c9d01179e1
Here's the second big bcachefs pull request. This brings your tree up to date with my master branch, which is what existing bcachefs users are currently running. All but the last few patches have been in linux-next, those being small fixes. Test results from my dashboard: https://evilpiepirate.org/~testdashboard/ci?commit=c7046ed0cf9bb33599aa7e72e7b67bba4be42d64 New features: - rebalance_work btree (and metadata version 1.3): the rebalance thread no longer has to scan to find extents that need processing - big scalability improvement. - sb_errors superblock section: this adds counters for each fsck error type, since filesystem creation, along with the date of the most recent error. It'll get us better bug reports (since users do not typically report errors that fsck was able to fix), and I might add telemetry for this in the future. Fixes include: - multiple snapshot deletion fixes - members_v2 fixups - deleted_inodes btree fixes - copygc thread no longer spins when a device is full but has no fragmented buckets (i.e. rebalance needs to move data around instead) - a fix for a memory reclaim issue with the btree key cache: we're now careful not to hold the srcu read lock that blocks key cache reclaim for too long - an early allocator locking fix, from Brian - endianness fixes, from Brian - CONFIG_BCACHEFS_DEBUG_TRANSACTIONS no longer defaults to y, a big performance improvement on multithreaded workloads -----BEGIN PGP SIGNATURE----- iQIzBAABCgAdFiEEKnAFLkS8Qha+jvQrE6szbY3KbnYFAmVH9xYACgkQE6szbY3K bnahLRAAiNRZL73SQ+MW79o4yPqGwt0Eyy/mvoiGpZf1B8uXp0oZ55j2w3l887Uf LeM03mInAYCPdyp/d4vxqIr96j9BODmRRl8sEkkGdJDzokLG+22F0ovOe45KWTxL kBoNdng/O/oeOe/1K7taP3KzBvMx2nOF6oA+xfgyCjECMArAIXek0iocyEUR4Ywd vGKhLNn1k2c+94wacnDYwjjdcLBxoqxsFXlpu6V0BcaY+DX4J3aBaGmj75KEoCI0 VbBOzxrOO4QzJrzW2+hxZZWgGyvReCkBJvqfORfuPxiSbFobTim10MdfZOAMQA1U Xr1FTEpK1wMX0/pPVgZRqaOsttC+yc/SsfPNgSxybgHPbDlMLaakDHjvYssbKOYG urDWSMG5yCsktSLj95SXsvUFKZaZFD72SKBNdgdt/nZjwTHuNQ7IkdrMwIrCQ/PT Ifn50UrR/Ahd8RAd5tyNCPw6U9VfwnxACSNl2KA7ONKpvHb+gSt1JsJTDyz1+gN9 nFVrw1SHKQ6EIV6XhVon/5DEuRTzqoYGWoN08FHEUq9fBlvnVpmbJErCQMplOjz9 OQnAfpJH4YqkpXyjFAjP1V0An+RUn8QvDgXNqC9TyvCYuOliVFuil4y7/c+7oIQU NEoz+jVLenqsGOGAbduI4/Q567COojRgwEvbebSIxSImXuhCNj4= =Lo4N -----END PGP SIGNATURE----- Merge tag 'bcachefs-2023-11-5' of https://evilpiepirate.org/git/bcachefs Pull more bcachefs updates from Kent Overstreet: "Here's the second big bcachefs pull request. This brings your tree up to date with my master branch, which is what existing bcachefs users are currently running. New features: - rebalance_work btree (and metadata version 1.3): the rebalance thread no longer has to scan to find extents that need processing - big scalability improvement. - sb_errors superblock section: this adds counters for each fsck error type, since filesystem creation, along with the date of the most recent error. It'll get us better bug reports (since users do not typically report errors that fsck was able to fix), and I might add telemetry for this in the future. Fixes include: - multiple snapshot deletion fixes - members_v2 fixups - deleted_inodes btree fixes - copygc thread no longer spins when a device is full but has no fragmented buckets (i.e. rebalance needs to move data around instead) - a fix for a memory reclaim issue with the btree key cache: we're now careful not to hold the srcu read lock that blocks key cache reclaim for too long - an early allocator locking fix, from Brian - endianness fixes, from Brian - CONFIG_BCACHEFS_DEBUG_TRANSACTIONS no longer defaults to y, a big performance improvement on multithreaded workloads" * tag 'bcachefs-2023-11-5' of https://evilpiepirate.org/git/bcachefs: (70 commits) bcachefs: Improve stripe checksum error message bcachefs: Simplify, fix bch2_backpointer_get_key() bcachefs: kill thing_it_points_to arg to backpointer_not_found() bcachefs: bch2_ec_read_extent() now takes btree_trans bcachefs: bch2_stripe_to_text() now prints ptr gens bcachefs: Don't iterate over journal entries just for btree roots bcachefs: Break up bch2_journal_write() bcachefs: Replace ERANGE with private error codes bcachefs: bkey_copy() is no longer a macro bcachefs: x-macro-ify inode flags enum bcachefs: Convert bch2_fs_open() to darray bcachefs: Move __bch2_members_v2_get_mut to sb-members.h bcachefs: bch2_prt_datetime() bcachefs: CONFIG_BCACHEFS_DEBUG_TRANSACTIONS no longer defaults to y bcachefs: Add a comment for BTREE_INSERT_NOJOURNAL usage bcachefs: rebalance_work btree is not a snapshots btree bcachefs: Add missing printk newlines bcachefs: Fix recovery when forced to use JSET_NO_FLUSH journal entry bcachefs: .get_parent() should return an error pointer bcachefs: Fix bch2_delete_dead_inodes() ...
1218 lines
30 KiB
C
1218 lines
30 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
|
|
#include "bcachefs.h"
|
|
#include "bkey_buf.h"
|
|
#include "btree_cache.h"
|
|
#include "btree_io.h"
|
|
#include "btree_iter.h"
|
|
#include "btree_locking.h"
|
|
#include "debug.h"
|
|
#include "errcode.h"
|
|
#include "error.h"
|
|
#include "trace.h"
|
|
|
|
#include <linux/prefetch.h>
|
|
#include <linux/sched/mm.h>
|
|
|
|
const char * const bch2_btree_node_flags[] = {
|
|
#define x(f) #f,
|
|
BTREE_FLAGS()
|
|
#undef x
|
|
NULL
|
|
};
|
|
|
|
void bch2_recalc_btree_reserve(struct bch_fs *c)
|
|
{
|
|
unsigned i, reserve = 16;
|
|
|
|
if (!c->btree_roots_known[0].b)
|
|
reserve += 8;
|
|
|
|
for (i = 0; i < btree_id_nr_alive(c); i++) {
|
|
struct btree_root *r = bch2_btree_id_root(c, i);
|
|
|
|
if (r->b)
|
|
reserve += min_t(unsigned, 1, r->b->c.level) * 8;
|
|
}
|
|
|
|
c->btree_cache.reserve = reserve;
|
|
}
|
|
|
|
static inline unsigned btree_cache_can_free(struct btree_cache *bc)
|
|
{
|
|
return max_t(int, 0, bc->used - bc->reserve);
|
|
}
|
|
|
|
static void btree_node_to_freedlist(struct btree_cache *bc, struct btree *b)
|
|
{
|
|
if (b->c.lock.readers)
|
|
list_move(&b->list, &bc->freed_pcpu);
|
|
else
|
|
list_move(&b->list, &bc->freed_nonpcpu);
|
|
}
|
|
|
|
static void btree_node_data_free(struct bch_fs *c, struct btree *b)
|
|
{
|
|
struct btree_cache *bc = &c->btree_cache;
|
|
|
|
EBUG_ON(btree_node_write_in_flight(b));
|
|
|
|
clear_btree_node_just_written(b);
|
|
|
|
kvpfree(b->data, btree_bytes(c));
|
|
b->data = NULL;
|
|
#ifdef __KERNEL__
|
|
kvfree(b->aux_data);
|
|
#else
|
|
munmap(b->aux_data, btree_aux_data_bytes(b));
|
|
#endif
|
|
b->aux_data = NULL;
|
|
|
|
bc->used--;
|
|
|
|
btree_node_to_freedlist(bc, b);
|
|
}
|
|
|
|
static int bch2_btree_cache_cmp_fn(struct rhashtable_compare_arg *arg,
|
|
const void *obj)
|
|
{
|
|
const struct btree *b = obj;
|
|
const u64 *v = arg->key;
|
|
|
|
return b->hash_val == *v ? 0 : 1;
|
|
}
|
|
|
|
static const struct rhashtable_params bch_btree_cache_params = {
|
|
.head_offset = offsetof(struct btree, hash),
|
|
.key_offset = offsetof(struct btree, hash_val),
|
|
.key_len = sizeof(u64),
|
|
.obj_cmpfn = bch2_btree_cache_cmp_fn,
|
|
};
|
|
|
|
static int btree_node_data_alloc(struct bch_fs *c, struct btree *b, gfp_t gfp)
|
|
{
|
|
BUG_ON(b->data || b->aux_data);
|
|
|
|
b->data = kvpmalloc(btree_bytes(c), gfp);
|
|
if (!b->data)
|
|
return -BCH_ERR_ENOMEM_btree_node_mem_alloc;
|
|
#ifdef __KERNEL__
|
|
b->aux_data = kvmalloc(btree_aux_data_bytes(b), gfp);
|
|
#else
|
|
b->aux_data = mmap(NULL, btree_aux_data_bytes(b),
|
|
PROT_READ|PROT_WRITE|PROT_EXEC,
|
|
MAP_PRIVATE|MAP_ANONYMOUS, 0, 0);
|
|
if (b->aux_data == MAP_FAILED)
|
|
b->aux_data = NULL;
|
|
#endif
|
|
if (!b->aux_data) {
|
|
kvpfree(b->data, btree_bytes(c));
|
|
b->data = NULL;
|
|
return -BCH_ERR_ENOMEM_btree_node_mem_alloc;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static struct btree *__btree_node_mem_alloc(struct bch_fs *c, gfp_t gfp)
|
|
{
|
|
struct btree *b;
|
|
|
|
b = kzalloc(sizeof(struct btree), gfp);
|
|
if (!b)
|
|
return NULL;
|
|
|
|
bkey_btree_ptr_init(&b->key);
|
|
INIT_LIST_HEAD(&b->list);
|
|
INIT_LIST_HEAD(&b->write_blocked);
|
|
b->byte_order = ilog2(btree_bytes(c));
|
|
return b;
|
|
}
|
|
|
|
struct btree *__bch2_btree_node_mem_alloc(struct bch_fs *c)
|
|
{
|
|
struct btree_cache *bc = &c->btree_cache;
|
|
struct btree *b;
|
|
|
|
b = __btree_node_mem_alloc(c, GFP_KERNEL);
|
|
if (!b)
|
|
return NULL;
|
|
|
|
if (btree_node_data_alloc(c, b, GFP_KERNEL)) {
|
|
kfree(b);
|
|
return NULL;
|
|
}
|
|
|
|
bch2_btree_lock_init(&b->c, 0);
|
|
|
|
bc->used++;
|
|
list_add(&b->list, &bc->freeable);
|
|
return b;
|
|
}
|
|
|
|
/* Btree in memory cache - hash table */
|
|
|
|
void bch2_btree_node_hash_remove(struct btree_cache *bc, struct btree *b)
|
|
{
|
|
int ret = rhashtable_remove_fast(&bc->table, &b->hash, bch_btree_cache_params);
|
|
|
|
BUG_ON(ret);
|
|
|
|
/* Cause future lookups for this node to fail: */
|
|
b->hash_val = 0;
|
|
}
|
|
|
|
int __bch2_btree_node_hash_insert(struct btree_cache *bc, struct btree *b)
|
|
{
|
|
BUG_ON(b->hash_val);
|
|
b->hash_val = btree_ptr_hash_val(&b->key);
|
|
|
|
return rhashtable_lookup_insert_fast(&bc->table, &b->hash,
|
|
bch_btree_cache_params);
|
|
}
|
|
|
|
int bch2_btree_node_hash_insert(struct btree_cache *bc, struct btree *b,
|
|
unsigned level, enum btree_id id)
|
|
{
|
|
int ret;
|
|
|
|
b->c.level = level;
|
|
b->c.btree_id = id;
|
|
|
|
mutex_lock(&bc->lock);
|
|
ret = __bch2_btree_node_hash_insert(bc, b);
|
|
if (!ret)
|
|
list_add_tail(&b->list, &bc->live);
|
|
mutex_unlock(&bc->lock);
|
|
|
|
return ret;
|
|
}
|
|
|
|
__flatten
|
|
static inline struct btree *btree_cache_find(struct btree_cache *bc,
|
|
const struct bkey_i *k)
|
|
{
|
|
u64 v = btree_ptr_hash_val(k);
|
|
|
|
return rhashtable_lookup_fast(&bc->table, &v, bch_btree_cache_params);
|
|
}
|
|
|
|
/*
|
|
* this version is for btree nodes that have already been freed (we're not
|
|
* reaping a real btree node)
|
|
*/
|
|
static int __btree_node_reclaim(struct bch_fs *c, struct btree *b, bool flush)
|
|
{
|
|
struct btree_cache *bc = &c->btree_cache;
|
|
int ret = 0;
|
|
|
|
lockdep_assert_held(&bc->lock);
|
|
wait_on_io:
|
|
if (b->flags & ((1U << BTREE_NODE_dirty)|
|
|
(1U << BTREE_NODE_read_in_flight)|
|
|
(1U << BTREE_NODE_write_in_flight))) {
|
|
if (!flush)
|
|
return -BCH_ERR_ENOMEM_btree_node_reclaim;
|
|
|
|
/* XXX: waiting on IO with btree cache lock held */
|
|
bch2_btree_node_wait_on_read(b);
|
|
bch2_btree_node_wait_on_write(b);
|
|
}
|
|
|
|
if (!six_trylock_intent(&b->c.lock))
|
|
return -BCH_ERR_ENOMEM_btree_node_reclaim;
|
|
|
|
if (!six_trylock_write(&b->c.lock))
|
|
goto out_unlock_intent;
|
|
|
|
/* recheck under lock */
|
|
if (b->flags & ((1U << BTREE_NODE_read_in_flight)|
|
|
(1U << BTREE_NODE_write_in_flight))) {
|
|
if (!flush)
|
|
goto out_unlock;
|
|
six_unlock_write(&b->c.lock);
|
|
six_unlock_intent(&b->c.lock);
|
|
goto wait_on_io;
|
|
}
|
|
|
|
if (btree_node_noevict(b) ||
|
|
btree_node_write_blocked(b) ||
|
|
btree_node_will_make_reachable(b))
|
|
goto out_unlock;
|
|
|
|
if (btree_node_dirty(b)) {
|
|
if (!flush)
|
|
goto out_unlock;
|
|
/*
|
|
* Using the underscore version because we don't want to compact
|
|
* bsets after the write, since this node is about to be evicted
|
|
* - unless btree verify mode is enabled, since it runs out of
|
|
* the post write cleanup:
|
|
*/
|
|
if (bch2_verify_btree_ondisk)
|
|
bch2_btree_node_write(c, b, SIX_LOCK_intent,
|
|
BTREE_WRITE_cache_reclaim);
|
|
else
|
|
__bch2_btree_node_write(c, b,
|
|
BTREE_WRITE_cache_reclaim);
|
|
|
|
six_unlock_write(&b->c.lock);
|
|
six_unlock_intent(&b->c.lock);
|
|
goto wait_on_io;
|
|
}
|
|
out:
|
|
if (b->hash_val && !ret)
|
|
trace_and_count(c, btree_cache_reap, c, b);
|
|
return ret;
|
|
out_unlock:
|
|
six_unlock_write(&b->c.lock);
|
|
out_unlock_intent:
|
|
six_unlock_intent(&b->c.lock);
|
|
ret = -BCH_ERR_ENOMEM_btree_node_reclaim;
|
|
goto out;
|
|
}
|
|
|
|
static int btree_node_reclaim(struct bch_fs *c, struct btree *b)
|
|
{
|
|
return __btree_node_reclaim(c, b, false);
|
|
}
|
|
|
|
static int btree_node_write_and_reclaim(struct bch_fs *c, struct btree *b)
|
|
{
|
|
return __btree_node_reclaim(c, b, true);
|
|
}
|
|
|
|
static unsigned long bch2_btree_cache_scan(struct shrinker *shrink,
|
|
struct shrink_control *sc)
|
|
{
|
|
struct bch_fs *c = shrink->private_data;
|
|
struct btree_cache *bc = &c->btree_cache;
|
|
struct btree *b, *t;
|
|
unsigned long nr = sc->nr_to_scan;
|
|
unsigned long can_free = 0;
|
|
unsigned long freed = 0;
|
|
unsigned long touched = 0;
|
|
unsigned i, flags;
|
|
unsigned long ret = SHRINK_STOP;
|
|
bool trigger_writes = atomic_read(&bc->dirty) + nr >=
|
|
bc->used * 3 / 4;
|
|
|
|
if (bch2_btree_shrinker_disabled)
|
|
return SHRINK_STOP;
|
|
|
|
mutex_lock(&bc->lock);
|
|
flags = memalloc_nofs_save();
|
|
|
|
/*
|
|
* It's _really_ critical that we don't free too many btree nodes - we
|
|
* have to always leave ourselves a reserve. The reserve is how we
|
|
* guarantee that allocating memory for a new btree node can always
|
|
* succeed, so that inserting keys into the btree can always succeed and
|
|
* IO can always make forward progress:
|
|
*/
|
|
can_free = btree_cache_can_free(bc);
|
|
nr = min_t(unsigned long, nr, can_free);
|
|
|
|
i = 0;
|
|
list_for_each_entry_safe(b, t, &bc->freeable, list) {
|
|
/*
|
|
* Leave a few nodes on the freeable list, so that a btree split
|
|
* won't have to hit the system allocator:
|
|
*/
|
|
if (++i <= 3)
|
|
continue;
|
|
|
|
touched++;
|
|
|
|
if (touched >= nr)
|
|
goto out;
|
|
|
|
if (!btree_node_reclaim(c, b)) {
|
|
btree_node_data_free(c, b);
|
|
six_unlock_write(&b->c.lock);
|
|
six_unlock_intent(&b->c.lock);
|
|
freed++;
|
|
}
|
|
}
|
|
restart:
|
|
list_for_each_entry_safe(b, t, &bc->live, list) {
|
|
touched++;
|
|
|
|
if (btree_node_accessed(b)) {
|
|
clear_btree_node_accessed(b);
|
|
} else if (!btree_node_reclaim(c, b)) {
|
|
freed++;
|
|
btree_node_data_free(c, b);
|
|
|
|
bch2_btree_node_hash_remove(bc, b);
|
|
six_unlock_write(&b->c.lock);
|
|
six_unlock_intent(&b->c.lock);
|
|
|
|
if (freed == nr)
|
|
goto out_rotate;
|
|
} else if (trigger_writes &&
|
|
btree_node_dirty(b) &&
|
|
!btree_node_will_make_reachable(b) &&
|
|
!btree_node_write_blocked(b) &&
|
|
six_trylock_read(&b->c.lock)) {
|
|
list_move(&bc->live, &b->list);
|
|
mutex_unlock(&bc->lock);
|
|
__bch2_btree_node_write(c, b, BTREE_WRITE_cache_reclaim);
|
|
six_unlock_read(&b->c.lock);
|
|
if (touched >= nr)
|
|
goto out_nounlock;
|
|
mutex_lock(&bc->lock);
|
|
goto restart;
|
|
}
|
|
|
|
if (touched >= nr)
|
|
break;
|
|
}
|
|
out_rotate:
|
|
if (&t->list != &bc->live)
|
|
list_move_tail(&bc->live, &t->list);
|
|
out:
|
|
mutex_unlock(&bc->lock);
|
|
out_nounlock:
|
|
ret = freed;
|
|
memalloc_nofs_restore(flags);
|
|
trace_and_count(c, btree_cache_scan, sc->nr_to_scan, can_free, ret);
|
|
return ret;
|
|
}
|
|
|
|
static unsigned long bch2_btree_cache_count(struct shrinker *shrink,
|
|
struct shrink_control *sc)
|
|
{
|
|
struct bch_fs *c = shrink->private_data;
|
|
struct btree_cache *bc = &c->btree_cache;
|
|
|
|
if (bch2_btree_shrinker_disabled)
|
|
return 0;
|
|
|
|
return btree_cache_can_free(bc);
|
|
}
|
|
|
|
void bch2_fs_btree_cache_exit(struct bch_fs *c)
|
|
{
|
|
struct btree_cache *bc = &c->btree_cache;
|
|
struct btree *b;
|
|
unsigned i, flags;
|
|
|
|
shrinker_free(bc->shrink);
|
|
|
|
/* vfree() can allocate memory: */
|
|
flags = memalloc_nofs_save();
|
|
mutex_lock(&bc->lock);
|
|
|
|
if (c->verify_data)
|
|
list_move(&c->verify_data->list, &bc->live);
|
|
|
|
kvpfree(c->verify_ondisk, btree_bytes(c));
|
|
|
|
for (i = 0; i < btree_id_nr_alive(c); i++) {
|
|
struct btree_root *r = bch2_btree_id_root(c, i);
|
|
|
|
if (r->b)
|
|
list_add(&r->b->list, &bc->live);
|
|
}
|
|
|
|
list_splice(&bc->freeable, &bc->live);
|
|
|
|
while (!list_empty(&bc->live)) {
|
|
b = list_first_entry(&bc->live, struct btree, list);
|
|
|
|
BUG_ON(btree_node_read_in_flight(b) ||
|
|
btree_node_write_in_flight(b));
|
|
|
|
if (btree_node_dirty(b))
|
|
bch2_btree_complete_write(c, b, btree_current_write(b));
|
|
clear_btree_node_dirty_acct(c, b);
|
|
|
|
btree_node_data_free(c, b);
|
|
}
|
|
|
|
BUG_ON(atomic_read(&c->btree_cache.dirty));
|
|
|
|
list_splice(&bc->freed_pcpu, &bc->freed_nonpcpu);
|
|
|
|
while (!list_empty(&bc->freed_nonpcpu)) {
|
|
b = list_first_entry(&bc->freed_nonpcpu, struct btree, list);
|
|
list_del(&b->list);
|
|
six_lock_exit(&b->c.lock);
|
|
kfree(b);
|
|
}
|
|
|
|
mutex_unlock(&bc->lock);
|
|
memalloc_nofs_restore(flags);
|
|
|
|
if (bc->table_init_done)
|
|
rhashtable_destroy(&bc->table);
|
|
}
|
|
|
|
int bch2_fs_btree_cache_init(struct bch_fs *c)
|
|
{
|
|
struct btree_cache *bc = &c->btree_cache;
|
|
struct shrinker *shrink;
|
|
unsigned i;
|
|
int ret = 0;
|
|
|
|
ret = rhashtable_init(&bc->table, &bch_btree_cache_params);
|
|
if (ret)
|
|
goto err;
|
|
|
|
bc->table_init_done = true;
|
|
|
|
bch2_recalc_btree_reserve(c);
|
|
|
|
for (i = 0; i < bc->reserve; i++)
|
|
if (!__bch2_btree_node_mem_alloc(c))
|
|
goto err;
|
|
|
|
list_splice_init(&bc->live, &bc->freeable);
|
|
|
|
mutex_init(&c->verify_lock);
|
|
|
|
shrink = shrinker_alloc(0, "%s-btree_cache", c->name);
|
|
if (!shrink)
|
|
goto err;
|
|
bc->shrink = shrink;
|
|
shrink->count_objects = bch2_btree_cache_count;
|
|
shrink->scan_objects = bch2_btree_cache_scan;
|
|
shrink->seeks = 4;
|
|
shrink->private_data = c;
|
|
shrinker_register(shrink);
|
|
|
|
return 0;
|
|
err:
|
|
return -BCH_ERR_ENOMEM_fs_btree_cache_init;
|
|
}
|
|
|
|
void bch2_fs_btree_cache_init_early(struct btree_cache *bc)
|
|
{
|
|
mutex_init(&bc->lock);
|
|
INIT_LIST_HEAD(&bc->live);
|
|
INIT_LIST_HEAD(&bc->freeable);
|
|
INIT_LIST_HEAD(&bc->freed_pcpu);
|
|
INIT_LIST_HEAD(&bc->freed_nonpcpu);
|
|
}
|
|
|
|
/*
|
|
* We can only have one thread cannibalizing other cached btree nodes at a time,
|
|
* or we'll deadlock. We use an open coded mutex to ensure that, which a
|
|
* cannibalize_bucket() will take. This means every time we unlock the root of
|
|
* the btree, we need to release this lock if we have it held.
|
|
*/
|
|
void bch2_btree_cache_cannibalize_unlock(struct bch_fs *c)
|
|
{
|
|
struct btree_cache *bc = &c->btree_cache;
|
|
|
|
if (bc->alloc_lock == current) {
|
|
trace_and_count(c, btree_cache_cannibalize_unlock, c);
|
|
bc->alloc_lock = NULL;
|
|
closure_wake_up(&bc->alloc_wait);
|
|
}
|
|
}
|
|
|
|
int bch2_btree_cache_cannibalize_lock(struct bch_fs *c, struct closure *cl)
|
|
{
|
|
struct btree_cache *bc = &c->btree_cache;
|
|
struct task_struct *old;
|
|
|
|
old = cmpxchg(&bc->alloc_lock, NULL, current);
|
|
if (old == NULL || old == current)
|
|
goto success;
|
|
|
|
if (!cl) {
|
|
trace_and_count(c, btree_cache_cannibalize_lock_fail, c);
|
|
return -BCH_ERR_ENOMEM_btree_cache_cannibalize_lock;
|
|
}
|
|
|
|
closure_wait(&bc->alloc_wait, cl);
|
|
|
|
/* Try again, after adding ourselves to waitlist */
|
|
old = cmpxchg(&bc->alloc_lock, NULL, current);
|
|
if (old == NULL || old == current) {
|
|
/* We raced */
|
|
closure_wake_up(&bc->alloc_wait);
|
|
goto success;
|
|
}
|
|
|
|
trace_and_count(c, btree_cache_cannibalize_lock_fail, c);
|
|
return -BCH_ERR_btree_cache_cannibalize_lock_blocked;
|
|
|
|
success:
|
|
trace_and_count(c, btree_cache_cannibalize_lock, c);
|
|
return 0;
|
|
}
|
|
|
|
static struct btree *btree_node_cannibalize(struct bch_fs *c)
|
|
{
|
|
struct btree_cache *bc = &c->btree_cache;
|
|
struct btree *b;
|
|
|
|
list_for_each_entry_reverse(b, &bc->live, list)
|
|
if (!btree_node_reclaim(c, b))
|
|
return b;
|
|
|
|
while (1) {
|
|
list_for_each_entry_reverse(b, &bc->live, list)
|
|
if (!btree_node_write_and_reclaim(c, b))
|
|
return b;
|
|
|
|
/*
|
|
* Rare case: all nodes were intent-locked.
|
|
* Just busy-wait.
|
|
*/
|
|
WARN_ONCE(1, "btree cache cannibalize failed\n");
|
|
cond_resched();
|
|
}
|
|
}
|
|
|
|
struct btree *bch2_btree_node_mem_alloc(struct btree_trans *trans, bool pcpu_read_locks)
|
|
{
|
|
struct bch_fs *c = trans->c;
|
|
struct btree_cache *bc = &c->btree_cache;
|
|
struct list_head *freed = pcpu_read_locks
|
|
? &bc->freed_pcpu
|
|
: &bc->freed_nonpcpu;
|
|
struct btree *b, *b2;
|
|
u64 start_time = local_clock();
|
|
unsigned flags;
|
|
|
|
flags = memalloc_nofs_save();
|
|
mutex_lock(&bc->lock);
|
|
|
|
/*
|
|
* We never free struct btree itself, just the memory that holds the on
|
|
* disk node. Check the freed list before allocating a new one:
|
|
*/
|
|
list_for_each_entry(b, freed, list)
|
|
if (!btree_node_reclaim(c, b)) {
|
|
list_del_init(&b->list);
|
|
goto got_node;
|
|
}
|
|
|
|
b = __btree_node_mem_alloc(c, GFP_NOWAIT|__GFP_NOWARN);
|
|
if (!b) {
|
|
mutex_unlock(&bc->lock);
|
|
bch2_trans_unlock(trans);
|
|
b = __btree_node_mem_alloc(c, GFP_KERNEL);
|
|
if (!b)
|
|
goto err;
|
|
mutex_lock(&bc->lock);
|
|
}
|
|
|
|
bch2_btree_lock_init(&b->c, pcpu_read_locks ? SIX_LOCK_INIT_PCPU : 0);
|
|
|
|
BUG_ON(!six_trylock_intent(&b->c.lock));
|
|
BUG_ON(!six_trylock_write(&b->c.lock));
|
|
got_node:
|
|
|
|
/*
|
|
* btree_free() doesn't free memory; it sticks the node on the end of
|
|
* the list. Check if there's any freed nodes there:
|
|
*/
|
|
list_for_each_entry(b2, &bc->freeable, list)
|
|
if (!btree_node_reclaim(c, b2)) {
|
|
swap(b->data, b2->data);
|
|
swap(b->aux_data, b2->aux_data);
|
|
btree_node_to_freedlist(bc, b2);
|
|
six_unlock_write(&b2->c.lock);
|
|
six_unlock_intent(&b2->c.lock);
|
|
goto got_mem;
|
|
}
|
|
|
|
mutex_unlock(&bc->lock);
|
|
|
|
if (btree_node_data_alloc(c, b, GFP_NOWAIT|__GFP_NOWARN)) {
|
|
bch2_trans_unlock(trans);
|
|
if (btree_node_data_alloc(c, b, GFP_KERNEL|__GFP_NOWARN))
|
|
goto err;
|
|
}
|
|
|
|
mutex_lock(&bc->lock);
|
|
bc->used++;
|
|
got_mem:
|
|
mutex_unlock(&bc->lock);
|
|
|
|
BUG_ON(btree_node_hashed(b));
|
|
BUG_ON(btree_node_dirty(b));
|
|
BUG_ON(btree_node_write_in_flight(b));
|
|
out:
|
|
b->flags = 0;
|
|
b->written = 0;
|
|
b->nsets = 0;
|
|
b->sib_u64s[0] = 0;
|
|
b->sib_u64s[1] = 0;
|
|
b->whiteout_u64s = 0;
|
|
bch2_btree_keys_init(b);
|
|
set_btree_node_accessed(b);
|
|
|
|
bch2_time_stats_update(&c->times[BCH_TIME_btree_node_mem_alloc],
|
|
start_time);
|
|
|
|
memalloc_nofs_restore(flags);
|
|
return b;
|
|
err:
|
|
mutex_lock(&bc->lock);
|
|
|
|
/* Try to cannibalize another cached btree node: */
|
|
if (bc->alloc_lock == current) {
|
|
b2 = btree_node_cannibalize(c);
|
|
clear_btree_node_just_written(b2);
|
|
bch2_btree_node_hash_remove(bc, b2);
|
|
|
|
if (b) {
|
|
swap(b->data, b2->data);
|
|
swap(b->aux_data, b2->aux_data);
|
|
btree_node_to_freedlist(bc, b2);
|
|
six_unlock_write(&b2->c.lock);
|
|
six_unlock_intent(&b2->c.lock);
|
|
} else {
|
|
b = b2;
|
|
list_del_init(&b->list);
|
|
}
|
|
|
|
mutex_unlock(&bc->lock);
|
|
|
|
trace_and_count(c, btree_cache_cannibalize, c);
|
|
goto out;
|
|
}
|
|
|
|
mutex_unlock(&bc->lock);
|
|
memalloc_nofs_restore(flags);
|
|
return ERR_PTR(-BCH_ERR_ENOMEM_btree_node_mem_alloc);
|
|
}
|
|
|
|
/* Slowpath, don't want it inlined into btree_iter_traverse() */
|
|
static noinline struct btree *bch2_btree_node_fill(struct btree_trans *trans,
|
|
struct btree_path *path,
|
|
const struct bkey_i *k,
|
|
enum btree_id btree_id,
|
|
unsigned level,
|
|
enum six_lock_type lock_type,
|
|
bool sync)
|
|
{
|
|
struct bch_fs *c = trans->c;
|
|
struct btree_cache *bc = &c->btree_cache;
|
|
struct btree *b;
|
|
u32 seq;
|
|
|
|
BUG_ON(level + 1 >= BTREE_MAX_DEPTH);
|
|
/*
|
|
* Parent node must be locked, else we could read in a btree node that's
|
|
* been freed:
|
|
*/
|
|
if (path && !bch2_btree_node_relock(trans, path, level + 1)) {
|
|
trace_and_count(c, trans_restart_relock_parent_for_fill, trans, _THIS_IP_, path);
|
|
return ERR_PTR(btree_trans_restart(trans, BCH_ERR_transaction_restart_fill_relock));
|
|
}
|
|
|
|
b = bch2_btree_node_mem_alloc(trans, level != 0);
|
|
|
|
if (bch2_err_matches(PTR_ERR_OR_ZERO(b), ENOMEM)) {
|
|
trans->memory_allocation_failure = true;
|
|
trace_and_count(c, trans_restart_memory_allocation_failure, trans, _THIS_IP_, path);
|
|
return ERR_PTR(btree_trans_restart(trans, BCH_ERR_transaction_restart_fill_mem_alloc_fail));
|
|
}
|
|
|
|
if (IS_ERR(b))
|
|
return b;
|
|
|
|
/*
|
|
* Btree nodes read in from disk should not have the accessed bit set
|
|
* initially, so that linear scans don't thrash the cache:
|
|
*/
|
|
clear_btree_node_accessed(b);
|
|
|
|
bkey_copy(&b->key, k);
|
|
if (bch2_btree_node_hash_insert(bc, b, level, btree_id)) {
|
|
/* raced with another fill: */
|
|
|
|
/* mark as unhashed... */
|
|
b->hash_val = 0;
|
|
|
|
mutex_lock(&bc->lock);
|
|
list_add(&b->list, &bc->freeable);
|
|
mutex_unlock(&bc->lock);
|
|
|
|
six_unlock_write(&b->c.lock);
|
|
six_unlock_intent(&b->c.lock);
|
|
return NULL;
|
|
}
|
|
|
|
set_btree_node_read_in_flight(b);
|
|
|
|
six_unlock_write(&b->c.lock);
|
|
seq = six_lock_seq(&b->c.lock);
|
|
six_unlock_intent(&b->c.lock);
|
|
|
|
/* Unlock before doing IO: */
|
|
if (path && sync)
|
|
bch2_trans_unlock_noassert(trans);
|
|
|
|
bch2_btree_node_read(c, b, sync);
|
|
|
|
if (!sync)
|
|
return NULL;
|
|
|
|
if (path) {
|
|
int ret = bch2_trans_relock(trans) ?:
|
|
bch2_btree_path_relock_intent(trans, path);
|
|
if (ret) {
|
|
BUG_ON(!trans->restarted);
|
|
return ERR_PTR(ret);
|
|
}
|
|
}
|
|
|
|
if (!six_relock_type(&b->c.lock, lock_type, seq)) {
|
|
if (path)
|
|
trace_and_count(c, trans_restart_relock_after_fill, trans, _THIS_IP_, path);
|
|
return ERR_PTR(btree_trans_restart(trans, BCH_ERR_transaction_restart_relock_after_fill));
|
|
}
|
|
|
|
return b;
|
|
}
|
|
|
|
static noinline void btree_bad_header(struct bch_fs *c, struct btree *b)
|
|
{
|
|
struct printbuf buf = PRINTBUF;
|
|
|
|
if (c->curr_recovery_pass <= BCH_RECOVERY_PASS_check_allocations)
|
|
return;
|
|
|
|
prt_printf(&buf,
|
|
"btree node header doesn't match ptr\n"
|
|
"btree %s level %u\n"
|
|
"ptr: ",
|
|
bch2_btree_id_str(b->c.btree_id), b->c.level);
|
|
bch2_bkey_val_to_text(&buf, c, bkey_i_to_s_c(&b->key));
|
|
|
|
prt_printf(&buf, "\nheader: btree %s level %llu\n"
|
|
"min ",
|
|
bch2_btree_id_str(BTREE_NODE_ID(b->data)),
|
|
BTREE_NODE_LEVEL(b->data));
|
|
bch2_bpos_to_text(&buf, b->data->min_key);
|
|
|
|
prt_printf(&buf, "\nmax ");
|
|
bch2_bpos_to_text(&buf, b->data->max_key);
|
|
|
|
bch2_fs_inconsistent(c, "%s", buf.buf);
|
|
printbuf_exit(&buf);
|
|
}
|
|
|
|
static inline void btree_check_header(struct bch_fs *c, struct btree *b)
|
|
{
|
|
if (b->c.btree_id != BTREE_NODE_ID(b->data) ||
|
|
b->c.level != BTREE_NODE_LEVEL(b->data) ||
|
|
!bpos_eq(b->data->max_key, b->key.k.p) ||
|
|
(b->key.k.type == KEY_TYPE_btree_ptr_v2 &&
|
|
!bpos_eq(b->data->min_key,
|
|
bkey_i_to_btree_ptr_v2(&b->key)->v.min_key)))
|
|
btree_bad_header(c, b);
|
|
}
|
|
|
|
static struct btree *__bch2_btree_node_get(struct btree_trans *trans, struct btree_path *path,
|
|
const struct bkey_i *k, unsigned level,
|
|
enum six_lock_type lock_type,
|
|
unsigned long trace_ip)
|
|
{
|
|
struct bch_fs *c = trans->c;
|
|
struct btree_cache *bc = &c->btree_cache;
|
|
struct btree *b;
|
|
struct bset_tree *t;
|
|
bool need_relock = false;
|
|
int ret;
|
|
|
|
EBUG_ON(level >= BTREE_MAX_DEPTH);
|
|
retry:
|
|
b = btree_cache_find(bc, k);
|
|
if (unlikely(!b)) {
|
|
/*
|
|
* We must have the parent locked to call bch2_btree_node_fill(),
|
|
* else we could read in a btree node from disk that's been
|
|
* freed:
|
|
*/
|
|
b = bch2_btree_node_fill(trans, path, k, path->btree_id,
|
|
level, lock_type, true);
|
|
need_relock = true;
|
|
|
|
/* We raced and found the btree node in the cache */
|
|
if (!b)
|
|
goto retry;
|
|
|
|
if (IS_ERR(b))
|
|
return b;
|
|
} else {
|
|
if (btree_node_read_locked(path, level + 1))
|
|
btree_node_unlock(trans, path, level + 1);
|
|
|
|
ret = btree_node_lock(trans, path, &b->c, level, lock_type, trace_ip);
|
|
if (bch2_err_matches(ret, BCH_ERR_transaction_restart))
|
|
return ERR_PTR(ret);
|
|
|
|
BUG_ON(ret);
|
|
|
|
if (unlikely(b->hash_val != btree_ptr_hash_val(k) ||
|
|
b->c.level != level ||
|
|
race_fault())) {
|
|
six_unlock_type(&b->c.lock, lock_type);
|
|
if (bch2_btree_node_relock(trans, path, level + 1))
|
|
goto retry;
|
|
|
|
trace_and_count(c, trans_restart_btree_node_reused, trans, trace_ip, path);
|
|
return ERR_PTR(btree_trans_restart(trans, BCH_ERR_transaction_restart_lock_node_reused));
|
|
}
|
|
|
|
/* avoid atomic set bit if it's not needed: */
|
|
if (!btree_node_accessed(b))
|
|
set_btree_node_accessed(b);
|
|
}
|
|
|
|
if (unlikely(btree_node_read_in_flight(b))) {
|
|
u32 seq = six_lock_seq(&b->c.lock);
|
|
|
|
six_unlock_type(&b->c.lock, lock_type);
|
|
bch2_trans_unlock(trans);
|
|
need_relock = true;
|
|
|
|
bch2_btree_node_wait_on_read(b);
|
|
|
|
/*
|
|
* should_be_locked is not set on this path yet, so we need to
|
|
* relock it specifically:
|
|
*/
|
|
if (!six_relock_type(&b->c.lock, lock_type, seq))
|
|
goto retry;
|
|
}
|
|
|
|
if (unlikely(need_relock)) {
|
|
ret = bch2_trans_relock(trans) ?:
|
|
bch2_btree_path_relock_intent(trans, path);
|
|
if (ret) {
|
|
six_unlock_type(&b->c.lock, lock_type);
|
|
return ERR_PTR(ret);
|
|
}
|
|
}
|
|
|
|
prefetch(b->aux_data);
|
|
|
|
for_each_bset(b, t) {
|
|
void *p = (u64 *) b->aux_data + t->aux_data_offset;
|
|
|
|
prefetch(p + L1_CACHE_BYTES * 0);
|
|
prefetch(p + L1_CACHE_BYTES * 1);
|
|
prefetch(p + L1_CACHE_BYTES * 2);
|
|
}
|
|
|
|
if (unlikely(btree_node_read_error(b))) {
|
|
six_unlock_type(&b->c.lock, lock_type);
|
|
return ERR_PTR(-EIO);
|
|
}
|
|
|
|
EBUG_ON(b->c.btree_id != path->btree_id);
|
|
EBUG_ON(BTREE_NODE_LEVEL(b->data) != level);
|
|
btree_check_header(c, b);
|
|
|
|
return b;
|
|
}
|
|
|
|
/**
|
|
* bch2_btree_node_get - find a btree node in the cache and lock it, reading it
|
|
* in from disk if necessary.
|
|
*
|
|
* @trans: btree transaction object
|
|
* @path: btree_path being traversed
|
|
* @k: pointer to btree node (generally KEY_TYPE_btree_ptr_v2)
|
|
* @level: level of btree node being looked up (0 == leaf node)
|
|
* @lock_type: SIX_LOCK_read or SIX_LOCK_intent
|
|
* @trace_ip: ip of caller of btree iterator code (i.e. caller of bch2_btree_iter_peek())
|
|
*
|
|
* The btree node will have either a read or a write lock held, depending on
|
|
* the @write parameter.
|
|
*
|
|
* Returns: btree node or ERR_PTR()
|
|
*/
|
|
struct btree *bch2_btree_node_get(struct btree_trans *trans, struct btree_path *path,
|
|
const struct bkey_i *k, unsigned level,
|
|
enum six_lock_type lock_type,
|
|
unsigned long trace_ip)
|
|
{
|
|
struct bch_fs *c = trans->c;
|
|
struct btree *b;
|
|
struct bset_tree *t;
|
|
int ret;
|
|
|
|
EBUG_ON(level >= BTREE_MAX_DEPTH);
|
|
|
|
b = btree_node_mem_ptr(k);
|
|
|
|
/*
|
|
* Check b->hash_val _before_ calling btree_node_lock() - this might not
|
|
* be the node we want anymore, and trying to lock the wrong node could
|
|
* cause an unneccessary transaction restart:
|
|
*/
|
|
if (unlikely(!c->opts.btree_node_mem_ptr_optimization ||
|
|
!b ||
|
|
b->hash_val != btree_ptr_hash_val(k)))
|
|
return __bch2_btree_node_get(trans, path, k, level, lock_type, trace_ip);
|
|
|
|
if (btree_node_read_locked(path, level + 1))
|
|
btree_node_unlock(trans, path, level + 1);
|
|
|
|
ret = btree_node_lock(trans, path, &b->c, level, lock_type, trace_ip);
|
|
if (bch2_err_matches(ret, BCH_ERR_transaction_restart))
|
|
return ERR_PTR(ret);
|
|
|
|
BUG_ON(ret);
|
|
|
|
if (unlikely(b->hash_val != btree_ptr_hash_val(k) ||
|
|
b->c.level != level ||
|
|
race_fault())) {
|
|
six_unlock_type(&b->c.lock, lock_type);
|
|
if (bch2_btree_node_relock(trans, path, level + 1))
|
|
return __bch2_btree_node_get(trans, path, k, level, lock_type, trace_ip);
|
|
|
|
trace_and_count(c, trans_restart_btree_node_reused, trans, trace_ip, path);
|
|
return ERR_PTR(btree_trans_restart(trans, BCH_ERR_transaction_restart_lock_node_reused));
|
|
}
|
|
|
|
if (unlikely(btree_node_read_in_flight(b))) {
|
|
six_unlock_type(&b->c.lock, lock_type);
|
|
return __bch2_btree_node_get(trans, path, k, level, lock_type, trace_ip);
|
|
}
|
|
|
|
prefetch(b->aux_data);
|
|
|
|
for_each_bset(b, t) {
|
|
void *p = (u64 *) b->aux_data + t->aux_data_offset;
|
|
|
|
prefetch(p + L1_CACHE_BYTES * 0);
|
|
prefetch(p + L1_CACHE_BYTES * 1);
|
|
prefetch(p + L1_CACHE_BYTES * 2);
|
|
}
|
|
|
|
/* avoid atomic set bit if it's not needed: */
|
|
if (!btree_node_accessed(b))
|
|
set_btree_node_accessed(b);
|
|
|
|
if (unlikely(btree_node_read_error(b))) {
|
|
six_unlock_type(&b->c.lock, lock_type);
|
|
return ERR_PTR(-EIO);
|
|
}
|
|
|
|
EBUG_ON(b->c.btree_id != path->btree_id);
|
|
EBUG_ON(BTREE_NODE_LEVEL(b->data) != level);
|
|
btree_check_header(c, b);
|
|
|
|
return b;
|
|
}
|
|
|
|
struct btree *bch2_btree_node_get_noiter(struct btree_trans *trans,
|
|
const struct bkey_i *k,
|
|
enum btree_id btree_id,
|
|
unsigned level,
|
|
bool nofill)
|
|
{
|
|
struct bch_fs *c = trans->c;
|
|
struct btree_cache *bc = &c->btree_cache;
|
|
struct btree *b;
|
|
struct bset_tree *t;
|
|
int ret;
|
|
|
|
EBUG_ON(level >= BTREE_MAX_DEPTH);
|
|
|
|
if (c->opts.btree_node_mem_ptr_optimization) {
|
|
b = btree_node_mem_ptr(k);
|
|
if (b)
|
|
goto lock_node;
|
|
}
|
|
retry:
|
|
b = btree_cache_find(bc, k);
|
|
if (unlikely(!b)) {
|
|
if (nofill)
|
|
goto out;
|
|
|
|
b = bch2_btree_node_fill(trans, NULL, k, btree_id,
|
|
level, SIX_LOCK_read, true);
|
|
|
|
/* We raced and found the btree node in the cache */
|
|
if (!b)
|
|
goto retry;
|
|
|
|
if (IS_ERR(b) &&
|
|
!bch2_btree_cache_cannibalize_lock(c, NULL))
|
|
goto retry;
|
|
|
|
if (IS_ERR(b))
|
|
goto out;
|
|
} else {
|
|
lock_node:
|
|
ret = btree_node_lock_nopath(trans, &b->c, SIX_LOCK_read, _THIS_IP_);
|
|
if (bch2_err_matches(ret, BCH_ERR_transaction_restart))
|
|
return ERR_PTR(ret);
|
|
|
|
BUG_ON(ret);
|
|
|
|
if (unlikely(b->hash_val != btree_ptr_hash_val(k) ||
|
|
b->c.btree_id != btree_id ||
|
|
b->c.level != level)) {
|
|
six_unlock_read(&b->c.lock);
|
|
goto retry;
|
|
}
|
|
}
|
|
|
|
/* XXX: waiting on IO with btree locks held: */
|
|
__bch2_btree_node_wait_on_read(b);
|
|
|
|
prefetch(b->aux_data);
|
|
|
|
for_each_bset(b, t) {
|
|
void *p = (u64 *) b->aux_data + t->aux_data_offset;
|
|
|
|
prefetch(p + L1_CACHE_BYTES * 0);
|
|
prefetch(p + L1_CACHE_BYTES * 1);
|
|
prefetch(p + L1_CACHE_BYTES * 2);
|
|
}
|
|
|
|
/* avoid atomic set bit if it's not needed: */
|
|
if (!btree_node_accessed(b))
|
|
set_btree_node_accessed(b);
|
|
|
|
if (unlikely(btree_node_read_error(b))) {
|
|
six_unlock_read(&b->c.lock);
|
|
b = ERR_PTR(-EIO);
|
|
goto out;
|
|
}
|
|
|
|
EBUG_ON(b->c.btree_id != btree_id);
|
|
EBUG_ON(BTREE_NODE_LEVEL(b->data) != level);
|
|
btree_check_header(c, b);
|
|
out:
|
|
bch2_btree_cache_cannibalize_unlock(c);
|
|
return b;
|
|
}
|
|
|
|
int bch2_btree_node_prefetch(struct btree_trans *trans,
|
|
struct btree_path *path,
|
|
const struct bkey_i *k,
|
|
enum btree_id btree_id, unsigned level)
|
|
{
|
|
struct bch_fs *c = trans->c;
|
|
struct btree_cache *bc = &c->btree_cache;
|
|
struct btree *b;
|
|
|
|
BUG_ON(trans && !btree_node_locked(path, level + 1));
|
|
BUG_ON(level >= BTREE_MAX_DEPTH);
|
|
|
|
b = btree_cache_find(bc, k);
|
|
if (b)
|
|
return 0;
|
|
|
|
b = bch2_btree_node_fill(trans, path, k, btree_id,
|
|
level, SIX_LOCK_read, false);
|
|
return PTR_ERR_OR_ZERO(b);
|
|
}
|
|
|
|
void bch2_btree_node_evict(struct btree_trans *trans, const struct bkey_i *k)
|
|
{
|
|
struct bch_fs *c = trans->c;
|
|
struct btree_cache *bc = &c->btree_cache;
|
|
struct btree *b;
|
|
|
|
b = btree_cache_find(bc, k);
|
|
if (!b)
|
|
return;
|
|
wait_on_io:
|
|
/* not allowed to wait on io with btree locks held: */
|
|
|
|
/* XXX we're called from btree_gc which will be holding other btree
|
|
* nodes locked
|
|
*/
|
|
__bch2_btree_node_wait_on_read(b);
|
|
__bch2_btree_node_wait_on_write(b);
|
|
|
|
btree_node_lock_nopath_nofail(trans, &b->c, SIX_LOCK_intent);
|
|
btree_node_lock_nopath_nofail(trans, &b->c, SIX_LOCK_write);
|
|
|
|
if (btree_node_dirty(b)) {
|
|
__bch2_btree_node_write(c, b, BTREE_WRITE_cache_reclaim);
|
|
six_unlock_write(&b->c.lock);
|
|
six_unlock_intent(&b->c.lock);
|
|
goto wait_on_io;
|
|
}
|
|
|
|
BUG_ON(btree_node_dirty(b));
|
|
|
|
mutex_lock(&bc->lock);
|
|
btree_node_data_free(c, b);
|
|
bch2_btree_node_hash_remove(bc, b);
|
|
mutex_unlock(&bc->lock);
|
|
|
|
six_unlock_write(&b->c.lock);
|
|
six_unlock_intent(&b->c.lock);
|
|
}
|
|
|
|
const char *bch2_btree_id_str(enum btree_id btree)
|
|
{
|
|
return btree < BTREE_ID_NR ? __bch2_btree_ids[btree] : "(unknown)";
|
|
}
|
|
|
|
void bch2_btree_pos_to_text(struct printbuf *out, struct bch_fs *c, const struct btree *b)
|
|
{
|
|
prt_printf(out, "%s level %u/%u\n ",
|
|
bch2_btree_id_str(b->c.btree_id),
|
|
b->c.level,
|
|
bch2_btree_id_root(c, b->c.btree_id)->level);
|
|
bch2_bkey_val_to_text(out, c, bkey_i_to_s_c(&b->key));
|
|
}
|
|
|
|
void bch2_btree_node_to_text(struct printbuf *out, struct bch_fs *c, const struct btree *b)
|
|
{
|
|
struct bset_stats stats;
|
|
|
|
memset(&stats, 0, sizeof(stats));
|
|
|
|
bch2_btree_keys_stats(b, &stats);
|
|
|
|
prt_printf(out, "l %u ", b->c.level);
|
|
bch2_bpos_to_text(out, b->data->min_key);
|
|
prt_printf(out, " - ");
|
|
bch2_bpos_to_text(out, b->data->max_key);
|
|
prt_printf(out, ":\n"
|
|
" ptrs: ");
|
|
bch2_val_to_text(out, c, bkey_i_to_s_c(&b->key));
|
|
prt_newline(out);
|
|
|
|
prt_printf(out,
|
|
" format: ");
|
|
bch2_bkey_format_to_text(out, &b->format);
|
|
|
|
prt_printf(out,
|
|
" unpack fn len: %u\n"
|
|
" bytes used %zu/%zu (%zu%% full)\n"
|
|
" sib u64s: %u, %u (merge threshold %u)\n"
|
|
" nr packed keys %u\n"
|
|
" nr unpacked keys %u\n"
|
|
" floats %zu\n"
|
|
" failed unpacked %zu\n",
|
|
b->unpack_fn_len,
|
|
b->nr.live_u64s * sizeof(u64),
|
|
btree_bytes(c) - sizeof(struct btree_node),
|
|
b->nr.live_u64s * 100 / btree_max_u64s(c),
|
|
b->sib_u64s[0],
|
|
b->sib_u64s[1],
|
|
c->btree_foreground_merge_threshold,
|
|
b->nr.packed_keys,
|
|
b->nr.unpacked_keys,
|
|
stats.floats,
|
|
stats.failed);
|
|
}
|
|
|
|
void bch2_btree_cache_to_text(struct printbuf *out, const struct bch_fs *c)
|
|
{
|
|
prt_printf(out, "nr nodes:\t\t%u\n", c->btree_cache.used);
|
|
prt_printf(out, "nr dirty:\t\t%u\n", atomic_read(&c->btree_cache.dirty));
|
|
prt_printf(out, "cannibalize lock:\t%p\n", c->btree_cache.alloc_lock);
|
|
}
|