c380b52f6c
Remove ntfs_sparse_cluster. Zero clusters in attr_allocate_clusters. Fixes xfstest generic/263 Signed-off-by: Konstantin Komarov <almaz.alexandrovich@paragon-software.com>
3373 lines
73 KiB
C
3373 lines
73 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/*
|
|
*
|
|
* Copyright (C) 2019-2021 Paragon Software GmbH, All rights reserved.
|
|
*
|
|
*/
|
|
|
|
#include <linux/fiemap.h>
|
|
#include <linux/fs.h>
|
|
#include <linux/minmax.h>
|
|
#include <linux/vmalloc.h>
|
|
|
|
#include "debug.h"
|
|
#include "ntfs.h"
|
|
#include "ntfs_fs.h"
|
|
#ifdef CONFIG_NTFS3_LZX_XPRESS
|
|
#include "lib/lib.h"
|
|
#endif
|
|
|
|
static struct mft_inode *ni_ins_mi(struct ntfs_inode *ni, struct rb_root *tree,
|
|
CLST ino, struct rb_node *ins)
|
|
{
|
|
struct rb_node **p = &tree->rb_node;
|
|
struct rb_node *pr = NULL;
|
|
|
|
while (*p) {
|
|
struct mft_inode *mi;
|
|
|
|
pr = *p;
|
|
mi = rb_entry(pr, struct mft_inode, node);
|
|
if (mi->rno > ino)
|
|
p = &pr->rb_left;
|
|
else if (mi->rno < ino)
|
|
p = &pr->rb_right;
|
|
else
|
|
return mi;
|
|
}
|
|
|
|
if (!ins)
|
|
return NULL;
|
|
|
|
rb_link_node(ins, pr, p);
|
|
rb_insert_color(ins, tree);
|
|
return rb_entry(ins, struct mft_inode, node);
|
|
}
|
|
|
|
/*
|
|
* ni_find_mi - Find mft_inode by record number.
|
|
*/
|
|
static struct mft_inode *ni_find_mi(struct ntfs_inode *ni, CLST rno)
|
|
{
|
|
return ni_ins_mi(ni, &ni->mi_tree, rno, NULL);
|
|
}
|
|
|
|
/*
|
|
* ni_add_mi - Add new mft_inode into ntfs_inode.
|
|
*/
|
|
static void ni_add_mi(struct ntfs_inode *ni, struct mft_inode *mi)
|
|
{
|
|
ni_ins_mi(ni, &ni->mi_tree, mi->rno, &mi->node);
|
|
}
|
|
|
|
/*
|
|
* ni_remove_mi - Remove mft_inode from ntfs_inode.
|
|
*/
|
|
void ni_remove_mi(struct ntfs_inode *ni, struct mft_inode *mi)
|
|
{
|
|
rb_erase(&mi->node, &ni->mi_tree);
|
|
}
|
|
|
|
/*
|
|
* ni_std - Return: Pointer into std_info from primary record.
|
|
*/
|
|
struct ATTR_STD_INFO *ni_std(struct ntfs_inode *ni)
|
|
{
|
|
const struct ATTRIB *attr;
|
|
|
|
attr = mi_find_attr(&ni->mi, NULL, ATTR_STD, NULL, 0, NULL);
|
|
return attr ? resident_data_ex(attr, sizeof(struct ATTR_STD_INFO))
|
|
: NULL;
|
|
}
|
|
|
|
/*
|
|
* ni_std5
|
|
*
|
|
* Return: Pointer into std_info from primary record.
|
|
*/
|
|
struct ATTR_STD_INFO5 *ni_std5(struct ntfs_inode *ni)
|
|
{
|
|
const struct ATTRIB *attr;
|
|
|
|
attr = mi_find_attr(&ni->mi, NULL, ATTR_STD, NULL, 0, NULL);
|
|
|
|
return attr ? resident_data_ex(attr, sizeof(struct ATTR_STD_INFO5))
|
|
: NULL;
|
|
}
|
|
|
|
/*
|
|
* ni_clear - Clear resources allocated by ntfs_inode.
|
|
*/
|
|
void ni_clear(struct ntfs_inode *ni)
|
|
{
|
|
struct rb_node *node;
|
|
|
|
if (!ni->vfs_inode.i_nlink && is_rec_inuse(ni->mi.mrec))
|
|
ni_delete_all(ni);
|
|
|
|
al_destroy(ni);
|
|
|
|
for (node = rb_first(&ni->mi_tree); node;) {
|
|
struct rb_node *next = rb_next(node);
|
|
struct mft_inode *mi = rb_entry(node, struct mft_inode, node);
|
|
|
|
rb_erase(node, &ni->mi_tree);
|
|
mi_put(mi);
|
|
node = next;
|
|
}
|
|
|
|
/* Bad inode always has mode == S_IFREG. */
|
|
if (ni->ni_flags & NI_FLAG_DIR)
|
|
indx_clear(&ni->dir);
|
|
else {
|
|
run_close(&ni->file.run);
|
|
#ifdef CONFIG_NTFS3_LZX_XPRESS
|
|
if (ni->file.offs_page) {
|
|
/* On-demand allocated page for offsets. */
|
|
put_page(ni->file.offs_page);
|
|
ni->file.offs_page = NULL;
|
|
}
|
|
#endif
|
|
}
|
|
|
|
mi_clear(&ni->mi);
|
|
}
|
|
|
|
/*
|
|
* ni_load_mi_ex - Find mft_inode by record number.
|
|
*/
|
|
int ni_load_mi_ex(struct ntfs_inode *ni, CLST rno, struct mft_inode **mi)
|
|
{
|
|
int err;
|
|
struct mft_inode *r;
|
|
|
|
r = ni_find_mi(ni, rno);
|
|
if (r)
|
|
goto out;
|
|
|
|
err = mi_get(ni->mi.sbi, rno, &r);
|
|
if (err)
|
|
return err;
|
|
|
|
ni_add_mi(ni, r);
|
|
|
|
out:
|
|
if (mi)
|
|
*mi = r;
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* ni_load_mi - Load mft_inode corresponded list_entry.
|
|
*/
|
|
int ni_load_mi(struct ntfs_inode *ni, const struct ATTR_LIST_ENTRY *le,
|
|
struct mft_inode **mi)
|
|
{
|
|
CLST rno;
|
|
|
|
if (!le) {
|
|
*mi = &ni->mi;
|
|
return 0;
|
|
}
|
|
|
|
rno = ino_get(&le->ref);
|
|
if (rno == ni->mi.rno) {
|
|
*mi = &ni->mi;
|
|
return 0;
|
|
}
|
|
return ni_load_mi_ex(ni, rno, mi);
|
|
}
|
|
|
|
/*
|
|
* ni_find_attr
|
|
*
|
|
* Return: Attribute and record this attribute belongs to.
|
|
*/
|
|
struct ATTRIB *ni_find_attr(struct ntfs_inode *ni, struct ATTRIB *attr,
|
|
struct ATTR_LIST_ENTRY **le_o, enum ATTR_TYPE type,
|
|
const __le16 *name, u8 name_len, const CLST *vcn,
|
|
struct mft_inode **mi)
|
|
{
|
|
struct ATTR_LIST_ENTRY *le;
|
|
struct mft_inode *m;
|
|
|
|
if (!ni->attr_list.size ||
|
|
(!name_len && (type == ATTR_LIST || type == ATTR_STD))) {
|
|
if (le_o)
|
|
*le_o = NULL;
|
|
if (mi)
|
|
*mi = &ni->mi;
|
|
|
|
/* Look for required attribute in primary record. */
|
|
return mi_find_attr(&ni->mi, attr, type, name, name_len, NULL);
|
|
}
|
|
|
|
/* First look for list entry of required type. */
|
|
le = al_find_ex(ni, le_o ? *le_o : NULL, type, name, name_len, vcn);
|
|
if (!le)
|
|
return NULL;
|
|
|
|
if (le_o)
|
|
*le_o = le;
|
|
|
|
/* Load record that contains this attribute. */
|
|
if (ni_load_mi(ni, le, &m))
|
|
return NULL;
|
|
|
|
/* Look for required attribute. */
|
|
attr = mi_find_attr(m, NULL, type, name, name_len, &le->id);
|
|
|
|
if (!attr)
|
|
goto out;
|
|
|
|
if (!attr->non_res) {
|
|
if (vcn && *vcn)
|
|
goto out;
|
|
} else if (!vcn) {
|
|
if (attr->nres.svcn)
|
|
goto out;
|
|
} else if (le64_to_cpu(attr->nres.svcn) > *vcn ||
|
|
*vcn > le64_to_cpu(attr->nres.evcn)) {
|
|
goto out;
|
|
}
|
|
|
|
if (mi)
|
|
*mi = m;
|
|
return attr;
|
|
|
|
out:
|
|
ntfs_set_state(ni->mi.sbi, NTFS_DIRTY_ERROR);
|
|
return NULL;
|
|
}
|
|
|
|
/*
|
|
* ni_enum_attr_ex - Enumerates attributes in ntfs_inode.
|
|
*/
|
|
struct ATTRIB *ni_enum_attr_ex(struct ntfs_inode *ni, struct ATTRIB *attr,
|
|
struct ATTR_LIST_ENTRY **le,
|
|
struct mft_inode **mi)
|
|
{
|
|
struct mft_inode *mi2;
|
|
struct ATTR_LIST_ENTRY *le2;
|
|
|
|
/* Do we have an attribute list? */
|
|
if (!ni->attr_list.size) {
|
|
*le = NULL;
|
|
if (mi)
|
|
*mi = &ni->mi;
|
|
/* Enum attributes in primary record. */
|
|
return mi_enum_attr(&ni->mi, attr);
|
|
}
|
|
|
|
/* Get next list entry. */
|
|
le2 = *le = al_enumerate(ni, attr ? *le : NULL);
|
|
if (!le2)
|
|
return NULL;
|
|
|
|
/* Load record that contains the required attribute. */
|
|
if (ni_load_mi(ni, le2, &mi2))
|
|
return NULL;
|
|
|
|
if (mi)
|
|
*mi = mi2;
|
|
|
|
/* Find attribute in loaded record. */
|
|
return rec_find_attr_le(mi2, le2);
|
|
}
|
|
|
|
/*
|
|
* ni_load_attr - Load attribute that contains given VCN.
|
|
*/
|
|
struct ATTRIB *ni_load_attr(struct ntfs_inode *ni, enum ATTR_TYPE type,
|
|
const __le16 *name, u8 name_len, CLST vcn,
|
|
struct mft_inode **pmi)
|
|
{
|
|
struct ATTR_LIST_ENTRY *le;
|
|
struct ATTRIB *attr;
|
|
struct mft_inode *mi;
|
|
struct ATTR_LIST_ENTRY *next;
|
|
|
|
if (!ni->attr_list.size) {
|
|
if (pmi)
|
|
*pmi = &ni->mi;
|
|
return mi_find_attr(&ni->mi, NULL, type, name, name_len, NULL);
|
|
}
|
|
|
|
le = al_find_ex(ni, NULL, type, name, name_len, NULL);
|
|
if (!le)
|
|
return NULL;
|
|
|
|
/*
|
|
* Unfortunately ATTR_LIST_ENTRY contains only start VCN.
|
|
* So to find the ATTRIB segment that contains 'vcn' we should
|
|
* enumerate some entries.
|
|
*/
|
|
if (vcn) {
|
|
for (;; le = next) {
|
|
next = al_find_ex(ni, le, type, name, name_len, NULL);
|
|
if (!next || le64_to_cpu(next->vcn) > vcn)
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (ni_load_mi(ni, le, &mi))
|
|
return NULL;
|
|
|
|
if (pmi)
|
|
*pmi = mi;
|
|
|
|
attr = mi_find_attr(mi, NULL, type, name, name_len, &le->id);
|
|
if (!attr)
|
|
return NULL;
|
|
|
|
if (!attr->non_res)
|
|
return attr;
|
|
|
|
if (le64_to_cpu(attr->nres.svcn) <= vcn &&
|
|
vcn <= le64_to_cpu(attr->nres.evcn))
|
|
return attr;
|
|
|
|
return NULL;
|
|
}
|
|
|
|
/*
|
|
* ni_load_all_mi - Load all subrecords.
|
|
*/
|
|
int ni_load_all_mi(struct ntfs_inode *ni)
|
|
{
|
|
int err;
|
|
struct ATTR_LIST_ENTRY *le;
|
|
|
|
if (!ni->attr_list.size)
|
|
return 0;
|
|
|
|
le = NULL;
|
|
|
|
while ((le = al_enumerate(ni, le))) {
|
|
CLST rno = ino_get(&le->ref);
|
|
|
|
if (rno == ni->mi.rno)
|
|
continue;
|
|
|
|
err = ni_load_mi_ex(ni, rno, NULL);
|
|
if (err)
|
|
return err;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* ni_add_subrecord - Allocate + format + attach a new subrecord.
|
|
*/
|
|
bool ni_add_subrecord(struct ntfs_inode *ni, CLST rno, struct mft_inode **mi)
|
|
{
|
|
struct mft_inode *m;
|
|
|
|
m = kzalloc(sizeof(struct mft_inode), GFP_NOFS);
|
|
if (!m)
|
|
return false;
|
|
|
|
if (mi_format_new(m, ni->mi.sbi, rno, 0, ni->mi.rno == MFT_REC_MFT)) {
|
|
mi_put(m);
|
|
return false;
|
|
}
|
|
|
|
mi_get_ref(&ni->mi, &m->mrec->parent_ref);
|
|
|
|
ni_add_mi(ni, m);
|
|
*mi = m;
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
* ni_remove_attr - Remove all attributes for the given type/name/id.
|
|
*/
|
|
int ni_remove_attr(struct ntfs_inode *ni, enum ATTR_TYPE type,
|
|
const __le16 *name, size_t name_len, bool base_only,
|
|
const __le16 *id)
|
|
{
|
|
int err;
|
|
struct ATTRIB *attr;
|
|
struct ATTR_LIST_ENTRY *le;
|
|
struct mft_inode *mi;
|
|
u32 type_in;
|
|
int diff;
|
|
|
|
if (base_only || type == ATTR_LIST || !ni->attr_list.size) {
|
|
attr = mi_find_attr(&ni->mi, NULL, type, name, name_len, id);
|
|
if (!attr)
|
|
return -ENOENT;
|
|
|
|
mi_remove_attr(ni, &ni->mi, attr);
|
|
return 0;
|
|
}
|
|
|
|
type_in = le32_to_cpu(type);
|
|
le = NULL;
|
|
|
|
for (;;) {
|
|
le = al_enumerate(ni, le);
|
|
if (!le)
|
|
return 0;
|
|
|
|
next_le2:
|
|
diff = le32_to_cpu(le->type) - type_in;
|
|
if (diff < 0)
|
|
continue;
|
|
|
|
if (diff > 0)
|
|
return 0;
|
|
|
|
if (le->name_len != name_len)
|
|
continue;
|
|
|
|
if (name_len &&
|
|
memcmp(le_name(le), name, name_len * sizeof(short)))
|
|
continue;
|
|
|
|
if (id && le->id != *id)
|
|
continue;
|
|
err = ni_load_mi(ni, le, &mi);
|
|
if (err)
|
|
return err;
|
|
|
|
al_remove_le(ni, le);
|
|
|
|
attr = mi_find_attr(mi, NULL, type, name, name_len, id);
|
|
if (!attr)
|
|
return -ENOENT;
|
|
|
|
mi_remove_attr(ni, mi, attr);
|
|
|
|
if (PtrOffset(ni->attr_list.le, le) >= ni->attr_list.size)
|
|
return 0;
|
|
goto next_le2;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* ni_ins_new_attr - Insert the attribute into record.
|
|
*
|
|
* Return: Not full constructed attribute or NULL if not possible to create.
|
|
*/
|
|
static struct ATTRIB *
|
|
ni_ins_new_attr(struct ntfs_inode *ni, struct mft_inode *mi,
|
|
struct ATTR_LIST_ENTRY *le, enum ATTR_TYPE type,
|
|
const __le16 *name, u8 name_len, u32 asize, u16 name_off,
|
|
CLST svcn, struct ATTR_LIST_ENTRY **ins_le)
|
|
{
|
|
int err;
|
|
struct ATTRIB *attr;
|
|
bool le_added = false;
|
|
struct MFT_REF ref;
|
|
|
|
mi_get_ref(mi, &ref);
|
|
|
|
if (type != ATTR_LIST && !le && ni->attr_list.size) {
|
|
err = al_add_le(ni, type, name, name_len, svcn, cpu_to_le16(-1),
|
|
&ref, &le);
|
|
if (err) {
|
|
/* No memory or no space. */
|
|
return ERR_PTR(err);
|
|
}
|
|
le_added = true;
|
|
|
|
/*
|
|
* al_add_le -> attr_set_size (list) -> ni_expand_list
|
|
* which moves some attributes out of primary record
|
|
* this means that name may point into moved memory
|
|
* reinit 'name' from le.
|
|
*/
|
|
name = le->name;
|
|
}
|
|
|
|
attr = mi_insert_attr(mi, type, name, name_len, asize, name_off);
|
|
if (!attr) {
|
|
if (le_added)
|
|
al_remove_le(ni, le);
|
|
return NULL;
|
|
}
|
|
|
|
if (type == ATTR_LIST) {
|
|
/* Attr list is not in list entry array. */
|
|
goto out;
|
|
}
|
|
|
|
if (!le)
|
|
goto out;
|
|
|
|
/* Update ATTRIB Id and record reference. */
|
|
le->id = attr->id;
|
|
ni->attr_list.dirty = true;
|
|
le->ref = ref;
|
|
|
|
out:
|
|
if (ins_le)
|
|
*ins_le = le;
|
|
return attr;
|
|
}
|
|
|
|
/*
|
|
* ni_repack
|
|
*
|
|
* Random write access to sparsed or compressed file may result to
|
|
* not optimized packed runs.
|
|
* Here is the place to optimize it.
|
|
*/
|
|
static int ni_repack(struct ntfs_inode *ni)
|
|
{
|
|
int err = 0;
|
|
struct ntfs_sb_info *sbi = ni->mi.sbi;
|
|
struct mft_inode *mi, *mi_p = NULL;
|
|
struct ATTRIB *attr = NULL, *attr_p;
|
|
struct ATTR_LIST_ENTRY *le = NULL, *le_p;
|
|
CLST alloc = 0;
|
|
u8 cluster_bits = sbi->cluster_bits;
|
|
CLST svcn, evcn = 0, svcn_p, evcn_p, next_svcn;
|
|
u32 roff, rs = sbi->record_size;
|
|
struct runs_tree run;
|
|
|
|
run_init(&run);
|
|
|
|
while ((attr = ni_enum_attr_ex(ni, attr, &le, &mi))) {
|
|
if (!attr->non_res)
|
|
continue;
|
|
|
|
svcn = le64_to_cpu(attr->nres.svcn);
|
|
if (svcn != le64_to_cpu(le->vcn)) {
|
|
err = -EINVAL;
|
|
break;
|
|
}
|
|
|
|
if (!svcn) {
|
|
alloc = le64_to_cpu(attr->nres.alloc_size) >>
|
|
cluster_bits;
|
|
mi_p = NULL;
|
|
} else if (svcn != evcn + 1) {
|
|
err = -EINVAL;
|
|
break;
|
|
}
|
|
|
|
evcn = le64_to_cpu(attr->nres.evcn);
|
|
|
|
if (svcn > evcn + 1) {
|
|
err = -EINVAL;
|
|
break;
|
|
}
|
|
|
|
if (!mi_p) {
|
|
/* Do not try if not enough free space. */
|
|
if (le32_to_cpu(mi->mrec->used) + 8 >= rs)
|
|
continue;
|
|
|
|
/* Do not try if last attribute segment. */
|
|
if (evcn + 1 == alloc)
|
|
continue;
|
|
run_close(&run);
|
|
}
|
|
|
|
roff = le16_to_cpu(attr->nres.run_off);
|
|
|
|
if (roff > le32_to_cpu(attr->size)) {
|
|
err = -EINVAL;
|
|
break;
|
|
}
|
|
|
|
err = run_unpack(&run, sbi, ni->mi.rno, svcn, evcn, svcn,
|
|
Add2Ptr(attr, roff),
|
|
le32_to_cpu(attr->size) - roff);
|
|
if (err < 0)
|
|
break;
|
|
|
|
if (!mi_p) {
|
|
mi_p = mi;
|
|
attr_p = attr;
|
|
svcn_p = svcn;
|
|
evcn_p = evcn;
|
|
le_p = le;
|
|
err = 0;
|
|
continue;
|
|
}
|
|
|
|
/*
|
|
* Run contains data from two records: mi_p and mi
|
|
* Try to pack in one.
|
|
*/
|
|
err = mi_pack_runs(mi_p, attr_p, &run, evcn + 1 - svcn_p);
|
|
if (err)
|
|
break;
|
|
|
|
next_svcn = le64_to_cpu(attr_p->nres.evcn) + 1;
|
|
|
|
if (next_svcn >= evcn + 1) {
|
|
/* We can remove this attribute segment. */
|
|
al_remove_le(ni, le);
|
|
mi_remove_attr(NULL, mi, attr);
|
|
le = le_p;
|
|
continue;
|
|
}
|
|
|
|
attr->nres.svcn = le->vcn = cpu_to_le64(next_svcn);
|
|
mi->dirty = true;
|
|
ni->attr_list.dirty = true;
|
|
|
|
if (evcn + 1 == alloc) {
|
|
err = mi_pack_runs(mi, attr, &run,
|
|
evcn + 1 - next_svcn);
|
|
if (err)
|
|
break;
|
|
mi_p = NULL;
|
|
} else {
|
|
mi_p = mi;
|
|
attr_p = attr;
|
|
svcn_p = next_svcn;
|
|
evcn_p = evcn;
|
|
le_p = le;
|
|
run_truncate_head(&run, next_svcn);
|
|
}
|
|
}
|
|
|
|
if (err) {
|
|
ntfs_inode_warn(&ni->vfs_inode, "repack problem");
|
|
ntfs_set_state(sbi, NTFS_DIRTY_ERROR);
|
|
|
|
/* Pack loaded but not packed runs. */
|
|
if (mi_p)
|
|
mi_pack_runs(mi_p, attr_p, &run, evcn_p + 1 - svcn_p);
|
|
}
|
|
|
|
run_close(&run);
|
|
return err;
|
|
}
|
|
|
|
/*
|
|
* ni_try_remove_attr_list
|
|
*
|
|
* Can we remove attribute list?
|
|
* Check the case when primary record contains enough space for all attributes.
|
|
*/
|
|
static int ni_try_remove_attr_list(struct ntfs_inode *ni)
|
|
{
|
|
int err = 0;
|
|
struct ntfs_sb_info *sbi = ni->mi.sbi;
|
|
struct ATTRIB *attr, *attr_list, *attr_ins;
|
|
struct ATTR_LIST_ENTRY *le;
|
|
struct mft_inode *mi;
|
|
u32 asize, free;
|
|
struct MFT_REF ref;
|
|
struct MFT_REC *mrec;
|
|
__le16 id;
|
|
|
|
if (!ni->attr_list.dirty)
|
|
return 0;
|
|
|
|
err = ni_repack(ni);
|
|
if (err)
|
|
return err;
|
|
|
|
attr_list = mi_find_attr(&ni->mi, NULL, ATTR_LIST, NULL, 0, NULL);
|
|
if (!attr_list)
|
|
return 0;
|
|
|
|
asize = le32_to_cpu(attr_list->size);
|
|
|
|
/* Free space in primary record without attribute list. */
|
|
free = sbi->record_size - le32_to_cpu(ni->mi.mrec->used) + asize;
|
|
mi_get_ref(&ni->mi, &ref);
|
|
|
|
le = NULL;
|
|
while ((le = al_enumerate(ni, le))) {
|
|
if (!memcmp(&le->ref, &ref, sizeof(ref)))
|
|
continue;
|
|
|
|
if (le->vcn)
|
|
return 0;
|
|
|
|
mi = ni_find_mi(ni, ino_get(&le->ref));
|
|
if (!mi)
|
|
return 0;
|
|
|
|
attr = mi_find_attr(mi, NULL, le->type, le_name(le),
|
|
le->name_len, &le->id);
|
|
if (!attr)
|
|
return 0;
|
|
|
|
asize = le32_to_cpu(attr->size);
|
|
if (asize > free)
|
|
return 0;
|
|
|
|
free -= asize;
|
|
}
|
|
|
|
/* Make a copy of primary record to restore if error. */
|
|
mrec = kmemdup(ni->mi.mrec, sbi->record_size, GFP_NOFS);
|
|
if (!mrec)
|
|
return 0; /* Not critical. */
|
|
|
|
/* It seems that attribute list can be removed from primary record. */
|
|
mi_remove_attr(NULL, &ni->mi, attr_list);
|
|
|
|
/*
|
|
* Repeat the cycle above and copy all attributes to primary record.
|
|
* Do not remove original attributes from subrecords!
|
|
* It should be success!
|
|
*/
|
|
le = NULL;
|
|
while ((le = al_enumerate(ni, le))) {
|
|
if (!memcmp(&le->ref, &ref, sizeof(ref)))
|
|
continue;
|
|
|
|
mi = ni_find_mi(ni, ino_get(&le->ref));
|
|
if (!mi) {
|
|
/* Should never happened, 'cause already checked. */
|
|
goto out;
|
|
}
|
|
|
|
attr = mi_find_attr(mi, NULL, le->type, le_name(le),
|
|
le->name_len, &le->id);
|
|
if (!attr) {
|
|
/* Should never happened, 'cause already checked. */
|
|
goto out;
|
|
}
|
|
asize = le32_to_cpu(attr->size);
|
|
|
|
/* Insert into primary record. */
|
|
attr_ins = mi_insert_attr(&ni->mi, le->type, le_name(le),
|
|
le->name_len, asize,
|
|
le16_to_cpu(attr->name_off));
|
|
if (!attr_ins) {
|
|
/*
|
|
* No space in primary record (already checked).
|
|
*/
|
|
goto out;
|
|
}
|
|
|
|
/* Copy all except id. */
|
|
id = attr_ins->id;
|
|
memcpy(attr_ins, attr, asize);
|
|
attr_ins->id = id;
|
|
}
|
|
|
|
/*
|
|
* Repeat the cycle above and remove all attributes from subrecords.
|
|
*/
|
|
le = NULL;
|
|
while ((le = al_enumerate(ni, le))) {
|
|
if (!memcmp(&le->ref, &ref, sizeof(ref)))
|
|
continue;
|
|
|
|
mi = ni_find_mi(ni, ino_get(&le->ref));
|
|
if (!mi)
|
|
continue;
|
|
|
|
attr = mi_find_attr(mi, NULL, le->type, le_name(le),
|
|
le->name_len, &le->id);
|
|
if (!attr)
|
|
continue;
|
|
|
|
/* Remove from original record. */
|
|
mi_remove_attr(NULL, mi, attr);
|
|
}
|
|
|
|
run_deallocate(sbi, &ni->attr_list.run, true);
|
|
run_close(&ni->attr_list.run);
|
|
ni->attr_list.size = 0;
|
|
kfree(ni->attr_list.le);
|
|
ni->attr_list.le = NULL;
|
|
ni->attr_list.dirty = false;
|
|
|
|
kfree(mrec);
|
|
return 0;
|
|
out:
|
|
/* Restore primary record. */
|
|
swap(mrec, ni->mi.mrec);
|
|
kfree(mrec);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* ni_create_attr_list - Generates an attribute list for this primary record.
|
|
*/
|
|
int ni_create_attr_list(struct ntfs_inode *ni)
|
|
{
|
|
struct ntfs_sb_info *sbi = ni->mi.sbi;
|
|
int err;
|
|
u32 lsize;
|
|
struct ATTRIB *attr;
|
|
struct ATTRIB *arr_move[7];
|
|
struct ATTR_LIST_ENTRY *le, *le_b[7];
|
|
struct MFT_REC *rec;
|
|
bool is_mft;
|
|
CLST rno = 0;
|
|
struct mft_inode *mi;
|
|
u32 free_b, nb, to_free, rs;
|
|
u16 sz;
|
|
|
|
is_mft = ni->mi.rno == MFT_REC_MFT;
|
|
rec = ni->mi.mrec;
|
|
rs = sbi->record_size;
|
|
|
|
/*
|
|
* Skip estimating exact memory requirement.
|
|
* Looks like one record_size is always enough.
|
|
*/
|
|
le = kmalloc(al_aligned(rs), GFP_NOFS);
|
|
if (!le) {
|
|
err = -ENOMEM;
|
|
goto out;
|
|
}
|
|
|
|
mi_get_ref(&ni->mi, &le->ref);
|
|
ni->attr_list.le = le;
|
|
|
|
attr = NULL;
|
|
nb = 0;
|
|
free_b = 0;
|
|
attr = NULL;
|
|
|
|
for (; (attr = mi_enum_attr(&ni->mi, attr)); le = Add2Ptr(le, sz)) {
|
|
sz = le_size(attr->name_len);
|
|
le->type = attr->type;
|
|
le->size = cpu_to_le16(sz);
|
|
le->name_len = attr->name_len;
|
|
le->name_off = offsetof(struct ATTR_LIST_ENTRY, name);
|
|
le->vcn = 0;
|
|
if (le != ni->attr_list.le)
|
|
le->ref = ni->attr_list.le->ref;
|
|
le->id = attr->id;
|
|
|
|
if (attr->name_len)
|
|
memcpy(le->name, attr_name(attr),
|
|
sizeof(short) * attr->name_len);
|
|
else if (attr->type == ATTR_STD)
|
|
continue;
|
|
else if (attr->type == ATTR_LIST)
|
|
continue;
|
|
else if (is_mft && attr->type == ATTR_DATA)
|
|
continue;
|
|
|
|
if (!nb || nb < ARRAY_SIZE(arr_move)) {
|
|
le_b[nb] = le;
|
|
arr_move[nb++] = attr;
|
|
free_b += le32_to_cpu(attr->size);
|
|
}
|
|
}
|
|
|
|
lsize = PtrOffset(ni->attr_list.le, le);
|
|
ni->attr_list.size = lsize;
|
|
|
|
to_free = le32_to_cpu(rec->used) + lsize + SIZEOF_RESIDENT;
|
|
if (to_free <= rs) {
|
|
to_free = 0;
|
|
} else {
|
|
to_free -= rs;
|
|
|
|
if (to_free > free_b) {
|
|
err = -EINVAL;
|
|
goto out1;
|
|
}
|
|
}
|
|
|
|
/* Allocate child MFT. */
|
|
err = ntfs_look_free_mft(sbi, &rno, is_mft, ni, &mi);
|
|
if (err)
|
|
goto out1;
|
|
|
|
/* Call mi_remove_attr() in reverse order to keep pointers 'arr_move' valid. */
|
|
while (to_free > 0) {
|
|
struct ATTRIB *b = arr_move[--nb];
|
|
u32 asize = le32_to_cpu(b->size);
|
|
u16 name_off = le16_to_cpu(b->name_off);
|
|
|
|
attr = mi_insert_attr(mi, b->type, Add2Ptr(b, name_off),
|
|
b->name_len, asize, name_off);
|
|
WARN_ON(!attr);
|
|
|
|
mi_get_ref(mi, &le_b[nb]->ref);
|
|
le_b[nb]->id = attr->id;
|
|
|
|
/* Copy all except id. */
|
|
memcpy(attr, b, asize);
|
|
attr->id = le_b[nb]->id;
|
|
|
|
/* Remove from primary record. */
|
|
WARN_ON(!mi_remove_attr(NULL, &ni->mi, b));
|
|
|
|
if (to_free <= asize)
|
|
break;
|
|
to_free -= asize;
|
|
WARN_ON(!nb);
|
|
}
|
|
|
|
attr = mi_insert_attr(&ni->mi, ATTR_LIST, NULL, 0,
|
|
lsize + SIZEOF_RESIDENT, SIZEOF_RESIDENT);
|
|
WARN_ON(!attr);
|
|
|
|
attr->non_res = 0;
|
|
attr->flags = 0;
|
|
attr->res.data_size = cpu_to_le32(lsize);
|
|
attr->res.data_off = SIZEOF_RESIDENT_LE;
|
|
attr->res.flags = 0;
|
|
attr->res.res = 0;
|
|
|
|
memcpy(resident_data_ex(attr, lsize), ni->attr_list.le, lsize);
|
|
|
|
ni->attr_list.dirty = false;
|
|
|
|
mark_inode_dirty(&ni->vfs_inode);
|
|
goto out;
|
|
|
|
out1:
|
|
kfree(ni->attr_list.le);
|
|
ni->attr_list.le = NULL;
|
|
ni->attr_list.size = 0;
|
|
|
|
out:
|
|
return err;
|
|
}
|
|
|
|
/*
|
|
* ni_ins_attr_ext - Add an external attribute to the ntfs_inode.
|
|
*/
|
|
static int ni_ins_attr_ext(struct ntfs_inode *ni, struct ATTR_LIST_ENTRY *le,
|
|
enum ATTR_TYPE type, const __le16 *name, u8 name_len,
|
|
u32 asize, CLST svcn, u16 name_off, bool force_ext,
|
|
struct ATTRIB **ins_attr, struct mft_inode **ins_mi,
|
|
struct ATTR_LIST_ENTRY **ins_le)
|
|
{
|
|
struct ATTRIB *attr;
|
|
struct mft_inode *mi;
|
|
CLST rno;
|
|
u64 vbo;
|
|
struct rb_node *node;
|
|
int err;
|
|
bool is_mft, is_mft_data;
|
|
struct ntfs_sb_info *sbi = ni->mi.sbi;
|
|
|
|
is_mft = ni->mi.rno == MFT_REC_MFT;
|
|
is_mft_data = is_mft && type == ATTR_DATA && !name_len;
|
|
|
|
if (asize > sbi->max_bytes_per_attr) {
|
|
err = -EINVAL;
|
|
goto out;
|
|
}
|
|
|
|
/*
|
|
* Standard information and attr_list cannot be made external.
|
|
* The Log File cannot have any external attributes.
|
|
*/
|
|
if (type == ATTR_STD || type == ATTR_LIST ||
|
|
ni->mi.rno == MFT_REC_LOG) {
|
|
err = -EINVAL;
|
|
goto out;
|
|
}
|
|
|
|
/* Create attribute list if it is not already existed. */
|
|
if (!ni->attr_list.size) {
|
|
err = ni_create_attr_list(ni);
|
|
if (err)
|
|
goto out;
|
|
}
|
|
|
|
vbo = is_mft_data ? ((u64)svcn << sbi->cluster_bits) : 0;
|
|
|
|
if (force_ext)
|
|
goto insert_ext;
|
|
|
|
/* Load all subrecords into memory. */
|
|
err = ni_load_all_mi(ni);
|
|
if (err)
|
|
goto out;
|
|
|
|
/* Check each of loaded subrecord. */
|
|
for (node = rb_first(&ni->mi_tree); node; node = rb_next(node)) {
|
|
mi = rb_entry(node, struct mft_inode, node);
|
|
|
|
if (is_mft_data &&
|
|
(mi_enum_attr(mi, NULL) ||
|
|
vbo <= ((u64)mi->rno << sbi->record_bits))) {
|
|
/* We can't accept this record 'cause MFT's bootstrapping. */
|
|
continue;
|
|
}
|
|
if (is_mft &&
|
|
mi_find_attr(mi, NULL, ATTR_DATA, NULL, 0, NULL)) {
|
|
/*
|
|
* This child record already has a ATTR_DATA.
|
|
* So it can't accept any other records.
|
|
*/
|
|
continue;
|
|
}
|
|
|
|
if ((type != ATTR_NAME || name_len) &&
|
|
mi_find_attr(mi, NULL, type, name, name_len, NULL)) {
|
|
/* Only indexed attributes can share same record. */
|
|
continue;
|
|
}
|
|
|
|
/*
|
|
* Do not try to insert this attribute
|
|
* if there is no room in record.
|
|
*/
|
|
if (le32_to_cpu(mi->mrec->used) + asize > sbi->record_size)
|
|
continue;
|
|
|
|
/* Try to insert attribute into this subrecord. */
|
|
attr = ni_ins_new_attr(ni, mi, le, type, name, name_len, asize,
|
|
name_off, svcn, ins_le);
|
|
if (!attr)
|
|
continue;
|
|
if (IS_ERR(attr))
|
|
return PTR_ERR(attr);
|
|
|
|
if (ins_attr)
|
|
*ins_attr = attr;
|
|
if (ins_mi)
|
|
*ins_mi = mi;
|
|
return 0;
|
|
}
|
|
|
|
insert_ext:
|
|
/* We have to allocate a new child subrecord. */
|
|
err = ntfs_look_free_mft(sbi, &rno, is_mft_data, ni, &mi);
|
|
if (err)
|
|
goto out;
|
|
|
|
if (is_mft_data && vbo <= ((u64)rno << sbi->record_bits)) {
|
|
err = -EINVAL;
|
|
goto out1;
|
|
}
|
|
|
|
attr = ni_ins_new_attr(ni, mi, le, type, name, name_len, asize,
|
|
name_off, svcn, ins_le);
|
|
if (!attr) {
|
|
err = -EINVAL;
|
|
goto out2;
|
|
}
|
|
|
|
if (IS_ERR(attr)) {
|
|
err = PTR_ERR(attr);
|
|
goto out2;
|
|
}
|
|
|
|
if (ins_attr)
|
|
*ins_attr = attr;
|
|
if (ins_mi)
|
|
*ins_mi = mi;
|
|
|
|
return 0;
|
|
|
|
out2:
|
|
ni_remove_mi(ni, mi);
|
|
mi_put(mi);
|
|
|
|
out1:
|
|
ntfs_mark_rec_free(sbi, rno, is_mft);
|
|
|
|
out:
|
|
return err;
|
|
}
|
|
|
|
/*
|
|
* ni_insert_attr - Insert an attribute into the file.
|
|
*
|
|
* If the primary record has room, it will just insert the attribute.
|
|
* If not, it may make the attribute external.
|
|
* For $MFT::Data it may make room for the attribute by
|
|
* making other attributes external.
|
|
*
|
|
* NOTE:
|
|
* The ATTR_LIST and ATTR_STD cannot be made external.
|
|
* This function does not fill new attribute full.
|
|
* It only fills 'size'/'type'/'id'/'name_len' fields.
|
|
*/
|
|
static int ni_insert_attr(struct ntfs_inode *ni, enum ATTR_TYPE type,
|
|
const __le16 *name, u8 name_len, u32 asize,
|
|
u16 name_off, CLST svcn, struct ATTRIB **ins_attr,
|
|
struct mft_inode **ins_mi,
|
|
struct ATTR_LIST_ENTRY **ins_le)
|
|
{
|
|
struct ntfs_sb_info *sbi = ni->mi.sbi;
|
|
int err;
|
|
struct ATTRIB *attr, *eattr;
|
|
struct MFT_REC *rec;
|
|
bool is_mft;
|
|
struct ATTR_LIST_ENTRY *le;
|
|
u32 list_reserve, max_free, free, used, t32;
|
|
__le16 id;
|
|
u16 t16;
|
|
|
|
is_mft = ni->mi.rno == MFT_REC_MFT;
|
|
rec = ni->mi.mrec;
|
|
|
|
list_reserve = SIZEOF_NONRESIDENT + 3 * (1 + 2 * sizeof(u32));
|
|
used = le32_to_cpu(rec->used);
|
|
free = sbi->record_size - used;
|
|
|
|
if (is_mft && type != ATTR_LIST) {
|
|
/* Reserve space for the ATTRIB list. */
|
|
if (free < list_reserve)
|
|
free = 0;
|
|
else
|
|
free -= list_reserve;
|
|
}
|
|
|
|
if (asize <= free) {
|
|
attr = ni_ins_new_attr(ni, &ni->mi, NULL, type, name, name_len,
|
|
asize, name_off, svcn, ins_le);
|
|
if (IS_ERR(attr)) {
|
|
err = PTR_ERR(attr);
|
|
goto out;
|
|
}
|
|
|
|
if (attr) {
|
|
if (ins_attr)
|
|
*ins_attr = attr;
|
|
if (ins_mi)
|
|
*ins_mi = &ni->mi;
|
|
err = 0;
|
|
goto out;
|
|
}
|
|
}
|
|
|
|
if (!is_mft || type != ATTR_DATA || svcn) {
|
|
/* This ATTRIB will be external. */
|
|
err = ni_ins_attr_ext(ni, NULL, type, name, name_len, asize,
|
|
svcn, name_off, false, ins_attr, ins_mi,
|
|
ins_le);
|
|
goto out;
|
|
}
|
|
|
|
/*
|
|
* Here we have: "is_mft && type == ATTR_DATA && !svcn"
|
|
*
|
|
* The first chunk of the $MFT::Data ATTRIB must be the base record.
|
|
* Evict as many other attributes as possible.
|
|
*/
|
|
max_free = free;
|
|
|
|
/* Estimate the result of moving all possible attributes away. */
|
|
attr = NULL;
|
|
|
|
while ((attr = mi_enum_attr(&ni->mi, attr))) {
|
|
if (attr->type == ATTR_STD)
|
|
continue;
|
|
if (attr->type == ATTR_LIST)
|
|
continue;
|
|
max_free += le32_to_cpu(attr->size);
|
|
}
|
|
|
|
if (max_free < asize + list_reserve) {
|
|
/* Impossible to insert this attribute into primary record. */
|
|
err = -EINVAL;
|
|
goto out;
|
|
}
|
|
|
|
/* Start real attribute moving. */
|
|
attr = NULL;
|
|
|
|
for (;;) {
|
|
attr = mi_enum_attr(&ni->mi, attr);
|
|
if (!attr) {
|
|
/* We should never be here 'cause we have already check this case. */
|
|
err = -EINVAL;
|
|
goto out;
|
|
}
|
|
|
|
/* Skip attributes that MUST be primary record. */
|
|
if (attr->type == ATTR_STD || attr->type == ATTR_LIST)
|
|
continue;
|
|
|
|
le = NULL;
|
|
if (ni->attr_list.size) {
|
|
le = al_find_le(ni, NULL, attr);
|
|
if (!le) {
|
|
/* Really this is a serious bug. */
|
|
err = -EINVAL;
|
|
goto out;
|
|
}
|
|
}
|
|
|
|
t32 = le32_to_cpu(attr->size);
|
|
t16 = le16_to_cpu(attr->name_off);
|
|
err = ni_ins_attr_ext(ni, le, attr->type, Add2Ptr(attr, t16),
|
|
attr->name_len, t32, attr_svcn(attr), t16,
|
|
false, &eattr, NULL, NULL);
|
|
if (err)
|
|
return err;
|
|
|
|
id = eattr->id;
|
|
memcpy(eattr, attr, t32);
|
|
eattr->id = id;
|
|
|
|
/* Remove from primary record. */
|
|
mi_remove_attr(NULL, &ni->mi, attr);
|
|
|
|
/* attr now points to next attribute. */
|
|
if (attr->type == ATTR_END)
|
|
goto out;
|
|
}
|
|
while (asize + list_reserve > sbi->record_size - le32_to_cpu(rec->used))
|
|
;
|
|
|
|
attr = ni_ins_new_attr(ni, &ni->mi, NULL, type, name, name_len, asize,
|
|
name_off, svcn, ins_le);
|
|
if (!attr) {
|
|
err = -EINVAL;
|
|
goto out;
|
|
}
|
|
|
|
if (IS_ERR(attr)) {
|
|
err = PTR_ERR(attr);
|
|
goto out;
|
|
}
|
|
|
|
if (ins_attr)
|
|
*ins_attr = attr;
|
|
if (ins_mi)
|
|
*ins_mi = &ni->mi;
|
|
|
|
out:
|
|
return err;
|
|
}
|
|
|
|
/* ni_expand_mft_list - Split ATTR_DATA of $MFT. */
|
|
static int ni_expand_mft_list(struct ntfs_inode *ni)
|
|
{
|
|
int err = 0;
|
|
struct runs_tree *run = &ni->file.run;
|
|
u32 asize, run_size, done = 0;
|
|
struct ATTRIB *attr;
|
|
struct rb_node *node;
|
|
CLST mft_min, mft_new, svcn, evcn, plen;
|
|
struct mft_inode *mi, *mi_min, *mi_new;
|
|
struct ntfs_sb_info *sbi = ni->mi.sbi;
|
|
|
|
/* Find the nearest MFT. */
|
|
mft_min = 0;
|
|
mft_new = 0;
|
|
mi_min = NULL;
|
|
|
|
for (node = rb_first(&ni->mi_tree); node; node = rb_next(node)) {
|
|
mi = rb_entry(node, struct mft_inode, node);
|
|
|
|
attr = mi_enum_attr(mi, NULL);
|
|
|
|
if (!attr) {
|
|
mft_min = mi->rno;
|
|
mi_min = mi;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (ntfs_look_free_mft(sbi, &mft_new, true, ni, &mi_new)) {
|
|
mft_new = 0;
|
|
/* Really this is not critical. */
|
|
} else if (mft_min > mft_new) {
|
|
mft_min = mft_new;
|
|
mi_min = mi_new;
|
|
} else {
|
|
ntfs_mark_rec_free(sbi, mft_new, true);
|
|
mft_new = 0;
|
|
ni_remove_mi(ni, mi_new);
|
|
}
|
|
|
|
attr = mi_find_attr(&ni->mi, NULL, ATTR_DATA, NULL, 0, NULL);
|
|
if (!attr) {
|
|
err = -EINVAL;
|
|
goto out;
|
|
}
|
|
|
|
asize = le32_to_cpu(attr->size);
|
|
|
|
evcn = le64_to_cpu(attr->nres.evcn);
|
|
svcn = bytes_to_cluster(sbi, (u64)(mft_min + 1) << sbi->record_bits);
|
|
if (evcn + 1 >= svcn) {
|
|
err = -EINVAL;
|
|
goto out;
|
|
}
|
|
|
|
/*
|
|
* Split primary attribute [0 evcn] in two parts [0 svcn) + [svcn evcn].
|
|
*
|
|
* Update first part of ATTR_DATA in 'primary MFT.
|
|
*/
|
|
err = run_pack(run, 0, svcn, Add2Ptr(attr, SIZEOF_NONRESIDENT),
|
|
asize - SIZEOF_NONRESIDENT, &plen);
|
|
if (err < 0)
|
|
goto out;
|
|
|
|
run_size = ALIGN(err, 8);
|
|
err = 0;
|
|
|
|
if (plen < svcn) {
|
|
err = -EINVAL;
|
|
goto out;
|
|
}
|
|
|
|
attr->nres.evcn = cpu_to_le64(svcn - 1);
|
|
attr->size = cpu_to_le32(run_size + SIZEOF_NONRESIDENT);
|
|
/* 'done' - How many bytes of primary MFT becomes free. */
|
|
done = asize - run_size - SIZEOF_NONRESIDENT;
|
|
le32_sub_cpu(&ni->mi.mrec->used, done);
|
|
|
|
/* Estimate packed size (run_buf=NULL). */
|
|
err = run_pack(run, svcn, evcn + 1 - svcn, NULL, sbi->record_size,
|
|
&plen);
|
|
if (err < 0)
|
|
goto out;
|
|
|
|
run_size = ALIGN(err, 8);
|
|
err = 0;
|
|
|
|
if (plen < evcn + 1 - svcn) {
|
|
err = -EINVAL;
|
|
goto out;
|
|
}
|
|
|
|
/*
|
|
* This function may implicitly call expand attr_list.
|
|
* Insert second part of ATTR_DATA in 'mi_min'.
|
|
*/
|
|
attr = ni_ins_new_attr(ni, mi_min, NULL, ATTR_DATA, NULL, 0,
|
|
SIZEOF_NONRESIDENT + run_size,
|
|
SIZEOF_NONRESIDENT, svcn, NULL);
|
|
if (!attr) {
|
|
err = -EINVAL;
|
|
goto out;
|
|
}
|
|
|
|
if (IS_ERR(attr)) {
|
|
err = PTR_ERR(attr);
|
|
goto out;
|
|
}
|
|
|
|
attr->non_res = 1;
|
|
attr->name_off = SIZEOF_NONRESIDENT_LE;
|
|
attr->flags = 0;
|
|
|
|
/* This function can't fail - cause already checked above. */
|
|
run_pack(run, svcn, evcn + 1 - svcn, Add2Ptr(attr, SIZEOF_NONRESIDENT),
|
|
run_size, &plen);
|
|
|
|
attr->nres.svcn = cpu_to_le64(svcn);
|
|
attr->nres.evcn = cpu_to_le64(evcn);
|
|
attr->nres.run_off = cpu_to_le16(SIZEOF_NONRESIDENT);
|
|
|
|
out:
|
|
if (mft_new) {
|
|
ntfs_mark_rec_free(sbi, mft_new, true);
|
|
ni_remove_mi(ni, mi_new);
|
|
}
|
|
|
|
return !err && !done ? -EOPNOTSUPP : err;
|
|
}
|
|
|
|
/*
|
|
* ni_expand_list - Move all possible attributes out of primary record.
|
|
*/
|
|
int ni_expand_list(struct ntfs_inode *ni)
|
|
{
|
|
int err = 0;
|
|
u32 asize, done = 0;
|
|
struct ATTRIB *attr, *ins_attr;
|
|
struct ATTR_LIST_ENTRY *le;
|
|
bool is_mft = ni->mi.rno == MFT_REC_MFT;
|
|
struct MFT_REF ref;
|
|
|
|
mi_get_ref(&ni->mi, &ref);
|
|
le = NULL;
|
|
|
|
while ((le = al_enumerate(ni, le))) {
|
|
if (le->type == ATTR_STD)
|
|
continue;
|
|
|
|
if (memcmp(&ref, &le->ref, sizeof(struct MFT_REF)))
|
|
continue;
|
|
|
|
if (is_mft && le->type == ATTR_DATA)
|
|
continue;
|
|
|
|
/* Find attribute in primary record. */
|
|
attr = rec_find_attr_le(&ni->mi, le);
|
|
if (!attr) {
|
|
err = -EINVAL;
|
|
goto out;
|
|
}
|
|
|
|
asize = le32_to_cpu(attr->size);
|
|
|
|
/* Always insert into new record to avoid collisions (deep recursive). */
|
|
err = ni_ins_attr_ext(ni, le, attr->type, attr_name(attr),
|
|
attr->name_len, asize, attr_svcn(attr),
|
|
le16_to_cpu(attr->name_off), true,
|
|
&ins_attr, NULL, NULL);
|
|
|
|
if (err)
|
|
goto out;
|
|
|
|
memcpy(ins_attr, attr, asize);
|
|
ins_attr->id = le->id;
|
|
/* Remove from primary record. */
|
|
mi_remove_attr(NULL, &ni->mi, attr);
|
|
|
|
done += asize;
|
|
goto out;
|
|
}
|
|
|
|
if (!is_mft) {
|
|
err = -EFBIG; /* Attr list is too big(?) */
|
|
goto out;
|
|
}
|
|
|
|
/* Split MFT data as much as possible. */
|
|
err = ni_expand_mft_list(ni);
|
|
|
|
out:
|
|
return !err && !done ? -EOPNOTSUPP : err;
|
|
}
|
|
|
|
/*
|
|
* ni_insert_nonresident - Insert new nonresident attribute.
|
|
*/
|
|
int ni_insert_nonresident(struct ntfs_inode *ni, enum ATTR_TYPE type,
|
|
const __le16 *name, u8 name_len,
|
|
const struct runs_tree *run, CLST svcn, CLST len,
|
|
__le16 flags, struct ATTRIB **new_attr,
|
|
struct mft_inode **mi, struct ATTR_LIST_ENTRY **le)
|
|
{
|
|
int err;
|
|
CLST plen;
|
|
struct ATTRIB *attr;
|
|
bool is_ext =
|
|
(flags & (ATTR_FLAG_SPARSED | ATTR_FLAG_COMPRESSED)) && !svcn;
|
|
u32 name_size = ALIGN(name_len * sizeof(short), 8);
|
|
u32 name_off = is_ext ? SIZEOF_NONRESIDENT_EX : SIZEOF_NONRESIDENT;
|
|
u32 run_off = name_off + name_size;
|
|
u32 run_size, asize;
|
|
struct ntfs_sb_info *sbi = ni->mi.sbi;
|
|
|
|
/* Estimate packed size (run_buf=NULL). */
|
|
err = run_pack(run, svcn, len, NULL, sbi->max_bytes_per_attr - run_off,
|
|
&plen);
|
|
if (err < 0)
|
|
goto out;
|
|
|
|
run_size = ALIGN(err, 8);
|
|
|
|
if (plen < len) {
|
|
err = -EINVAL;
|
|
goto out;
|
|
}
|
|
|
|
asize = run_off + run_size;
|
|
|
|
if (asize > sbi->max_bytes_per_attr) {
|
|
err = -EINVAL;
|
|
goto out;
|
|
}
|
|
|
|
err = ni_insert_attr(ni, type, name, name_len, asize, name_off, svcn,
|
|
&attr, mi, le);
|
|
|
|
if (err)
|
|
goto out;
|
|
|
|
attr->non_res = 1;
|
|
attr->name_off = cpu_to_le16(name_off);
|
|
attr->flags = flags;
|
|
|
|
/* This function can't fail - cause already checked above. */
|
|
run_pack(run, svcn, len, Add2Ptr(attr, run_off), run_size, &plen);
|
|
|
|
attr->nres.svcn = cpu_to_le64(svcn);
|
|
attr->nres.evcn = cpu_to_le64((u64)svcn + len - 1);
|
|
|
|
if (new_attr)
|
|
*new_attr = attr;
|
|
|
|
*(__le64 *)&attr->nres.run_off = cpu_to_le64(run_off);
|
|
|
|
attr->nres.alloc_size =
|
|
svcn ? 0 : cpu_to_le64((u64)len << ni->mi.sbi->cluster_bits);
|
|
attr->nres.data_size = attr->nres.alloc_size;
|
|
attr->nres.valid_size = attr->nres.alloc_size;
|
|
|
|
if (is_ext) {
|
|
if (flags & ATTR_FLAG_COMPRESSED)
|
|
attr->nres.c_unit = COMPRESSION_UNIT;
|
|
attr->nres.total_size = attr->nres.alloc_size;
|
|
}
|
|
|
|
out:
|
|
return err;
|
|
}
|
|
|
|
/*
|
|
* ni_insert_resident - Inserts new resident attribute.
|
|
*/
|
|
int ni_insert_resident(struct ntfs_inode *ni, u32 data_size,
|
|
enum ATTR_TYPE type, const __le16 *name, u8 name_len,
|
|
struct ATTRIB **new_attr, struct mft_inode **mi,
|
|
struct ATTR_LIST_ENTRY **le)
|
|
{
|
|
int err;
|
|
u32 name_size = ALIGN(name_len * sizeof(short), 8);
|
|
u32 asize = SIZEOF_RESIDENT + name_size + ALIGN(data_size, 8);
|
|
struct ATTRIB *attr;
|
|
|
|
err = ni_insert_attr(ni, type, name, name_len, asize, SIZEOF_RESIDENT,
|
|
0, &attr, mi, le);
|
|
if (err)
|
|
return err;
|
|
|
|
attr->non_res = 0;
|
|
attr->flags = 0;
|
|
|
|
attr->res.data_size = cpu_to_le32(data_size);
|
|
attr->res.data_off = cpu_to_le16(SIZEOF_RESIDENT + name_size);
|
|
if (type == ATTR_NAME) {
|
|
attr->res.flags = RESIDENT_FLAG_INDEXED;
|
|
|
|
/* is_attr_indexed(attr)) == true */
|
|
le16_add_cpu(&ni->mi.mrec->hard_links, 1);
|
|
ni->mi.dirty = true;
|
|
}
|
|
attr->res.res = 0;
|
|
|
|
if (new_attr)
|
|
*new_attr = attr;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* ni_remove_attr_le - Remove attribute from record.
|
|
*/
|
|
void ni_remove_attr_le(struct ntfs_inode *ni, struct ATTRIB *attr,
|
|
struct mft_inode *mi, struct ATTR_LIST_ENTRY *le)
|
|
{
|
|
mi_remove_attr(ni, mi, attr);
|
|
|
|
if (le)
|
|
al_remove_le(ni, le);
|
|
}
|
|
|
|
/*
|
|
* ni_delete_all - Remove all attributes and frees allocates space.
|
|
*
|
|
* ntfs_evict_inode->ntfs_clear_inode->ni_delete_all (if no links).
|
|
*/
|
|
int ni_delete_all(struct ntfs_inode *ni)
|
|
{
|
|
int err;
|
|
struct ATTR_LIST_ENTRY *le = NULL;
|
|
struct ATTRIB *attr = NULL;
|
|
struct rb_node *node;
|
|
u16 roff;
|
|
u32 asize;
|
|
CLST svcn, evcn;
|
|
struct ntfs_sb_info *sbi = ni->mi.sbi;
|
|
bool nt3 = is_ntfs3(sbi);
|
|
struct MFT_REF ref;
|
|
|
|
while ((attr = ni_enum_attr_ex(ni, attr, &le, NULL))) {
|
|
if (!nt3 || attr->name_len) {
|
|
;
|
|
} else if (attr->type == ATTR_REPARSE) {
|
|
mi_get_ref(&ni->mi, &ref);
|
|
ntfs_remove_reparse(sbi, 0, &ref);
|
|
} else if (attr->type == ATTR_ID && !attr->non_res &&
|
|
le32_to_cpu(attr->res.data_size) >=
|
|
sizeof(struct GUID)) {
|
|
ntfs_objid_remove(sbi, resident_data(attr));
|
|
}
|
|
|
|
if (!attr->non_res)
|
|
continue;
|
|
|
|
svcn = le64_to_cpu(attr->nres.svcn);
|
|
evcn = le64_to_cpu(attr->nres.evcn);
|
|
|
|
if (evcn + 1 <= svcn)
|
|
continue;
|
|
|
|
asize = le32_to_cpu(attr->size);
|
|
roff = le16_to_cpu(attr->nres.run_off);
|
|
|
|
if (roff > asize)
|
|
return -EINVAL;
|
|
|
|
/* run==1 means unpack and deallocate. */
|
|
run_unpack_ex(RUN_DEALLOCATE, sbi, ni->mi.rno, svcn, evcn, svcn,
|
|
Add2Ptr(attr, roff), asize - roff);
|
|
}
|
|
|
|
if (ni->attr_list.size) {
|
|
run_deallocate(ni->mi.sbi, &ni->attr_list.run, true);
|
|
al_destroy(ni);
|
|
}
|
|
|
|
/* Free all subrecords. */
|
|
for (node = rb_first(&ni->mi_tree); node;) {
|
|
struct rb_node *next = rb_next(node);
|
|
struct mft_inode *mi = rb_entry(node, struct mft_inode, node);
|
|
|
|
clear_rec_inuse(mi->mrec);
|
|
mi->dirty = true;
|
|
mi_write(mi, 0);
|
|
|
|
ntfs_mark_rec_free(sbi, mi->rno, false);
|
|
ni_remove_mi(ni, mi);
|
|
mi_put(mi);
|
|
node = next;
|
|
}
|
|
|
|
/* Free base record. */
|
|
clear_rec_inuse(ni->mi.mrec);
|
|
ni->mi.dirty = true;
|
|
err = mi_write(&ni->mi, 0);
|
|
|
|
ntfs_mark_rec_free(sbi, ni->mi.rno, false);
|
|
|
|
return err;
|
|
}
|
|
|
|
/* ni_fname_name
|
|
*
|
|
* Return: File name attribute by its value.
|
|
*/
|
|
struct ATTR_FILE_NAME *ni_fname_name(struct ntfs_inode *ni,
|
|
const struct cpu_str *uni,
|
|
const struct MFT_REF *home_dir,
|
|
struct mft_inode **mi,
|
|
struct ATTR_LIST_ENTRY **le)
|
|
{
|
|
struct ATTRIB *attr = NULL;
|
|
struct ATTR_FILE_NAME *fname;
|
|
struct le_str *fns;
|
|
|
|
if (le)
|
|
*le = NULL;
|
|
|
|
/* Enumerate all names. */
|
|
next:
|
|
attr = ni_find_attr(ni, attr, le, ATTR_NAME, NULL, 0, NULL, mi);
|
|
if (!attr)
|
|
return NULL;
|
|
|
|
fname = resident_data_ex(attr, SIZEOF_ATTRIBUTE_FILENAME);
|
|
if (!fname)
|
|
goto next;
|
|
|
|
if (home_dir && memcmp(home_dir, &fname->home, sizeof(*home_dir)))
|
|
goto next;
|
|
|
|
if (!uni)
|
|
return fname;
|
|
|
|
if (uni->len != fname->name_len)
|
|
goto next;
|
|
|
|
fns = (struct le_str *)&fname->name_len;
|
|
if (ntfs_cmp_names_cpu(uni, fns, NULL, false))
|
|
goto next;
|
|
|
|
return fname;
|
|
}
|
|
|
|
/*
|
|
* ni_fname_type
|
|
*
|
|
* Return: File name attribute with given type.
|
|
*/
|
|
struct ATTR_FILE_NAME *ni_fname_type(struct ntfs_inode *ni, u8 name_type,
|
|
struct mft_inode **mi,
|
|
struct ATTR_LIST_ENTRY **le)
|
|
{
|
|
struct ATTRIB *attr = NULL;
|
|
struct ATTR_FILE_NAME *fname;
|
|
|
|
*le = NULL;
|
|
|
|
if (name_type == FILE_NAME_POSIX)
|
|
return NULL;
|
|
|
|
/* Enumerate all names. */
|
|
for (;;) {
|
|
attr = ni_find_attr(ni, attr, le, ATTR_NAME, NULL, 0, NULL, mi);
|
|
if (!attr)
|
|
return NULL;
|
|
|
|
fname = resident_data_ex(attr, SIZEOF_ATTRIBUTE_FILENAME);
|
|
if (fname && name_type == fname->type)
|
|
return fname;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* ni_new_attr_flags
|
|
*
|
|
* Process compressed/sparsed in special way.
|
|
* NOTE: You need to set ni->std_fa = new_fa
|
|
* after this function to keep internal structures in consistency.
|
|
*/
|
|
int ni_new_attr_flags(struct ntfs_inode *ni, enum FILE_ATTRIBUTE new_fa)
|
|
{
|
|
struct ATTRIB *attr;
|
|
struct mft_inode *mi;
|
|
__le16 new_aflags;
|
|
u32 new_asize;
|
|
|
|
attr = ni_find_attr(ni, NULL, NULL, ATTR_DATA, NULL, 0, NULL, &mi);
|
|
if (!attr)
|
|
return -EINVAL;
|
|
|
|
new_aflags = attr->flags;
|
|
|
|
if (new_fa & FILE_ATTRIBUTE_SPARSE_FILE)
|
|
new_aflags |= ATTR_FLAG_SPARSED;
|
|
else
|
|
new_aflags &= ~ATTR_FLAG_SPARSED;
|
|
|
|
if (new_fa & FILE_ATTRIBUTE_COMPRESSED)
|
|
new_aflags |= ATTR_FLAG_COMPRESSED;
|
|
else
|
|
new_aflags &= ~ATTR_FLAG_COMPRESSED;
|
|
|
|
if (new_aflags == attr->flags)
|
|
return 0;
|
|
|
|
if ((new_aflags & (ATTR_FLAG_COMPRESSED | ATTR_FLAG_SPARSED)) ==
|
|
(ATTR_FLAG_COMPRESSED | ATTR_FLAG_SPARSED)) {
|
|
ntfs_inode_warn(&ni->vfs_inode,
|
|
"file can't be sparsed and compressed");
|
|
return -EOPNOTSUPP;
|
|
}
|
|
|
|
if (!attr->non_res)
|
|
goto out;
|
|
|
|
if (attr->nres.data_size) {
|
|
ntfs_inode_warn(
|
|
&ni->vfs_inode,
|
|
"one can change sparsed/compressed only for empty files");
|
|
return -EOPNOTSUPP;
|
|
}
|
|
|
|
/* Resize nonresident empty attribute in-place only. */
|
|
new_asize = (new_aflags & (ATTR_FLAG_COMPRESSED | ATTR_FLAG_SPARSED))
|
|
? (SIZEOF_NONRESIDENT_EX + 8)
|
|
: (SIZEOF_NONRESIDENT + 8);
|
|
|
|
if (!mi_resize_attr(mi, attr, new_asize - le32_to_cpu(attr->size)))
|
|
return -EOPNOTSUPP;
|
|
|
|
if (new_aflags & ATTR_FLAG_SPARSED) {
|
|
attr->name_off = SIZEOF_NONRESIDENT_EX_LE;
|
|
/* Windows uses 16 clusters per frame but supports one cluster per frame too. */
|
|
attr->nres.c_unit = 0;
|
|
ni->vfs_inode.i_mapping->a_ops = &ntfs_aops;
|
|
} else if (new_aflags & ATTR_FLAG_COMPRESSED) {
|
|
attr->name_off = SIZEOF_NONRESIDENT_EX_LE;
|
|
/* The only allowed: 16 clusters per frame. */
|
|
attr->nres.c_unit = NTFS_LZNT_CUNIT;
|
|
ni->vfs_inode.i_mapping->a_ops = &ntfs_aops_cmpr;
|
|
} else {
|
|
attr->name_off = SIZEOF_NONRESIDENT_LE;
|
|
/* Normal files. */
|
|
attr->nres.c_unit = 0;
|
|
ni->vfs_inode.i_mapping->a_ops = &ntfs_aops;
|
|
}
|
|
attr->nres.run_off = attr->name_off;
|
|
out:
|
|
attr->flags = new_aflags;
|
|
mi->dirty = true;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* ni_parse_reparse
|
|
*
|
|
* buffer - memory for reparse buffer header
|
|
*/
|
|
enum REPARSE_SIGN ni_parse_reparse(struct ntfs_inode *ni, struct ATTRIB *attr,
|
|
struct REPARSE_DATA_BUFFER *buffer)
|
|
{
|
|
const struct REPARSE_DATA_BUFFER *rp = NULL;
|
|
u8 bits;
|
|
u16 len;
|
|
typeof(rp->CompressReparseBuffer) *cmpr;
|
|
|
|
/* Try to estimate reparse point. */
|
|
if (!attr->non_res) {
|
|
rp = resident_data_ex(attr, sizeof(struct REPARSE_DATA_BUFFER));
|
|
} else if (le64_to_cpu(attr->nres.data_size) >=
|
|
sizeof(struct REPARSE_DATA_BUFFER)) {
|
|
struct runs_tree run;
|
|
|
|
run_init(&run);
|
|
|
|
if (!attr_load_runs_vcn(ni, ATTR_REPARSE, NULL, 0, &run, 0) &&
|
|
!ntfs_read_run_nb(ni->mi.sbi, &run, 0, buffer,
|
|
sizeof(struct REPARSE_DATA_BUFFER),
|
|
NULL)) {
|
|
rp = buffer;
|
|
}
|
|
|
|
run_close(&run);
|
|
}
|
|
|
|
if (!rp)
|
|
return REPARSE_NONE;
|
|
|
|
len = le16_to_cpu(rp->ReparseDataLength);
|
|
switch (rp->ReparseTag) {
|
|
case (IO_REPARSE_TAG_MICROSOFT | IO_REPARSE_TAG_SYMBOLIC_LINK):
|
|
break; /* Symbolic link. */
|
|
case IO_REPARSE_TAG_MOUNT_POINT:
|
|
break; /* Mount points and junctions. */
|
|
case IO_REPARSE_TAG_SYMLINK:
|
|
break;
|
|
case IO_REPARSE_TAG_COMPRESS:
|
|
/*
|
|
* WOF - Windows Overlay Filter - Used to compress files with
|
|
* LZX/Xpress.
|
|
*
|
|
* Unlike native NTFS file compression, the Windows
|
|
* Overlay Filter supports only read operations. This means
|
|
* that it doesn't need to sector-align each compressed chunk,
|
|
* so the compressed data can be packed more tightly together.
|
|
* If you open the file for writing, the WOF just decompresses
|
|
* the entire file, turning it back into a plain file.
|
|
*
|
|
* Ntfs3 driver decompresses the entire file only on write or
|
|
* change size requests.
|
|
*/
|
|
|
|
cmpr = &rp->CompressReparseBuffer;
|
|
if (len < sizeof(*cmpr) ||
|
|
cmpr->WofVersion != WOF_CURRENT_VERSION ||
|
|
cmpr->WofProvider != WOF_PROVIDER_SYSTEM ||
|
|
cmpr->ProviderVer != WOF_PROVIDER_CURRENT_VERSION) {
|
|
return REPARSE_NONE;
|
|
}
|
|
|
|
switch (cmpr->CompressionFormat) {
|
|
case WOF_COMPRESSION_XPRESS4K:
|
|
bits = 0xc; // 4k
|
|
break;
|
|
case WOF_COMPRESSION_XPRESS8K:
|
|
bits = 0xd; // 8k
|
|
break;
|
|
case WOF_COMPRESSION_XPRESS16K:
|
|
bits = 0xe; // 16k
|
|
break;
|
|
case WOF_COMPRESSION_LZX32K:
|
|
bits = 0xf; // 32k
|
|
break;
|
|
default:
|
|
bits = 0x10; // 64k
|
|
break;
|
|
}
|
|
ni_set_ext_compress_bits(ni, bits);
|
|
return REPARSE_COMPRESSED;
|
|
|
|
case IO_REPARSE_TAG_DEDUP:
|
|
ni->ni_flags |= NI_FLAG_DEDUPLICATED;
|
|
return REPARSE_DEDUPLICATED;
|
|
|
|
default:
|
|
if (rp->ReparseTag & IO_REPARSE_TAG_NAME_SURROGATE)
|
|
break;
|
|
|
|
return REPARSE_NONE;
|
|
}
|
|
|
|
if (buffer != rp)
|
|
memcpy(buffer, rp, sizeof(struct REPARSE_DATA_BUFFER));
|
|
|
|
/* Looks like normal symlink. */
|
|
return REPARSE_LINK;
|
|
}
|
|
|
|
/*
|
|
* ni_fiemap - Helper for file_fiemap().
|
|
*
|
|
* Assumed ni_lock.
|
|
* TODO: Less aggressive locks.
|
|
*/
|
|
int ni_fiemap(struct ntfs_inode *ni, struct fiemap_extent_info *fieinfo,
|
|
__u64 vbo, __u64 len)
|
|
{
|
|
int err = 0;
|
|
struct ntfs_sb_info *sbi = ni->mi.sbi;
|
|
u8 cluster_bits = sbi->cluster_bits;
|
|
struct runs_tree *run;
|
|
struct rw_semaphore *run_lock;
|
|
struct ATTRIB *attr;
|
|
CLST vcn = vbo >> cluster_bits;
|
|
CLST lcn, clen;
|
|
u64 valid = ni->i_valid;
|
|
u64 lbo, bytes;
|
|
u64 end, alloc_size;
|
|
size_t idx = -1;
|
|
u32 flags;
|
|
bool ok;
|
|
|
|
if (S_ISDIR(ni->vfs_inode.i_mode)) {
|
|
run = &ni->dir.alloc_run;
|
|
attr = ni_find_attr(ni, NULL, NULL, ATTR_ALLOC, I30_NAME,
|
|
ARRAY_SIZE(I30_NAME), NULL, NULL);
|
|
run_lock = &ni->dir.run_lock;
|
|
} else {
|
|
run = &ni->file.run;
|
|
attr = ni_find_attr(ni, NULL, NULL, ATTR_DATA, NULL, 0, NULL,
|
|
NULL);
|
|
if (!attr) {
|
|
err = -EINVAL;
|
|
goto out;
|
|
}
|
|
if (is_attr_compressed(attr)) {
|
|
/* Unfortunately cp -r incorrectly treats compressed clusters. */
|
|
err = -EOPNOTSUPP;
|
|
ntfs_inode_warn(
|
|
&ni->vfs_inode,
|
|
"fiemap is not supported for compressed file (cp -r)");
|
|
goto out;
|
|
}
|
|
run_lock = &ni->file.run_lock;
|
|
}
|
|
|
|
if (!attr || !attr->non_res) {
|
|
err = fiemap_fill_next_extent(
|
|
fieinfo, 0, 0,
|
|
attr ? le32_to_cpu(attr->res.data_size) : 0,
|
|
FIEMAP_EXTENT_DATA_INLINE | FIEMAP_EXTENT_LAST |
|
|
FIEMAP_EXTENT_MERGED);
|
|
goto out;
|
|
}
|
|
|
|
end = vbo + len;
|
|
alloc_size = le64_to_cpu(attr->nres.alloc_size);
|
|
if (end > alloc_size)
|
|
end = alloc_size;
|
|
|
|
down_read(run_lock);
|
|
|
|
while (vbo < end) {
|
|
if (idx == -1) {
|
|
ok = run_lookup_entry(run, vcn, &lcn, &clen, &idx);
|
|
} else {
|
|
CLST vcn_next = vcn;
|
|
|
|
ok = run_get_entry(run, ++idx, &vcn, &lcn, &clen) &&
|
|
vcn == vcn_next;
|
|
if (!ok)
|
|
vcn = vcn_next;
|
|
}
|
|
|
|
if (!ok) {
|
|
up_read(run_lock);
|
|
down_write(run_lock);
|
|
|
|
err = attr_load_runs_vcn(ni, attr->type,
|
|
attr_name(attr),
|
|
attr->name_len, run, vcn);
|
|
|
|
up_write(run_lock);
|
|
down_read(run_lock);
|
|
|
|
if (err)
|
|
break;
|
|
|
|
ok = run_lookup_entry(run, vcn, &lcn, &clen, &idx);
|
|
|
|
if (!ok) {
|
|
err = -EINVAL;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (!clen) {
|
|
err = -EINVAL; // ?
|
|
break;
|
|
}
|
|
|
|
if (lcn == SPARSE_LCN) {
|
|
vcn += clen;
|
|
vbo = (u64)vcn << cluster_bits;
|
|
continue;
|
|
}
|
|
|
|
flags = FIEMAP_EXTENT_MERGED;
|
|
if (S_ISDIR(ni->vfs_inode.i_mode)) {
|
|
;
|
|
} else if (is_attr_compressed(attr)) {
|
|
CLST clst_data;
|
|
|
|
err = attr_is_frame_compressed(
|
|
ni, attr, vcn >> attr->nres.c_unit, &clst_data);
|
|
if (err)
|
|
break;
|
|
if (clst_data < NTFS_LZNT_CLUSTERS)
|
|
flags |= FIEMAP_EXTENT_ENCODED;
|
|
} else if (is_attr_encrypted(attr)) {
|
|
flags |= FIEMAP_EXTENT_DATA_ENCRYPTED;
|
|
}
|
|
|
|
vbo = (u64)vcn << cluster_bits;
|
|
bytes = (u64)clen << cluster_bits;
|
|
lbo = (u64)lcn << cluster_bits;
|
|
|
|
vcn += clen;
|
|
|
|
if (vbo + bytes >= end)
|
|
bytes = end - vbo;
|
|
|
|
if (vbo + bytes <= valid) {
|
|
;
|
|
} else if (vbo >= valid) {
|
|
flags |= FIEMAP_EXTENT_UNWRITTEN;
|
|
} else {
|
|
/* vbo < valid && valid < vbo + bytes */
|
|
u64 dlen = valid - vbo;
|
|
|
|
if (vbo + dlen >= end)
|
|
flags |= FIEMAP_EXTENT_LAST;
|
|
|
|
err = fiemap_fill_next_extent(fieinfo, vbo, lbo, dlen,
|
|
flags);
|
|
if (err < 0)
|
|
break;
|
|
if (err == 1) {
|
|
err = 0;
|
|
break;
|
|
}
|
|
|
|
vbo = valid;
|
|
bytes -= dlen;
|
|
if (!bytes)
|
|
continue;
|
|
|
|
lbo += dlen;
|
|
flags |= FIEMAP_EXTENT_UNWRITTEN;
|
|
}
|
|
|
|
if (vbo + bytes >= end)
|
|
flags |= FIEMAP_EXTENT_LAST;
|
|
|
|
err = fiemap_fill_next_extent(fieinfo, vbo, lbo, bytes, flags);
|
|
if (err < 0)
|
|
break;
|
|
if (err == 1) {
|
|
err = 0;
|
|
break;
|
|
}
|
|
|
|
vbo += bytes;
|
|
}
|
|
|
|
up_read(run_lock);
|
|
|
|
out:
|
|
return err;
|
|
}
|
|
|
|
/*
|
|
* ni_readpage_cmpr
|
|
*
|
|
* When decompressing, we typically obtain more than one page per reference.
|
|
* We inject the additional pages into the page cache.
|
|
*/
|
|
int ni_readpage_cmpr(struct ntfs_inode *ni, struct page *page)
|
|
{
|
|
int err;
|
|
struct ntfs_sb_info *sbi = ni->mi.sbi;
|
|
struct address_space *mapping = page->mapping;
|
|
pgoff_t index = page->index;
|
|
u64 frame_vbo, vbo = (u64)index << PAGE_SHIFT;
|
|
struct page **pages = NULL; /* Array of at most 16 pages. stack? */
|
|
u8 frame_bits;
|
|
CLST frame;
|
|
u32 i, idx, frame_size, pages_per_frame;
|
|
gfp_t gfp_mask;
|
|
struct page *pg;
|
|
|
|
if (vbo >= ni->vfs_inode.i_size) {
|
|
SetPageUptodate(page);
|
|
err = 0;
|
|
goto out;
|
|
}
|
|
|
|
if (ni->ni_flags & NI_FLAG_COMPRESSED_MASK) {
|
|
/* Xpress or LZX. */
|
|
frame_bits = ni_ext_compress_bits(ni);
|
|
} else {
|
|
/* LZNT compression. */
|
|
frame_bits = NTFS_LZNT_CUNIT + sbi->cluster_bits;
|
|
}
|
|
frame_size = 1u << frame_bits;
|
|
frame = vbo >> frame_bits;
|
|
frame_vbo = (u64)frame << frame_bits;
|
|
idx = (vbo - frame_vbo) >> PAGE_SHIFT;
|
|
|
|
pages_per_frame = frame_size >> PAGE_SHIFT;
|
|
pages = kcalloc(pages_per_frame, sizeof(struct page *), GFP_NOFS);
|
|
if (!pages) {
|
|
err = -ENOMEM;
|
|
goto out;
|
|
}
|
|
|
|
pages[idx] = page;
|
|
index = frame_vbo >> PAGE_SHIFT;
|
|
gfp_mask = mapping_gfp_mask(mapping);
|
|
|
|
for (i = 0; i < pages_per_frame; i++, index++) {
|
|
if (i == idx)
|
|
continue;
|
|
|
|
pg = find_or_create_page(mapping, index, gfp_mask);
|
|
if (!pg) {
|
|
err = -ENOMEM;
|
|
goto out1;
|
|
}
|
|
pages[i] = pg;
|
|
}
|
|
|
|
err = ni_read_frame(ni, frame_vbo, pages, pages_per_frame);
|
|
|
|
out1:
|
|
if (err)
|
|
SetPageError(page);
|
|
|
|
for (i = 0; i < pages_per_frame; i++) {
|
|
pg = pages[i];
|
|
if (i == idx)
|
|
continue;
|
|
unlock_page(pg);
|
|
put_page(pg);
|
|
}
|
|
|
|
out:
|
|
/* At this point, err contains 0 or -EIO depending on the "critical" page. */
|
|
kfree(pages);
|
|
unlock_page(page);
|
|
|
|
return err;
|
|
}
|
|
|
|
#ifdef CONFIG_NTFS3_LZX_XPRESS
|
|
/*
|
|
* ni_decompress_file - Decompress LZX/Xpress compressed file.
|
|
*
|
|
* Remove ATTR_DATA::WofCompressedData.
|
|
* Remove ATTR_REPARSE.
|
|
*/
|
|
int ni_decompress_file(struct ntfs_inode *ni)
|
|
{
|
|
struct ntfs_sb_info *sbi = ni->mi.sbi;
|
|
struct inode *inode = &ni->vfs_inode;
|
|
loff_t i_size = inode->i_size;
|
|
struct address_space *mapping = inode->i_mapping;
|
|
gfp_t gfp_mask = mapping_gfp_mask(mapping);
|
|
struct page **pages = NULL;
|
|
struct ATTR_LIST_ENTRY *le;
|
|
struct ATTRIB *attr;
|
|
CLST vcn, cend, lcn, clen, end;
|
|
pgoff_t index;
|
|
u64 vbo;
|
|
u8 frame_bits;
|
|
u32 i, frame_size, pages_per_frame, bytes;
|
|
struct mft_inode *mi;
|
|
int err;
|
|
|
|
/* Clusters for decompressed data. */
|
|
cend = bytes_to_cluster(sbi, i_size);
|
|
|
|
if (!i_size)
|
|
goto remove_wof;
|
|
|
|
/* Check in advance. */
|
|
if (cend > wnd_zeroes(&sbi->used.bitmap)) {
|
|
err = -ENOSPC;
|
|
goto out;
|
|
}
|
|
|
|
frame_bits = ni_ext_compress_bits(ni);
|
|
frame_size = 1u << frame_bits;
|
|
pages_per_frame = frame_size >> PAGE_SHIFT;
|
|
pages = kcalloc(pages_per_frame, sizeof(struct page *), GFP_NOFS);
|
|
if (!pages) {
|
|
err = -ENOMEM;
|
|
goto out;
|
|
}
|
|
|
|
/*
|
|
* Step 1: Decompress data and copy to new allocated clusters.
|
|
*/
|
|
index = 0;
|
|
for (vbo = 0; vbo < i_size; vbo += bytes) {
|
|
u32 nr_pages;
|
|
bool new;
|
|
|
|
if (vbo + frame_size > i_size) {
|
|
bytes = i_size - vbo;
|
|
nr_pages = (bytes + PAGE_SIZE - 1) >> PAGE_SHIFT;
|
|
} else {
|
|
nr_pages = pages_per_frame;
|
|
bytes = frame_size;
|
|
}
|
|
|
|
end = bytes_to_cluster(sbi, vbo + bytes);
|
|
|
|
for (vcn = vbo >> sbi->cluster_bits; vcn < end; vcn += clen) {
|
|
err = attr_data_get_block(ni, vcn, cend - vcn, &lcn,
|
|
&clen, &new, false);
|
|
if (err)
|
|
goto out;
|
|
}
|
|
|
|
for (i = 0; i < pages_per_frame; i++, index++) {
|
|
struct page *pg;
|
|
|
|
pg = find_or_create_page(mapping, index, gfp_mask);
|
|
if (!pg) {
|
|
while (i--) {
|
|
unlock_page(pages[i]);
|
|
put_page(pages[i]);
|
|
}
|
|
err = -ENOMEM;
|
|
goto out;
|
|
}
|
|
pages[i] = pg;
|
|
}
|
|
|
|
err = ni_read_frame(ni, vbo, pages, pages_per_frame);
|
|
|
|
if (!err) {
|
|
down_read(&ni->file.run_lock);
|
|
err = ntfs_bio_pages(sbi, &ni->file.run, pages,
|
|
nr_pages, vbo, bytes,
|
|
REQ_OP_WRITE);
|
|
up_read(&ni->file.run_lock);
|
|
}
|
|
|
|
for (i = 0; i < pages_per_frame; i++) {
|
|
unlock_page(pages[i]);
|
|
put_page(pages[i]);
|
|
}
|
|
|
|
if (err)
|
|
goto out;
|
|
|
|
cond_resched();
|
|
}
|
|
|
|
remove_wof:
|
|
/*
|
|
* Step 2: Deallocate attributes ATTR_DATA::WofCompressedData
|
|
* and ATTR_REPARSE.
|
|
*/
|
|
attr = NULL;
|
|
le = NULL;
|
|
while ((attr = ni_enum_attr_ex(ni, attr, &le, NULL))) {
|
|
CLST svcn, evcn;
|
|
u32 asize, roff;
|
|
|
|
if (attr->type == ATTR_REPARSE) {
|
|
struct MFT_REF ref;
|
|
|
|
mi_get_ref(&ni->mi, &ref);
|
|
ntfs_remove_reparse(sbi, 0, &ref);
|
|
}
|
|
|
|
if (!attr->non_res)
|
|
continue;
|
|
|
|
if (attr->type != ATTR_REPARSE &&
|
|
(attr->type != ATTR_DATA ||
|
|
attr->name_len != ARRAY_SIZE(WOF_NAME) ||
|
|
memcmp(attr_name(attr), WOF_NAME, sizeof(WOF_NAME))))
|
|
continue;
|
|
|
|
svcn = le64_to_cpu(attr->nres.svcn);
|
|
evcn = le64_to_cpu(attr->nres.evcn);
|
|
|
|
if (evcn + 1 <= svcn)
|
|
continue;
|
|
|
|
asize = le32_to_cpu(attr->size);
|
|
roff = le16_to_cpu(attr->nres.run_off);
|
|
|
|
if (roff > asize) {
|
|
err = -EINVAL;
|
|
goto out;
|
|
}
|
|
|
|
/*run==1 Means unpack and deallocate. */
|
|
run_unpack_ex(RUN_DEALLOCATE, sbi, ni->mi.rno, svcn, evcn, svcn,
|
|
Add2Ptr(attr, roff), asize - roff);
|
|
}
|
|
|
|
/*
|
|
* Step 3: Remove attribute ATTR_DATA::WofCompressedData.
|
|
*/
|
|
err = ni_remove_attr(ni, ATTR_DATA, WOF_NAME, ARRAY_SIZE(WOF_NAME),
|
|
false, NULL);
|
|
if (err)
|
|
goto out;
|
|
|
|
/*
|
|
* Step 4: Remove ATTR_REPARSE.
|
|
*/
|
|
err = ni_remove_attr(ni, ATTR_REPARSE, NULL, 0, false, NULL);
|
|
if (err)
|
|
goto out;
|
|
|
|
/*
|
|
* Step 5: Remove sparse flag from data attribute.
|
|
*/
|
|
attr = ni_find_attr(ni, NULL, NULL, ATTR_DATA, NULL, 0, NULL, &mi);
|
|
if (!attr) {
|
|
err = -EINVAL;
|
|
goto out;
|
|
}
|
|
|
|
if (attr->non_res && is_attr_sparsed(attr)) {
|
|
/* Sparsed attribute header is 8 bytes bigger than normal. */
|
|
struct MFT_REC *rec = mi->mrec;
|
|
u32 used = le32_to_cpu(rec->used);
|
|
u32 asize = le32_to_cpu(attr->size);
|
|
u16 roff = le16_to_cpu(attr->nres.run_off);
|
|
char *rbuf = Add2Ptr(attr, roff);
|
|
|
|
memmove(rbuf - 8, rbuf, used - PtrOffset(rec, rbuf));
|
|
attr->size = cpu_to_le32(asize - 8);
|
|
attr->flags &= ~ATTR_FLAG_SPARSED;
|
|
attr->nres.run_off = cpu_to_le16(roff - 8);
|
|
attr->nres.c_unit = 0;
|
|
rec->used = cpu_to_le32(used - 8);
|
|
mi->dirty = true;
|
|
ni->std_fa &= ~(FILE_ATTRIBUTE_SPARSE_FILE |
|
|
FILE_ATTRIBUTE_REPARSE_POINT);
|
|
|
|
mark_inode_dirty(inode);
|
|
}
|
|
|
|
/* Clear cached flag. */
|
|
ni->ni_flags &= ~NI_FLAG_COMPRESSED_MASK;
|
|
if (ni->file.offs_page) {
|
|
put_page(ni->file.offs_page);
|
|
ni->file.offs_page = NULL;
|
|
}
|
|
mapping->a_ops = &ntfs_aops;
|
|
|
|
out:
|
|
kfree(pages);
|
|
if (err)
|
|
_ntfs_bad_inode(inode);
|
|
|
|
return err;
|
|
}
|
|
|
|
/*
|
|
* decompress_lzx_xpress - External compression LZX/Xpress.
|
|
*/
|
|
static int decompress_lzx_xpress(struct ntfs_sb_info *sbi, const char *cmpr,
|
|
size_t cmpr_size, void *unc, size_t unc_size,
|
|
u32 frame_size)
|
|
{
|
|
int err;
|
|
void *ctx;
|
|
|
|
if (cmpr_size == unc_size) {
|
|
/* Frame not compressed. */
|
|
memcpy(unc, cmpr, unc_size);
|
|
return 0;
|
|
}
|
|
|
|
err = 0;
|
|
if (frame_size == 0x8000) {
|
|
mutex_lock(&sbi->compress.mtx_lzx);
|
|
/* LZX: Frame compressed. */
|
|
ctx = sbi->compress.lzx;
|
|
if (!ctx) {
|
|
/* Lazy initialize LZX decompress context. */
|
|
ctx = lzx_allocate_decompressor();
|
|
if (!ctx) {
|
|
err = -ENOMEM;
|
|
goto out1;
|
|
}
|
|
|
|
sbi->compress.lzx = ctx;
|
|
}
|
|
|
|
if (lzx_decompress(ctx, cmpr, cmpr_size, unc, unc_size)) {
|
|
/* Treat all errors as "invalid argument". */
|
|
err = -EINVAL;
|
|
}
|
|
out1:
|
|
mutex_unlock(&sbi->compress.mtx_lzx);
|
|
} else {
|
|
/* XPRESS: Frame compressed. */
|
|
mutex_lock(&sbi->compress.mtx_xpress);
|
|
ctx = sbi->compress.xpress;
|
|
if (!ctx) {
|
|
/* Lazy initialize Xpress decompress context. */
|
|
ctx = xpress_allocate_decompressor();
|
|
if (!ctx) {
|
|
err = -ENOMEM;
|
|
goto out2;
|
|
}
|
|
|
|
sbi->compress.xpress = ctx;
|
|
}
|
|
|
|
if (xpress_decompress(ctx, cmpr, cmpr_size, unc, unc_size)) {
|
|
/* Treat all errors as "invalid argument". */
|
|
err = -EINVAL;
|
|
}
|
|
out2:
|
|
mutex_unlock(&sbi->compress.mtx_xpress);
|
|
}
|
|
return err;
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* ni_read_frame
|
|
*
|
|
* Pages - Array of locked pages.
|
|
*/
|
|
int ni_read_frame(struct ntfs_inode *ni, u64 frame_vbo, struct page **pages,
|
|
u32 pages_per_frame)
|
|
{
|
|
int err;
|
|
struct ntfs_sb_info *sbi = ni->mi.sbi;
|
|
u8 cluster_bits = sbi->cluster_bits;
|
|
char *frame_ondisk = NULL;
|
|
char *frame_mem = NULL;
|
|
struct page **pages_disk = NULL;
|
|
struct ATTR_LIST_ENTRY *le = NULL;
|
|
struct runs_tree *run = &ni->file.run;
|
|
u64 valid_size = ni->i_valid;
|
|
u64 vbo_disk;
|
|
size_t unc_size;
|
|
u32 frame_size, i, npages_disk, ondisk_size;
|
|
struct page *pg;
|
|
struct ATTRIB *attr;
|
|
CLST frame, clst_data;
|
|
|
|
/*
|
|
* To simplify decompress algorithm do vmap for source
|
|
* and target pages.
|
|
*/
|
|
for (i = 0; i < pages_per_frame; i++)
|
|
kmap(pages[i]);
|
|
|
|
frame_size = pages_per_frame << PAGE_SHIFT;
|
|
frame_mem = vmap(pages, pages_per_frame, VM_MAP, PAGE_KERNEL);
|
|
if (!frame_mem) {
|
|
err = -ENOMEM;
|
|
goto out;
|
|
}
|
|
|
|
attr = ni_find_attr(ni, NULL, &le, ATTR_DATA, NULL, 0, NULL, NULL);
|
|
if (!attr) {
|
|
err = -ENOENT;
|
|
goto out1;
|
|
}
|
|
|
|
if (!attr->non_res) {
|
|
u32 data_size = le32_to_cpu(attr->res.data_size);
|
|
|
|
memset(frame_mem, 0, frame_size);
|
|
if (frame_vbo < data_size) {
|
|
ondisk_size = data_size - frame_vbo;
|
|
memcpy(frame_mem, resident_data(attr) + frame_vbo,
|
|
min(ondisk_size, frame_size));
|
|
}
|
|
err = 0;
|
|
goto out1;
|
|
}
|
|
|
|
if (frame_vbo >= valid_size) {
|
|
memset(frame_mem, 0, frame_size);
|
|
err = 0;
|
|
goto out1;
|
|
}
|
|
|
|
if (ni->ni_flags & NI_FLAG_COMPRESSED_MASK) {
|
|
#ifndef CONFIG_NTFS3_LZX_XPRESS
|
|
err = -EOPNOTSUPP;
|
|
goto out1;
|
|
#else
|
|
u32 frame_bits = ni_ext_compress_bits(ni);
|
|
u64 frame64 = frame_vbo >> frame_bits;
|
|
u64 frames, vbo_data;
|
|
|
|
if (frame_size != (1u << frame_bits)) {
|
|
err = -EINVAL;
|
|
goto out1;
|
|
}
|
|
switch (frame_size) {
|
|
case 0x1000:
|
|
case 0x2000:
|
|
case 0x4000:
|
|
case 0x8000:
|
|
break;
|
|
default:
|
|
/* Unknown compression. */
|
|
err = -EOPNOTSUPP;
|
|
goto out1;
|
|
}
|
|
|
|
attr = ni_find_attr(ni, attr, &le, ATTR_DATA, WOF_NAME,
|
|
ARRAY_SIZE(WOF_NAME), NULL, NULL);
|
|
if (!attr) {
|
|
ntfs_inode_err(
|
|
&ni->vfs_inode,
|
|
"external compressed file should contains data attribute \"WofCompressedData\"");
|
|
err = -EINVAL;
|
|
goto out1;
|
|
}
|
|
|
|
if (!attr->non_res) {
|
|
run = NULL;
|
|
} else {
|
|
run = run_alloc();
|
|
if (!run) {
|
|
err = -ENOMEM;
|
|
goto out1;
|
|
}
|
|
}
|
|
|
|
frames = (ni->vfs_inode.i_size - 1) >> frame_bits;
|
|
|
|
err = attr_wof_frame_info(ni, attr, run, frame64, frames,
|
|
frame_bits, &ondisk_size, &vbo_data);
|
|
if (err)
|
|
goto out2;
|
|
|
|
if (frame64 == frames) {
|
|
unc_size = 1 + ((ni->vfs_inode.i_size - 1) &
|
|
(frame_size - 1));
|
|
ondisk_size = attr_size(attr) - vbo_data;
|
|
} else {
|
|
unc_size = frame_size;
|
|
}
|
|
|
|
if (ondisk_size > frame_size) {
|
|
err = -EINVAL;
|
|
goto out2;
|
|
}
|
|
|
|
if (!attr->non_res) {
|
|
if (vbo_data + ondisk_size >
|
|
le32_to_cpu(attr->res.data_size)) {
|
|
err = -EINVAL;
|
|
goto out1;
|
|
}
|
|
|
|
err = decompress_lzx_xpress(
|
|
sbi, Add2Ptr(resident_data(attr), vbo_data),
|
|
ondisk_size, frame_mem, unc_size, frame_size);
|
|
goto out1;
|
|
}
|
|
vbo_disk = vbo_data;
|
|
/* Load all runs to read [vbo_disk-vbo_to). */
|
|
err = attr_load_runs_range(ni, ATTR_DATA, WOF_NAME,
|
|
ARRAY_SIZE(WOF_NAME), run, vbo_disk,
|
|
vbo_data + ondisk_size);
|
|
if (err)
|
|
goto out2;
|
|
npages_disk = (ondisk_size + (vbo_disk & (PAGE_SIZE - 1)) +
|
|
PAGE_SIZE - 1) >>
|
|
PAGE_SHIFT;
|
|
#endif
|
|
} else if (is_attr_compressed(attr)) {
|
|
/* LZNT compression. */
|
|
if (sbi->cluster_size > NTFS_LZNT_MAX_CLUSTER) {
|
|
err = -EOPNOTSUPP;
|
|
goto out1;
|
|
}
|
|
|
|
if (attr->nres.c_unit != NTFS_LZNT_CUNIT) {
|
|
err = -EOPNOTSUPP;
|
|
goto out1;
|
|
}
|
|
|
|
down_write(&ni->file.run_lock);
|
|
run_truncate_around(run, le64_to_cpu(attr->nres.svcn));
|
|
frame = frame_vbo >> (cluster_bits + NTFS_LZNT_CUNIT);
|
|
err = attr_is_frame_compressed(ni, attr, frame, &clst_data);
|
|
up_write(&ni->file.run_lock);
|
|
if (err)
|
|
goto out1;
|
|
|
|
if (!clst_data) {
|
|
memset(frame_mem, 0, frame_size);
|
|
goto out1;
|
|
}
|
|
|
|
frame_size = sbi->cluster_size << NTFS_LZNT_CUNIT;
|
|
ondisk_size = clst_data << cluster_bits;
|
|
|
|
if (clst_data >= NTFS_LZNT_CLUSTERS) {
|
|
/* Frame is not compressed. */
|
|
down_read(&ni->file.run_lock);
|
|
err = ntfs_bio_pages(sbi, run, pages, pages_per_frame,
|
|
frame_vbo, ondisk_size,
|
|
REQ_OP_READ);
|
|
up_read(&ni->file.run_lock);
|
|
goto out1;
|
|
}
|
|
vbo_disk = frame_vbo;
|
|
npages_disk = (ondisk_size + PAGE_SIZE - 1) >> PAGE_SHIFT;
|
|
} else {
|
|
__builtin_unreachable();
|
|
err = -EINVAL;
|
|
goto out1;
|
|
}
|
|
|
|
pages_disk = kzalloc(npages_disk * sizeof(struct page *), GFP_NOFS);
|
|
if (!pages_disk) {
|
|
err = -ENOMEM;
|
|
goto out2;
|
|
}
|
|
|
|
for (i = 0; i < npages_disk; i++) {
|
|
pg = alloc_page(GFP_KERNEL);
|
|
if (!pg) {
|
|
err = -ENOMEM;
|
|
goto out3;
|
|
}
|
|
pages_disk[i] = pg;
|
|
lock_page(pg);
|
|
kmap(pg);
|
|
}
|
|
|
|
/* Read 'ondisk_size' bytes from disk. */
|
|
down_read(&ni->file.run_lock);
|
|
err = ntfs_bio_pages(sbi, run, pages_disk, npages_disk, vbo_disk,
|
|
ondisk_size, REQ_OP_READ);
|
|
up_read(&ni->file.run_lock);
|
|
if (err)
|
|
goto out3;
|
|
|
|
/*
|
|
* To simplify decompress algorithm do vmap for source and target pages.
|
|
*/
|
|
frame_ondisk = vmap(pages_disk, npages_disk, VM_MAP, PAGE_KERNEL_RO);
|
|
if (!frame_ondisk) {
|
|
err = -ENOMEM;
|
|
goto out3;
|
|
}
|
|
|
|
/* Decompress: Frame_ondisk -> frame_mem. */
|
|
#ifdef CONFIG_NTFS3_LZX_XPRESS
|
|
if (run != &ni->file.run) {
|
|
/* LZX or XPRESS */
|
|
err = decompress_lzx_xpress(
|
|
sbi, frame_ondisk + (vbo_disk & (PAGE_SIZE - 1)),
|
|
ondisk_size, frame_mem, unc_size, frame_size);
|
|
} else
|
|
#endif
|
|
{
|
|
/* LZNT - Native NTFS compression. */
|
|
unc_size = decompress_lznt(frame_ondisk, ondisk_size, frame_mem,
|
|
frame_size);
|
|
if ((ssize_t)unc_size < 0)
|
|
err = unc_size;
|
|
else if (!unc_size || unc_size > frame_size)
|
|
err = -EINVAL;
|
|
}
|
|
if (!err && valid_size < frame_vbo + frame_size) {
|
|
size_t ok = valid_size - frame_vbo;
|
|
|
|
memset(frame_mem + ok, 0, frame_size - ok);
|
|
}
|
|
|
|
vunmap(frame_ondisk);
|
|
|
|
out3:
|
|
for (i = 0; i < npages_disk; i++) {
|
|
pg = pages_disk[i];
|
|
if (pg) {
|
|
kunmap(pg);
|
|
unlock_page(pg);
|
|
put_page(pg);
|
|
}
|
|
}
|
|
kfree(pages_disk);
|
|
|
|
out2:
|
|
#ifdef CONFIG_NTFS3_LZX_XPRESS
|
|
if (run != &ni->file.run)
|
|
run_free(run);
|
|
#endif
|
|
out1:
|
|
vunmap(frame_mem);
|
|
out:
|
|
for (i = 0; i < pages_per_frame; i++) {
|
|
pg = pages[i];
|
|
kunmap(pg);
|
|
ClearPageError(pg);
|
|
SetPageUptodate(pg);
|
|
}
|
|
|
|
return err;
|
|
}
|
|
|
|
/*
|
|
* ni_write_frame
|
|
*
|
|
* Pages - Array of locked pages.
|
|
*/
|
|
int ni_write_frame(struct ntfs_inode *ni, struct page **pages,
|
|
u32 pages_per_frame)
|
|
{
|
|
int err;
|
|
struct ntfs_sb_info *sbi = ni->mi.sbi;
|
|
u8 frame_bits = NTFS_LZNT_CUNIT + sbi->cluster_bits;
|
|
u32 frame_size = sbi->cluster_size << NTFS_LZNT_CUNIT;
|
|
u64 frame_vbo = (u64)pages[0]->index << PAGE_SHIFT;
|
|
CLST frame = frame_vbo >> frame_bits;
|
|
char *frame_ondisk = NULL;
|
|
struct page **pages_disk = NULL;
|
|
struct ATTR_LIST_ENTRY *le = NULL;
|
|
char *frame_mem;
|
|
struct ATTRIB *attr;
|
|
struct mft_inode *mi;
|
|
u32 i;
|
|
struct page *pg;
|
|
size_t compr_size, ondisk_size;
|
|
struct lznt *lznt;
|
|
|
|
attr = ni_find_attr(ni, NULL, &le, ATTR_DATA, NULL, 0, NULL, &mi);
|
|
if (!attr) {
|
|
err = -ENOENT;
|
|
goto out;
|
|
}
|
|
|
|
if (WARN_ON(!is_attr_compressed(attr))) {
|
|
err = -EINVAL;
|
|
goto out;
|
|
}
|
|
|
|
if (sbi->cluster_size > NTFS_LZNT_MAX_CLUSTER) {
|
|
err = -EOPNOTSUPP;
|
|
goto out;
|
|
}
|
|
|
|
if (!attr->non_res) {
|
|
down_write(&ni->file.run_lock);
|
|
err = attr_make_nonresident(ni, attr, le, mi,
|
|
le32_to_cpu(attr->res.data_size),
|
|
&ni->file.run, &attr, pages[0]);
|
|
up_write(&ni->file.run_lock);
|
|
if (err)
|
|
goto out;
|
|
}
|
|
|
|
if (attr->nres.c_unit != NTFS_LZNT_CUNIT) {
|
|
err = -EOPNOTSUPP;
|
|
goto out;
|
|
}
|
|
|
|
pages_disk = kcalloc(pages_per_frame, sizeof(struct page *), GFP_NOFS);
|
|
if (!pages_disk) {
|
|
err = -ENOMEM;
|
|
goto out;
|
|
}
|
|
|
|
for (i = 0; i < pages_per_frame; i++) {
|
|
pg = alloc_page(GFP_KERNEL);
|
|
if (!pg) {
|
|
err = -ENOMEM;
|
|
goto out1;
|
|
}
|
|
pages_disk[i] = pg;
|
|
lock_page(pg);
|
|
kmap(pg);
|
|
}
|
|
|
|
/* To simplify compress algorithm do vmap for source and target pages. */
|
|
frame_ondisk = vmap(pages_disk, pages_per_frame, VM_MAP, PAGE_KERNEL);
|
|
if (!frame_ondisk) {
|
|
err = -ENOMEM;
|
|
goto out1;
|
|
}
|
|
|
|
for (i = 0; i < pages_per_frame; i++)
|
|
kmap(pages[i]);
|
|
|
|
/* Map in-memory frame for read-only. */
|
|
frame_mem = vmap(pages, pages_per_frame, VM_MAP, PAGE_KERNEL_RO);
|
|
if (!frame_mem) {
|
|
err = -ENOMEM;
|
|
goto out2;
|
|
}
|
|
|
|
mutex_lock(&sbi->compress.mtx_lznt);
|
|
lznt = NULL;
|
|
if (!sbi->compress.lznt) {
|
|
/*
|
|
* LZNT implements two levels of compression:
|
|
* 0 - Standard compression
|
|
* 1 - Best compression, requires a lot of cpu
|
|
* use mount option?
|
|
*/
|
|
lznt = get_lznt_ctx(0);
|
|
if (!lznt) {
|
|
mutex_unlock(&sbi->compress.mtx_lznt);
|
|
err = -ENOMEM;
|
|
goto out3;
|
|
}
|
|
|
|
sbi->compress.lznt = lznt;
|
|
lznt = NULL;
|
|
}
|
|
|
|
/* Compress: frame_mem -> frame_ondisk */
|
|
compr_size = compress_lznt(frame_mem, frame_size, frame_ondisk,
|
|
frame_size, sbi->compress.lznt);
|
|
mutex_unlock(&sbi->compress.mtx_lznt);
|
|
kfree(lznt);
|
|
|
|
if (compr_size + sbi->cluster_size > frame_size) {
|
|
/* Frame is not compressed. */
|
|
compr_size = frame_size;
|
|
ondisk_size = frame_size;
|
|
} else if (compr_size) {
|
|
/* Frame is compressed. */
|
|
ondisk_size = ntfs_up_cluster(sbi, compr_size);
|
|
memset(frame_ondisk + compr_size, 0, ondisk_size - compr_size);
|
|
} else {
|
|
/* Frame is sparsed. */
|
|
ondisk_size = 0;
|
|
}
|
|
|
|
down_write(&ni->file.run_lock);
|
|
run_truncate_around(&ni->file.run, le64_to_cpu(attr->nres.svcn));
|
|
err = attr_allocate_frame(ni, frame, compr_size, ni->i_valid);
|
|
up_write(&ni->file.run_lock);
|
|
if (err)
|
|
goto out2;
|
|
|
|
if (!ondisk_size)
|
|
goto out2;
|
|
|
|
down_read(&ni->file.run_lock);
|
|
err = ntfs_bio_pages(sbi, &ni->file.run,
|
|
ondisk_size < frame_size ? pages_disk : pages,
|
|
pages_per_frame, frame_vbo, ondisk_size,
|
|
REQ_OP_WRITE);
|
|
up_read(&ni->file.run_lock);
|
|
|
|
out3:
|
|
vunmap(frame_mem);
|
|
|
|
out2:
|
|
for (i = 0; i < pages_per_frame; i++)
|
|
kunmap(pages[i]);
|
|
|
|
vunmap(frame_ondisk);
|
|
out1:
|
|
for (i = 0; i < pages_per_frame; i++) {
|
|
pg = pages_disk[i];
|
|
if (pg) {
|
|
kunmap(pg);
|
|
unlock_page(pg);
|
|
put_page(pg);
|
|
}
|
|
}
|
|
kfree(pages_disk);
|
|
out:
|
|
return err;
|
|
}
|
|
|
|
/*
|
|
* ni_remove_name - Removes name 'de' from MFT and from directory.
|
|
* 'de2' and 'undo_step' are used to restore MFT/dir, if error occurs.
|
|
*/
|
|
int ni_remove_name(struct ntfs_inode *dir_ni, struct ntfs_inode *ni,
|
|
struct NTFS_DE *de, struct NTFS_DE **de2, int *undo_step)
|
|
{
|
|
int err;
|
|
struct ntfs_sb_info *sbi = ni->mi.sbi;
|
|
struct ATTR_FILE_NAME *de_name = (struct ATTR_FILE_NAME *)(de + 1);
|
|
struct ATTR_FILE_NAME *fname;
|
|
struct ATTR_LIST_ENTRY *le;
|
|
struct mft_inode *mi;
|
|
u16 de_key_size = le16_to_cpu(de->key_size);
|
|
u8 name_type;
|
|
|
|
*undo_step = 0;
|
|
|
|
/* Find name in record. */
|
|
mi_get_ref(&dir_ni->mi, &de_name->home);
|
|
|
|
fname = ni_fname_name(ni, (struct cpu_str *)&de_name->name_len,
|
|
&de_name->home, &mi, &le);
|
|
if (!fname)
|
|
return -ENOENT;
|
|
|
|
memcpy(&de_name->dup, &fname->dup, sizeof(struct NTFS_DUP_INFO));
|
|
name_type = paired_name(fname->type);
|
|
|
|
/* Mark ntfs as dirty. It will be cleared at umount. */
|
|
ntfs_set_state(sbi, NTFS_DIRTY_DIRTY);
|
|
|
|
/* Step 1: Remove name from directory. */
|
|
err = indx_delete_entry(&dir_ni->dir, dir_ni, fname, de_key_size, sbi);
|
|
if (err)
|
|
return err;
|
|
|
|
/* Step 2: Remove name from MFT. */
|
|
ni_remove_attr_le(ni, attr_from_name(fname), mi, le);
|
|
|
|
*undo_step = 2;
|
|
|
|
/* Get paired name. */
|
|
fname = ni_fname_type(ni, name_type, &mi, &le);
|
|
if (fname) {
|
|
u16 de2_key_size = fname_full_size(fname);
|
|
|
|
*de2 = Add2Ptr(de, 1024);
|
|
(*de2)->key_size = cpu_to_le16(de2_key_size);
|
|
|
|
memcpy(*de2 + 1, fname, de2_key_size);
|
|
|
|
/* Step 3: Remove paired name from directory. */
|
|
err = indx_delete_entry(&dir_ni->dir, dir_ni, fname,
|
|
de2_key_size, sbi);
|
|
if (err)
|
|
return err;
|
|
|
|
/* Step 4: Remove paired name from MFT. */
|
|
ni_remove_attr_le(ni, attr_from_name(fname), mi, le);
|
|
|
|
*undo_step = 4;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* ni_remove_name_undo - Paired function for ni_remove_name.
|
|
*
|
|
* Return: True if ok
|
|
*/
|
|
bool ni_remove_name_undo(struct ntfs_inode *dir_ni, struct ntfs_inode *ni,
|
|
struct NTFS_DE *de, struct NTFS_DE *de2, int undo_step)
|
|
{
|
|
struct ntfs_sb_info *sbi = ni->mi.sbi;
|
|
struct ATTRIB *attr;
|
|
u16 de_key_size = de2 ? le16_to_cpu(de2->key_size) : 0;
|
|
|
|
switch (undo_step) {
|
|
case 4:
|
|
if (ni_insert_resident(ni, de_key_size, ATTR_NAME, NULL, 0,
|
|
&attr, NULL, NULL)) {
|
|
return false;
|
|
}
|
|
memcpy(Add2Ptr(attr, SIZEOF_RESIDENT), de2 + 1, de_key_size);
|
|
|
|
mi_get_ref(&ni->mi, &de2->ref);
|
|
de2->size = cpu_to_le16(ALIGN(de_key_size, 8) +
|
|
sizeof(struct NTFS_DE));
|
|
de2->flags = 0;
|
|
de2->res = 0;
|
|
|
|
if (indx_insert_entry(&dir_ni->dir, dir_ni, de2, sbi, NULL,
|
|
1)) {
|
|
return false;
|
|
}
|
|
fallthrough;
|
|
|
|
case 2:
|
|
de_key_size = le16_to_cpu(de->key_size);
|
|
|
|
if (ni_insert_resident(ni, de_key_size, ATTR_NAME, NULL, 0,
|
|
&attr, NULL, NULL)) {
|
|
return false;
|
|
}
|
|
|
|
memcpy(Add2Ptr(attr, SIZEOF_RESIDENT), de + 1, de_key_size);
|
|
mi_get_ref(&ni->mi, &de->ref);
|
|
|
|
if (indx_insert_entry(&dir_ni->dir, dir_ni, de, sbi, NULL, 1))
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
* ni_add_name - Add new name into MFT and into directory.
|
|
*/
|
|
int ni_add_name(struct ntfs_inode *dir_ni, struct ntfs_inode *ni,
|
|
struct NTFS_DE *de)
|
|
{
|
|
int err;
|
|
struct ntfs_sb_info *sbi = ni->mi.sbi;
|
|
struct ATTRIB *attr;
|
|
struct ATTR_LIST_ENTRY *le;
|
|
struct mft_inode *mi;
|
|
struct ATTR_FILE_NAME *fname;
|
|
struct ATTR_FILE_NAME *de_name = (struct ATTR_FILE_NAME *)(de + 1);
|
|
u16 de_key_size = le16_to_cpu(de->key_size);
|
|
|
|
if (sbi->options->windows_names &&
|
|
!valid_windows_name(sbi, (struct le_str *)&de_name->name_len))
|
|
return -EINVAL;
|
|
|
|
/* If option "hide_dot_files" then set hidden attribute for dot files. */
|
|
if (ni->mi.sbi->options->hide_dot_files) {
|
|
if (de_name->name_len > 0 &&
|
|
le16_to_cpu(de_name->name[0]) == '.')
|
|
ni->std_fa |= FILE_ATTRIBUTE_HIDDEN;
|
|
else
|
|
ni->std_fa &= ~FILE_ATTRIBUTE_HIDDEN;
|
|
}
|
|
|
|
mi_get_ref(&ni->mi, &de->ref);
|
|
mi_get_ref(&dir_ni->mi, &de_name->home);
|
|
|
|
/* Fill duplicate from any ATTR_NAME. */
|
|
fname = ni_fname_name(ni, NULL, NULL, NULL, NULL);
|
|
if (fname)
|
|
memcpy(&de_name->dup, &fname->dup, sizeof(fname->dup));
|
|
de_name->dup.fa = ni->std_fa;
|
|
|
|
/* Insert new name into MFT. */
|
|
err = ni_insert_resident(ni, de_key_size, ATTR_NAME, NULL, 0, &attr,
|
|
&mi, &le);
|
|
if (err)
|
|
return err;
|
|
|
|
memcpy(Add2Ptr(attr, SIZEOF_RESIDENT), de_name, de_key_size);
|
|
|
|
/* Insert new name into directory. */
|
|
err = indx_insert_entry(&dir_ni->dir, dir_ni, de, sbi, NULL, 0);
|
|
if (err)
|
|
ni_remove_attr_le(ni, attr, mi, le);
|
|
|
|
return err;
|
|
}
|
|
|
|
/*
|
|
* ni_rename - Remove one name and insert new name.
|
|
*/
|
|
int ni_rename(struct ntfs_inode *dir_ni, struct ntfs_inode *new_dir_ni,
|
|
struct ntfs_inode *ni, struct NTFS_DE *de, struct NTFS_DE *new_de,
|
|
bool *is_bad)
|
|
{
|
|
int err;
|
|
struct NTFS_DE *de2 = NULL;
|
|
int undo = 0;
|
|
|
|
/*
|
|
* There are two possible ways to rename:
|
|
* 1) Add new name and remove old name.
|
|
* 2) Remove old name and add new name.
|
|
*
|
|
* In most cases (not all!) adding new name into MFT and into directory can
|
|
* allocate additional cluster(s).
|
|
* Second way may result to bad inode if we can't add new name
|
|
* and then can't restore (add) old name.
|
|
*/
|
|
|
|
/*
|
|
* Way 1 - Add new + remove old.
|
|
*/
|
|
err = ni_add_name(new_dir_ni, ni, new_de);
|
|
if (!err) {
|
|
err = ni_remove_name(dir_ni, ni, de, &de2, &undo);
|
|
if (err && ni_remove_name(new_dir_ni, ni, new_de, &de2, &undo))
|
|
*is_bad = true;
|
|
}
|
|
|
|
/*
|
|
* Way 2 - Remove old + add new.
|
|
*/
|
|
/*
|
|
* err = ni_remove_name(dir_ni, ni, de, &de2, &undo);
|
|
* if (!err) {
|
|
* err = ni_add_name(new_dir_ni, ni, new_de);
|
|
* if (err && !ni_remove_name_undo(dir_ni, ni, de, de2, undo))
|
|
* *is_bad = true;
|
|
* }
|
|
*/
|
|
|
|
return err;
|
|
}
|
|
|
|
/*
|
|
* ni_is_dirty - Return: True if 'ni' requires ni_write_inode.
|
|
*/
|
|
bool ni_is_dirty(struct inode *inode)
|
|
{
|
|
struct ntfs_inode *ni = ntfs_i(inode);
|
|
struct rb_node *node;
|
|
|
|
if (ni->mi.dirty || ni->attr_list.dirty ||
|
|
(ni->ni_flags & NI_FLAG_UPDATE_PARENT))
|
|
return true;
|
|
|
|
for (node = rb_first(&ni->mi_tree); node; node = rb_next(node)) {
|
|
if (rb_entry(node, struct mft_inode, node)->dirty)
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/*
|
|
* ni_update_parent
|
|
*
|
|
* Update duplicate info of ATTR_FILE_NAME in MFT and in parent directories.
|
|
*/
|
|
static bool ni_update_parent(struct ntfs_inode *ni, struct NTFS_DUP_INFO *dup,
|
|
int sync)
|
|
{
|
|
struct ATTRIB *attr;
|
|
struct mft_inode *mi;
|
|
struct ATTR_LIST_ENTRY *le = NULL;
|
|
struct ntfs_sb_info *sbi = ni->mi.sbi;
|
|
struct super_block *sb = sbi->sb;
|
|
bool re_dirty = false;
|
|
|
|
if (ni->mi.mrec->flags & RECORD_FLAG_DIR) {
|
|
dup->fa |= FILE_ATTRIBUTE_DIRECTORY;
|
|
attr = NULL;
|
|
dup->alloc_size = 0;
|
|
dup->data_size = 0;
|
|
} else {
|
|
dup->fa &= ~FILE_ATTRIBUTE_DIRECTORY;
|
|
|
|
attr = ni_find_attr(ni, NULL, &le, ATTR_DATA, NULL, 0, NULL,
|
|
&mi);
|
|
if (!attr) {
|
|
dup->alloc_size = dup->data_size = 0;
|
|
} else if (!attr->non_res) {
|
|
u32 data_size = le32_to_cpu(attr->res.data_size);
|
|
|
|
dup->alloc_size = cpu_to_le64(ALIGN(data_size, 8));
|
|
dup->data_size = cpu_to_le64(data_size);
|
|
} else {
|
|
u64 new_valid = ni->i_valid;
|
|
u64 data_size = le64_to_cpu(attr->nres.data_size);
|
|
__le64 valid_le;
|
|
|
|
dup->alloc_size = is_attr_ext(attr)
|
|
? attr->nres.total_size
|
|
: attr->nres.alloc_size;
|
|
dup->data_size = attr->nres.data_size;
|
|
|
|
if (new_valid > data_size)
|
|
new_valid = data_size;
|
|
|
|
valid_le = cpu_to_le64(new_valid);
|
|
if (valid_le != attr->nres.valid_size) {
|
|
attr->nres.valid_size = valid_le;
|
|
mi->dirty = true;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* TODO: Fill reparse info. */
|
|
dup->reparse = 0;
|
|
dup->ea_size = 0;
|
|
|
|
if (ni->ni_flags & NI_FLAG_EA) {
|
|
attr = ni_find_attr(ni, attr, &le, ATTR_EA_INFO, NULL, 0, NULL,
|
|
NULL);
|
|
if (attr) {
|
|
const struct EA_INFO *info;
|
|
|
|
info = resident_data_ex(attr, sizeof(struct EA_INFO));
|
|
/* If ATTR_EA_INFO exists 'info' can't be NULL. */
|
|
if (info)
|
|
dup->ea_size = info->size_pack;
|
|
}
|
|
}
|
|
|
|
attr = NULL;
|
|
le = NULL;
|
|
|
|
while ((attr = ni_find_attr(ni, attr, &le, ATTR_NAME, NULL, 0, NULL,
|
|
&mi))) {
|
|
struct inode *dir;
|
|
struct ATTR_FILE_NAME *fname;
|
|
|
|
fname = resident_data_ex(attr, SIZEOF_ATTRIBUTE_FILENAME);
|
|
if (!fname || !memcmp(&fname->dup, dup, sizeof(fname->dup)))
|
|
continue;
|
|
|
|
/* ntfs_iget5 may sleep. */
|
|
dir = ntfs_iget5(sb, &fname->home, NULL);
|
|
if (IS_ERR(dir)) {
|
|
ntfs_inode_warn(
|
|
&ni->vfs_inode,
|
|
"failed to open parent directory r=%lx to update",
|
|
(long)ino_get(&fname->home));
|
|
continue;
|
|
}
|
|
|
|
if (!is_bad_inode(dir)) {
|
|
struct ntfs_inode *dir_ni = ntfs_i(dir);
|
|
|
|
if (!ni_trylock(dir_ni)) {
|
|
re_dirty = true;
|
|
} else {
|
|
indx_update_dup(dir_ni, sbi, fname, dup, sync);
|
|
ni_unlock(dir_ni);
|
|
memcpy(&fname->dup, dup, sizeof(fname->dup));
|
|
mi->dirty = true;
|
|
}
|
|
}
|
|
iput(dir);
|
|
}
|
|
|
|
return re_dirty;
|
|
}
|
|
|
|
/*
|
|
* ni_write_inode - Write MFT base record and all subrecords to disk.
|
|
*/
|
|
int ni_write_inode(struct inode *inode, int sync, const char *hint)
|
|
{
|
|
int err = 0, err2;
|
|
struct ntfs_inode *ni = ntfs_i(inode);
|
|
struct super_block *sb = inode->i_sb;
|
|
struct ntfs_sb_info *sbi = sb->s_fs_info;
|
|
bool re_dirty = false;
|
|
struct ATTR_STD_INFO *std;
|
|
struct rb_node *node, *next;
|
|
struct NTFS_DUP_INFO dup;
|
|
|
|
if (is_bad_inode(inode) || sb_rdonly(sb))
|
|
return 0;
|
|
|
|
if (!ni_trylock(ni)) {
|
|
/* 'ni' is under modification, skip for now. */
|
|
mark_inode_dirty_sync(inode);
|
|
return 0;
|
|
}
|
|
|
|
if (is_rec_inuse(ni->mi.mrec) &&
|
|
!(sbi->flags & NTFS_FLAGS_LOG_REPLAYING) && inode->i_nlink) {
|
|
bool modified = false;
|
|
|
|
/* Update times in standard attribute. */
|
|
std = ni_std(ni);
|
|
if (!std) {
|
|
err = -EINVAL;
|
|
goto out;
|
|
}
|
|
|
|
/* Update the access times if they have changed. */
|
|
dup.m_time = kernel2nt(&inode->i_mtime);
|
|
if (std->m_time != dup.m_time) {
|
|
std->m_time = dup.m_time;
|
|
modified = true;
|
|
}
|
|
|
|
dup.c_time = kernel2nt(&inode->i_ctime);
|
|
if (std->c_time != dup.c_time) {
|
|
std->c_time = dup.c_time;
|
|
modified = true;
|
|
}
|
|
|
|
dup.a_time = kernel2nt(&inode->i_atime);
|
|
if (std->a_time != dup.a_time) {
|
|
std->a_time = dup.a_time;
|
|
modified = true;
|
|
}
|
|
|
|
dup.fa = ni->std_fa;
|
|
if (std->fa != dup.fa) {
|
|
std->fa = dup.fa;
|
|
modified = true;
|
|
}
|
|
|
|
/* std attribute is always in primary MFT record. */
|
|
if (modified)
|
|
ni->mi.dirty = true;
|
|
|
|
if (!ntfs_is_meta_file(sbi, inode->i_ino) &&
|
|
(modified || (ni->ni_flags & NI_FLAG_UPDATE_PARENT))
|
|
/* Avoid __wait_on_freeing_inode(inode). */
|
|
&& (sb->s_flags & SB_ACTIVE)) {
|
|
dup.cr_time = std->cr_time;
|
|
/* Not critical if this function fail. */
|
|
re_dirty = ni_update_parent(ni, &dup, sync);
|
|
|
|
if (re_dirty)
|
|
ni->ni_flags |= NI_FLAG_UPDATE_PARENT;
|
|
else
|
|
ni->ni_flags &= ~NI_FLAG_UPDATE_PARENT;
|
|
}
|
|
|
|
/* Update attribute list. */
|
|
if (ni->attr_list.size && ni->attr_list.dirty) {
|
|
if (inode->i_ino != MFT_REC_MFT || sync) {
|
|
err = ni_try_remove_attr_list(ni);
|
|
if (err)
|
|
goto out;
|
|
}
|
|
|
|
err = al_update(ni, sync);
|
|
if (err)
|
|
goto out;
|
|
}
|
|
}
|
|
|
|
for (node = rb_first(&ni->mi_tree); node; node = next) {
|
|
struct mft_inode *mi = rb_entry(node, struct mft_inode, node);
|
|
bool is_empty;
|
|
|
|
next = rb_next(node);
|
|
|
|
if (!mi->dirty)
|
|
continue;
|
|
|
|
is_empty = !mi_enum_attr(mi, NULL);
|
|
|
|
if (is_empty)
|
|
clear_rec_inuse(mi->mrec);
|
|
|
|
err2 = mi_write(mi, sync);
|
|
if (!err && err2)
|
|
err = err2;
|
|
|
|
if (is_empty) {
|
|
ntfs_mark_rec_free(sbi, mi->rno, false);
|
|
rb_erase(node, &ni->mi_tree);
|
|
mi_put(mi);
|
|
}
|
|
}
|
|
|
|
if (ni->mi.dirty) {
|
|
err2 = mi_write(&ni->mi, sync);
|
|
if (!err && err2)
|
|
err = err2;
|
|
}
|
|
out:
|
|
ni_unlock(ni);
|
|
|
|
if (err) {
|
|
ntfs_err(sb, "%s r=%lx failed, %d.", hint, inode->i_ino, err);
|
|
ntfs_set_state(sbi, NTFS_DIRTY_ERROR);
|
|
return err;
|
|
}
|
|
|
|
if (re_dirty)
|
|
mark_inode_dirty_sync(inode);
|
|
|
|
return 0;
|
|
}
|