Andy Lutomirski 3fb0fdb3bb x86/stackprotector/32: Make the canary into a regular percpu variable
On 32-bit kernels, the stackprotector canary is quite nasty -- it is
stored at %gs:(20), which is nasty because 32-bit kernels use %fs for
percpu storage.  It's even nastier because it means that whether %gs
contains userspace state or kernel state while running kernel code
depends on whether stackprotector is enabled (this is
CONFIG_X86_32_LAZY_GS), and this setting radically changes the way
that segment selectors work.  Supporting both variants is a
maintenance and testing mess.

Merely rearranging so that percpu and the stack canary
share the same segment would be messy as the 32-bit percpu address
layout isn't currently compatible with putting a variable at a fixed
offset.

Fortunately, GCC 8.1 added options that allow the stack canary to be
accessed as %fs:__stack_chk_guard, effectively turning it into an ordinary
percpu variable.  This lets us get rid of all of the code to manage the
stack canary GDT descriptor and the CONFIG_X86_32_LAZY_GS mess.

(That name is special.  We could use any symbol we want for the
 %fs-relative mode, but for CONFIG_SMP=n, gcc refuses to let us use any
 name other than __stack_chk_guard.)

Forcibly disable stackprotector on older compilers that don't support
the new options and turn the stack canary into a percpu variable. The
"lazy GS" approach is now used for all 32-bit configurations.

Also makes load_gs_index() work on 32-bit kernels. On 64-bit kernels,
it loads the GS selector and updates the user GSBASE accordingly. (This
is unchanged.) On 32-bit kernels, it loads the GS selector and updates
GSBASE, which is now always the user base. This means that the overall
effect is the same on 32-bit and 64-bit, which avoids some ifdeffery.

 [ bp: Massage commit message. ]

Signed-off-by: Andy Lutomirski <luto@kernel.org>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/c0ff7dba14041c7e5d1cae5d4df052f03759bef3.1613243844.git.luto@kernel.org
2021-03-08 13:19:05 +01:00
..
2020-05-07 16:06:20 +02:00
2020-11-24 16:47:49 +01:00