
|
struct btrfs_node *upper_node;
|
|
int slot;
|
|
int i;
|
|
int free_space;
|
|
int push_space = 0;
|
|
int push_items = 0;
|
|
struct btrfs_item *item;
|
|
u32 left_nritems;
|
|
u32 right_nritems;
|
|
|
|
slot = path->slots[1];
|
|
if (!path->nodes[1]) {
|
|
return 1;
|
|
}
|
|
upper = path->nodes[1];
|
|
upper_node = btrfs_buffer_node(upper);
|
|
if (slot >= btrfs_header_nritems(&upper_node->header) - 1) {
|
|
return 1;
|
|
}
|
|
right_buf = read_tree_block(root,
|
|
btrfs_node_blockptr(btrfs_buffer_node(upper), slot + 1));
|
|
right = btrfs_buffer_leaf(right_buf);
|
|
free_space = btrfs_leaf_free_space(root, right);
|
|
if (free_space < data_size + sizeof(struct btrfs_item)) {
|
|
btrfs_block_release(root, right_buf);
|
|
return 1;
|
|
}
|
|
/* cow and double check */
|
|
btrfs_cow_block(trans, root, right_buf, upper, slot + 1, &right_buf);
|
|
right = btrfs_buffer_leaf(right_buf);
|
|
free_space = btrfs_leaf_free_space(root, right);
|
|
if (free_space < data_size + sizeof(struct btrfs_item)) {
|
|
btrfs_block_release(root, right_buf);
|
|
return 1;
|
|
}
|
|
|
|
left_nritems = btrfs_header_nritems(&left->header);
|
|
for (i = left_nritems - 1; i >= 0; i--) {
|
|
item = left->items + i;
|
|
if (path->slots[0] == i)
|
|
push_space += data_size + sizeof(*item);
|
|
if (btrfs_item_size(item) + sizeof(*item) + push_space >
|
|
free_space)
|
|
break;
|
|
push_items++;
|
|
push_space += btrfs_item_size(item) + sizeof(*item);
|
|
}
|
|
if (push_items == 0) {
|
|
btrfs_block_release(root, right_buf);
|
|
return 1;
|
|
}
|
|
right_nritems = btrfs_header_nritems(&right->header);
|
|
/* push left to right */
|
|
push_space = btrfs_item_end(left->items + left_nritems - push_items);
|
|
push_space -= leaf_data_end(root, left);
|
|
/* make room in the right data area */
|
|
btrfs_memmove(root, right, btrfs_leaf_data(right) +
|
|
leaf_data_end(root, right) - push_space,
|
|
btrfs_leaf_data(right) +
|
|
leaf_data_end(root, right), BTRFS_LEAF_DATA_SIZE(root) -
|
|
leaf_data_end(root, right));
|
|
/* copy from the left data area */
|
|
btrfs_memcpy(root, right, btrfs_leaf_data(right) +
|
|
BTRFS_LEAF_DATA_SIZE(root) - push_space,
|
|
btrfs_leaf_data(left) + leaf_data_end(root, left),
|
|
push_space);
|
|
btrfs_memmove(root, right, right->items + push_items, right->items,
|
|
right_nritems * sizeof(struct btrfs_item));
|
|
/* copy the items from left to right */
|
|
btrfs_memcpy(root, right, right->items, left->items +
|
|
left_nritems - push_items,
|
|
push_items * sizeof(struct btrfs_item));
|
|
|
|
/* update the item pointers */
|
|
right_nritems += push_items;
|
|
btrfs_set_header_nritems(&right->header, right_nritems);
|
|
push_space = BTRFS_LEAF_DATA_SIZE(root);
|
|
for (i = 0; i < right_nritems; i++) {
|
|
btrfs_set_item_offset(right->items + i, push_space -
|
|
btrfs_item_size(right->items + i));
|
|
push_space = btrfs_item_offset(right->items + i);
|
|
}
|
|
left_nritems -= push_items;
|
|
btrfs_set_header_nritems(&left->header, left_nritems);
|
|
|
|
btrfs_mark_buffer_dirty(left_buf);
|
|
btrfs_mark_buffer_dirty(right_buf);
|
|
btrfs_memcpy(root, upper_node, &upper_node->ptrs[slot + 1].key,
|
|
&right->items[0].key, sizeof(struct btrfs_disk_key));
|
|
btrfs_mark_buffer_dirty(upper);
|
|
|
|
/* then fixup the leaf pointer in the path */
|
|
if (path->slots[0] >= left_nritems) {
|
|
path->slots[0] -= left_nritems;
|
|
btrfs_block_release(root, path->nodes[0]);
|
|
path->nodes[0] = right_buf;
|
|
path->slots[1] += 1;
|
|
} else {
|
|
btrfs_block_release(root, right_buf);
|
|
}
|
|
return 0;
|
|
}
|
|
/*
|
|
* push some data in the path leaf to the left, trying to free up at
|
|
* least data_size bytes. returns zero if the push worked, nonzero otherwise
|
|
*/
|
|
static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root
|
|
*root, struct btrfs_path *path, int data_size)
|
|
{
|
|
struct buffer_head *right_buf = path->nodes[0];
|
|
struct btrfs_leaf *right = btrfs_buffer_leaf(right_buf);
|
|
struct buffer_head *t;
|
|
struct btrfs_leaf *left;
|
|
int slot;
|
|
int i;
|
|
int free_space;
|
|
int push_space = 0;
|
|
int push_items = 0;
|
|
struct btrfs_item *item;
|
|
u32 old_left_nritems;
|
|
int ret = 0;
|
|
int wret;
|
|
|
|
slot = path->slots[1];
|
|
if (slot == 0) {
|
|
return 1;
|
|
}
|
|
if (!path->nodes[1]) {
|
|
return 1;
|
|
}
|
|
t = read_tree_block(root,
|
|
btrfs_node_blockptr(btrfs_buffer_node(path->nodes[1]), slot - 1));
|
|
left = btrfs_buffer_leaf(t);
|
|
free_space = btrfs_leaf_free_space(root, left);
|
|
if (free_space < data_size + sizeof(struct btrfs_item)) {
|
|
btrfs_block_release(root, t);
|
|
return 1;
|
|
}
|
|
|
|
/* cow and double check */
|
|
btrfs_cow_block(trans, root, t, path->nodes[1], slot - 1, &t);
|
|
left = btrfs_buffer_leaf(t);
|
|
free_space = btrfs_leaf_free_space(root, left);
|
|
if (free_space < data_size + sizeof(struct btrfs_item)) {
|
|
btrfs_block_release(root, t);
|
|
return 1;
|
|
}
|
|
|
|
for (i = 0; i < btrfs_header_nritems(&right->header); i++) {
|
|
item = right->items + i;
|
|
if (path->slots[0] == i)
|
|
push_space += data_size + sizeof(*item);
|
|
if (btrfs_item_size(item) + sizeof(*item) + push_space >
|
|
free_space)
|
|
break;
|
|
push_items++;
|
|
push_space += btrfs_item_size(item) + sizeof(*item);
|
|
}
|
|
if (push_items == 0) {
|
|
btrfs_block_release(root, t);
|
|
return 1;
|
|
}
|
|
/* push data from right to left */
|
|
btrfs_memcpy(root, left, left->items +
|
|
btrfs_header_nritems(&left->header),
|
|
right->items, push_items * sizeof(struct btrfs_item));
|
|
push_space = BTRFS_LEAF_DATA_SIZE(root) -
|
|
btrfs_item_offset(right->items + push_items -1);
|
|
btrfs_memcpy(root, left, btrfs_leaf_data(left) +
|
|
leaf_data_end(root, left) - push_space,
|
|
btrfs_leaf_data(right) +
|
|
btrfs_item_offset(right->items + push_items - 1),
|
|
push_space);
|
|
old_left_nritems = btrfs_header_nritems(&left->header);
|
|
BUG_ON(old_left_nritems < 0);
|
|
|
|
for (i = old_left_nritems; i < old_left_nritems + push_items; i++) {
|
|
u32 ioff = btrfs_item_offset(left->items + i);
|
|
btrfs_set_item_offset(left->items + i, ioff -
|
|
(BTRFS_LEAF_DATA_SIZE(root) -
|
|
btrfs_item_offset(left->items +
|
|
old_left_nritems - 1)));
|
|
}
|
|
btrfs_set_header_nritems(&left->header, old_left_nritems + push_items);
|
|
|
|
/* fixup right node */
|
|
push_space = btrfs_item_offset(right->items + push_items - 1) -
|
|
leaf_data_end(root, right);
|
|
btrfs_memmove(root, right, btrfs_leaf_data(right) +
|
|
BTRFS_LEAF_DATA_SIZE(root) - push_space,
|
|
btrfs_leaf_data(right) +
|
|
leaf_data_end(root, right), push_space);
|
|
btrfs_memmove(root, right, right->items, right->items + push_items,
|
|
(btrfs_header_nritems(&right->header) - push_items) *
|
|
sizeof(struct btrfs_item));
|
|
btrfs_set_header_nritems(&right->header,
|
|
btrfs_header_nritems(&right->header) -
|
|
push_items);
|
|
push_space = BTRFS_LEAF_DATA_SIZE(root);
|
|
|
|
for (i = 0; i < btrfs_header_nritems(&right->header); i++) {
|
|
btrfs_set_item_offset(right->items + i, push_space -
|
|
btrfs_item_size(right->items + i));
|
|
push_space = btrfs_item_offset(right->items + i);
|
|
}
|
|
|
|
btrfs_mark_buffer_dirty(t);
|
|
btrfs_mark_buffer_dirty(right_buf);
|
|
|
|
wret = fixup_low_keys(trans, root, path, &right->items[0].key, 1);
|
|
if (wret)
|
|
ret = wret;
|
|
|
|
/* then fixup the leaf pointer in the path */
|
|
if (path->slots[0] < push_items) {
|
|
path->slots[0] += old_left_nritems;
|
|
btrfs_block_release(root, path->nodes[0]);
|
|
path->nodes[0] = t;
|
|
path->slots[1] -= 1;
|
|
} else {
|
|
btrfs_block_release(root, t);
|
|
path->slots[0] -= push_items;
|
|
}
|
|
BUG_ON(path->slots[0] < 0);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* split the path's leaf in two, making sure there is at least data_size
|
|
* available for the resulting leaf level of the path.
|
|
*
|
|
* returns 0 if all went well and < 0 on failure.
|
|
*/
|
|
static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root
|
|
*root, struct btrfs_key *ins_key,
|
|
struct btrfs_path *path, int data_size)
|
|
{
|
|
struct buffer_head *l_buf;
|
|
struct btrfs_leaf *l;
|
|
u32 nritems;
|
|
int mid;
|
|
int slot;
|
|
struct btrfs_leaf *right;
|
|
struct buffer_head *right_buffer;
|
|
int space_needed = data_size + sizeof(struct btrfs_item);
|
|
int data_copy_size;
|
|
int rt_data_off;
|
|
int i;
|
|
int ret = 0;
|
|
int wret;
|
|
int double_split = 0;
|
|
struct btrfs_disk_key disk_key;
|
|
|
|
/* first try to make some room by pushing left and right */
|
|
wret = push_leaf_left(trans, root, path, data_size);
|
|
if (wret < 0)
|
|
return wret;
|
|
if (wret) {
|
|
wret = push_leaf_right(trans, root, path, data_size);
|
|
if (wret < 0)
|
|
return wret;
|
|
}
|
|
l_buf = path->nodes[0];
|
|
l = btrfs_buffer_leaf(l_buf);
|
|
|
|
/* did the pushes work? */
|
|
if (btrfs_leaf_free_space(root, l) >=
|
|
sizeof(struct btrfs_item) + data_size)
|
|
return 0;
|
|
|
|
if (!path->nodes[1]) {
|
|
ret = insert_new_root(trans, root, path, 1);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
slot = path->slots[0];
|
|
nritems = btrfs_header_nritems(&l->header);
|
|
mid = (nritems + 1)/ 2;
|
|
right_buffer = btrfs_alloc_free_block(trans, root);
|
|
BUG_ON(!right_buffer);
|
|
right = btrfs_buffer_leaf(right_buffer);
|
|
memset(&right->header, 0, sizeof(right->header));
|
|
btrfs_set_header_blocknr(&right->header, right_buffer->b_blocknr);
|
|
btrfs_set_header_generation(&right->header, trans->transid);
|
|
btrfs_set_header_level(&right->header, 0);
|
|
btrfs_set_header_parentid(&right->header,
|
|
btrfs_header_parentid(btrfs_buffer_header(root->node)));
|
|
memcpy(right->header.fsid, root->fs_info->disk_super->fsid,
|
|
sizeof(right->header.fsid));
|
|
if (mid <= slot) {
|
|
if (nritems == 1 ||
|
|
leaf_space_used(l, mid, nritems - mid) + space_needed >
|
|
BTRFS_LEAF_DATA_SIZE(root)) {
|
|
if (slot >= nritems) {
|
|
btrfs_cpu_key_to_disk(&disk_key, ins_key);
|
|
btrfs_set_header_nritems(&right->header, 0);
|
|
wret = insert_ptr(trans, root, path,
|
|
&disk_key,
|
|
right_buffer->b_blocknr,
|
|
path->slots[1] + 1, 1);
|
|
if (wret)
|
|
ret = wret;
|
|
btrfs_block_release(root, path->nodes[0]);
|
|
path->nodes[0] = right_buffer;
|
|
path->slots[0] = 0;
|
|
path->slots[1] += 1;
|
|
return ret;
|
|
}
|
|
mid = slot;
|
|
double_split = 1;
|
|
}
|
|
} else {
|
|
if (leaf_space_used(l, 0, mid + 1) + space_needed >
|
|
BTRFS_LEAF_DATA_SIZE(root)) {
|
|
if (slot == 0) {
|
|
btrfs_cpu_key_to_disk(&disk_key, ins_key);
|
|
btrfs_set_header_nritems(&right->header, 0);
|
|
wret = insert_ptr(trans, root, path,
|
|
&disk_key,
|
|
right_buffer->b_blocknr,
|
|
path->slots[1] - 1, 1);
|
|
if (wret)
|
|
ret = wret;
|
|
btrfs_block_release(root, path->nodes[0]);
|
|
path->nodes[0] = right_buffer;
|
|
path->slots[0] = 0;
|
|
path->slots[1] -= 1;
|
|
return ret;
|
|
}
|
|
mid = slot;
|
|
double_split = 1;
|
|
}
|
|
}
|
|
btrfs_set_header_nritems(&right->header, nritems - mid);
|
|
data_copy_size = btrfs_item_end(l->items + mid) -
|
|
leaf_data_end(root, l);
|
|
btrfs_memcpy(root, right, right->items, l->items + mid,
|
|
(nritems - mid) * sizeof(struct btrfs_item));
|
|
btrfs_memcpy(root, right,
|
|
btrfs_leaf_data(right) + BTRFS_LEAF_DATA_SIZE(root) -
|
|
data_copy_size, btrfs_leaf_data(l) +
|
|
leaf_data_end(root, l), data_copy_size);
|
|
rt_data_off = BTRFS_LEAF_DATA_SIZE(root) -
|
|
btrfs_item_end(l->items + mid);
|
|
|
|
for (i = 0; i < btrfs_header_nritems(&right->header); i++) {
|
|
u32 ioff = btrfs_item_offset(right->items + i);
|
|
btrfs_set_item_offset(right->items + i, ioff + rt_data_off);
|
|
}
|
|
|
|
btrfs_set_header_nritems(&l->header, mid);
|
|
ret = 0;
|
|
wret = insert_ptr(trans, root, path, &right->items[0].key,
|
|
right_buffer->b_blocknr, path->slots[1] + 1, 1);
|
|
if (wret)
|
|
ret = wret;
|
|
btrfs_mark_buffer_dirty(right_buffer);
|
|
btrfs_mark_buffer_dirty(l_buf);
|
|
BUG_ON(path->slots[0] != slot);
|
|
if (mid <= slot) {
|
|
btrfs_block_release(root, path->nodes[0]);
|
|
path->nodes[0] = right_buffer;
|
|
path->slots[0] -= mid;
|
|
path->slots[1] += 1;
|
|
} else
|
|
btrfs_block_release(root, right_buffer);
|
|
BUG_ON(path->slots[0] < 0);
|
|
|
|
if (!double_split)
|
|
return ret;
|
|
right_buffer = btrfs_alloc_free_block(trans, root);
|
|
BUG_ON(!right_buffer);
|
|
right = btrfs_buffer_leaf(right_buffer);
|
|
memset(&right->header, 0, sizeof(right->header));
|
|
btrfs_set_header_blocknr(&right->header, right_buffer->b_blocknr);
|
|
btrfs_set_header_generation(&right->header, trans->transid);
|
|
btrfs_set_header_level(&right->header, 0);
|
|
btrfs_set_header_parentid(&right->header,
|
|
btrfs_header_parentid(btrfs_buffer_header(root->node)));
|
|
memcpy(right->header.fsid, root->fs_info->disk_super->fsid,
|
|
sizeof(right->header.fsid));
|
|
btrfs_cpu_key_to_disk(&disk_key, ins_key);
|
|
btrfs_set_header_nritems(&right->header, 0);
|
|
wret = insert_ptr(trans, root, path,
|
|
&disk_key,
|
|
right_buffer->b_blocknr,
|
|
path->slots[1], 1);
|
|
if (wret)
|
|
ret = wret;
|
|
btrfs_block_release(root, path->nodes[0]);
|
|
path->nodes[0] = right_buffer;
|
|
path->slots[0] = 0;
|
|
check_node(root, path, 1);
|
|
check_leaf(root, path, 0);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Given a key and some data, insert an item into the tree.
|
|
* This does all the path init required, making room in the tree if needed.
|
|
*/
|
|
int btrfs_insert_empty_item(struct btrfs_trans_handle *trans, struct btrfs_root
|
|
*root, struct btrfs_path *path, struct btrfs_key
|
|
*cpu_key, u32 data_size)
|
|
{
|
|
int ret = 0;
|
|
int slot;
|
|
int slot_orig;
|
|
struct btrfs_leaf *leaf;
|
|
struct buffer_head *leaf_buf;
|
|
u32 nritems;
|
|
unsigned int data_end;
|
|
struct btrfs_disk_key disk_key;
|
|
|
|
btrfs_cpu_key_to_disk(&disk_key, cpu_key);
|
|
|
|
/* create a root if there isn't one */
|
|
if (!root->node)
|
|
BUG();
|
|
ret = btrfs_search_slot(trans, root, cpu_key, path, data_size, 1);
|
|
if (ret == 0) {
|
|
return -EEXIST;
|
|
}
|
|
if (ret < 0)
|
|
goto out;
|
|
|
|
slot_orig = path->slots[0];
|
|
leaf_buf = path->nodes[0];
|
|
leaf = btrfs_buffer_leaf(leaf_buf);
|
|
|
|
nritems = btrfs_header_nritems(&leaf->header);
|
|
data_end = leaf_data_end(root, leaf);
|
|
|
|
if (btrfs_leaf_free_space(root, leaf) <
|
|
sizeof(struct btrfs_item) + data_size) {
|
|
BUG();
|
|
}
|
|
slot = path->slots[0];
|
|
BUG_ON(slot < 0);
|
|
if (slot != nritems) {
|
|
int i;
|
|
unsigned int old_data = btrfs_item_end(leaf->items + slot);
|
|
|
|
/*
|
|
* item0..itemN ... dataN.offset..dataN.size .. data0.size
|
|
*/
|
|
/* first correct the data pointers */
|
|
for (i = slot; i < nritems; i++) {
|
|
u32 ioff = btrfs_item_offset(leaf->items + i);
|
|
btrfs_set_item_offset(leaf->items + i,
|
|
ioff - data_size);
|
|
}
|
|
|
|
/* shift the items */
|
|
btrfs_memmove(root, leaf, leaf->items + slot + 1,
|
|
leaf->items + slot,
|
|
(nritems - slot) * sizeof(struct btrfs_item));
|
|
|
|
/* shift the data */
|
|
btrfs_memmove(root, leaf, btrfs_leaf_data(leaf) +
|
|
data_end - data_size, btrfs_leaf_data(leaf) +
|
|
data_end, old_data - data_end);
|
|
data_end = old_data;
|
|
}
|
|
/* setup the item for the new data */
|
|
btrfs_memcpy(root, leaf, &leaf->items[slot].key, &disk_key,
|
|
sizeof(struct btrfs_disk_key));
|
|
btrfs_set_item_offset(leaf->items + slot, data_end - data_size);
|
|
btrfs_set_item_size(leaf->items + slot, data_size);
|
|
btrfs_set_header_nritems(&leaf->header, nritems + 1);
|
|
btrfs_mark_buffer_dirty(leaf_buf);
|
|
|
|
ret = 0;
|
|
if (slot == 0)
|
|
ret = fixup_low_keys(trans, root, path, &disk_key, 1);
|
|
|
|
if (btrfs_leaf_free_space(root, leaf) < 0)
|
|
BUG();
|
|
check_leaf(root, path, 0);
|
|
out:
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Given a key and some data, insert an item into the tree.
|
|
* This does all the path init required, making room in the tree if needed.
|
|
*/
|
|
int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root
|
|
*root, struct btrfs_key *cpu_key, void *data, u32
|
|
data_size)
|
|
{
|
|
int ret = 0;
|
|
struct btrfs_path *path;
|
|
u8 *ptr;
|
|
|
|
path = btrfs_alloc_path();
|
|
BUG_ON(!path);
|
|
btrfs_init_path(path);
|
|
ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size);
|
|
if (!ret) {
|
|
ptr = btrfs_item_ptr(btrfs_buffer_leaf(path->nodes[0]),
|
|
path->slots[0], u8);
|
|
btrfs_memcpy(root, path->nodes[0]->b_data,
|
|
ptr, data, data_size);
|
|
btrfs_mark_buffer_dirty(path->nodes[0]);
|
|
}
|
|
btrfs_release_path(root, path);
|
|
btrfs_free_path(path);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* delete the pointer from a given node.
|
|
*
|
|
* If the delete empties a node, the node is removed from the tree,
|
|
* continuing all the way the root if required. The root is converted into
|
|
* a leaf if all the nodes are emptied.
|
|
*/
|
|
static int del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root,
|
|
struct btrfs_path *path, int level, int slot)
|
|
{
|
|
struct btrfs_node *node;
|
|
struct buffer_head *parent = path->nodes[level];
|
|
u32 nritems;
|
|
int ret = 0;
|
|
int wret;
|
|
|
|
node = btrfs_buffer_node(parent);
|
|
nritems = btrfs_header_nritems(&node->header);
|
|
if (slot != nritems -1) {
|
|
btrfs_memmove(root, node, node->ptrs + slot,
|
|
node->ptrs + slot + 1,
|
|
sizeof(struct btrfs_key_ptr) *
|
|
(nritems - slot - 1));
|
|
}
|
|
nritems--;
|
|
btrfs_set_header_nritems(&node->header, nritems);
|
|
if (nritems == 0 && parent == root->node) {
|
|
struct btrfs_header *header = btrfs_buffer_header(root->node);
|
|
BUG_ON(btrfs_header_level(header) != 1);
|
|
/* just turn the root into a leaf and break */
|
|
btrfs_set_header_level(header, 0);
|
|
} else if (slot == 0) {
|
|
wret = fixup_low_keys(trans, root, path, &node->ptrs[0].key,
|
|
level + 1);
|
|
if (wret)
|
|
ret = wret;
|
|
}
|
|
btrfs_mark_buffer_dirty(parent);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* delete the item at the leaf level in path. If that empties
|
|
* the leaf, remove it from the tree
|
|
*/
|
|
int btrfs_del_item(struct btrfs_trans_handle *trans, struct btrfs_root *root,
|
|
struct btrfs_path *path)
|
|
{
|
|
int slot;
|
|
struct btrfs_leaf *leaf;
|
|
struct buffer_head *leaf_buf;
|
|
int doff;
|
|
int dsize;
|
|
int ret = 0;
|
|
int wret;
|
|
u32 nritems;
|
|
|
|
leaf_buf = path->nodes[0];
|
|
leaf = btrfs_buffer_leaf(leaf_buf);
|
|
slot = path->slots[0];
|
|
doff = btrfs_item_offset(leaf->items + slot);
|
|
dsize = btrfs_item_size(leaf->items + slot);
|
|
nritems = btrfs_header_nritems(&leaf->header);
|
|
|
|
if (slot != nritems - 1) {
|
|
int i;
|
|
int data_end = leaf_data_end(root, leaf);
|
|
btrfs_memmove(root, leaf, btrfs_leaf_data(leaf) +
|
|
data_end + dsize,
|
|
btrfs_leaf_data(leaf) + data_end,
|
|
doff - data_end);
|
|
for (i = slot + 1; i < nritems; i++) {
|
|
u32 ioff = btrfs_item_offset(leaf->items + i);
|
|
btrfs_set_item_offset(leaf->items + i, ioff + dsize);
|
|
}
|
|
btrfs_memmove(root, leaf, leaf->items + slot,
|
|
leaf->items + slot + 1,
|
|
sizeof(struct btrfs_item) *
|
|
(nritems - slot - 1));
|
|
}
|
|
btrfs_set_header_nritems(&leaf->header, nritems - 1);
|
|
nritems--;
|
|
/* delete the leaf if we've emptied it */
|
|
if (nritems == 0) {
|
|
if (leaf_buf == root->node) {
|
|
btrfs_set_header_level(&leaf->header, 0);
|
|
} else {
|
|
clean_tree_block(trans, root, leaf_buf);
|
|
wait_on_buffer(leaf_buf);
|
|
wret = del_ptr(trans, root, path, 1, path->slots[1]);
|
|
if (wret)
|
|
ret = wret;
|
|
wret = btrfs_free_extent(trans, root,
|
|
leaf_buf->b_blocknr, 1, 1);
|
|
if (wret)
|
|
ret = wret;
|
|
}
|
|
} else {
|
|
int used = leaf_space_used(leaf, 0, nritems);
|
|
if (slot == 0) {
|
|
wret = fixup_low_keys(trans, root, path,
|
|
&leaf->items[0].key, 1);
|
|
if (wret)
|
|
ret = wret;
|
|
}
|
|
|
|
/* delete the leaf if it is mostly empty */
|
|
if (used < BTRFS_LEAF_DATA_SIZE(root) / 3) {
|
|
/* push_leaf_left fixes the path.
|
|
* make sure the path still points to our leaf
|
|
* for possible call to del_ptr below
|
|
*/
|
|
slot = path->slots[1];
|
|
get_bh(leaf_buf);
|
|
wret = push_leaf_left(trans, root, path, 1);
|
|
if (wret < 0)
|
|
ret = wret;
|
|
if (path->nodes[0] == leaf_buf &&
|
|
btrfs_header_nritems(&leaf->header)) {
|
|
wret = push_leaf_right(trans, root, path, 1);
|
|
if (wret < 0)
|
|
ret = wret;
|
|
}
|
|
if (btrfs_header_nritems(&leaf->header) == 0) {
|
|
u64 blocknr = leaf_buf->b_blocknr;
|
|
clean_tree_block(trans, root, leaf_buf);
|
|
wait_on_buffer(leaf_buf);
|
|
wret = del_ptr(trans, root, path, 1, slot);
|
|
if (wret)
|
|
ret = wret;
|
|
btrfs_block_release(root, leaf_buf);
|
|
wret = btrfs_free_extent(trans, root, blocknr,
|
|
1, 1);
|
|
if (wret)
|
|
ret = wret;
|
|
} else {
|
|
btrfs_mark_buffer_dirty(leaf_buf);
|
|
btrfs_block_release(root, leaf_buf);
|
|
}
|
|
} else {
|
|
btrfs_mark_buffer_dirty(leaf_buf);
|
|
}
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* walk up the tree as far as required to find the next leaf.
|
|
* returns 0 if it found something or 1 if there are no greater leaves.
|
|
* returns < 0 on io errors.
|
|
*/
|
|
int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path)
|
|
{
|
|
int slot;
|
|
int level = 1;
|
|
u64 blocknr;
|
|
struct buffer_head *c;
|
|
struct btrfs_node *c_node;
|
|
struct buffer_head *next = NULL;
|
|
|
|
while(level < BTRFS_MAX_LEVEL) {
|
|
if (!path->nodes[level])
|
|
return 1;
|
|
slot = path->slots[level] + 1;
|
|
c = path->nodes[level];
|
|
c_node = btrfs_buffer_node(c);
|
|
if (slot >= btrfs_header_nritems(&c_node->header)) {
|
|
level++;
|
|
continue;
|
|
}
|
|
blocknr = btrfs_node_blockptr(c_node, slot);
|
|
if (next)
|
|
btrfs_block_release(root, next);
|
|
next = read_tree_block(root, blocknr);
|
|
break;
|
|
}
|
|
path->slots[level] = slot;
|
|
while(1) {
|
|
level--;
|
|
c = path->nodes[level];
|
|
btrfs_block_release(root, c);
|
|
path->nodes[level] = next;
|
|
path->slots[level] = 0;
|
|
if (!level)
|
|
break;
|
|
next = read_tree_block(root,
|
|
btrfs_node_blockptr(btrfs_buffer_node(next), 0));
|
|
}
|
|
return 0;
|
|
}
|