Tejun Heo 5a0e3ad6af include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h
percpu.h is included by sched.h and module.h and thus ends up being
included when building most .c files.  percpu.h includes slab.h which
in turn includes gfp.h making everything defined by the two files
universally available and complicating inclusion dependencies.

percpu.h -> slab.h dependency is about to be removed.  Prepare for
this change by updating users of gfp and slab facilities include those
headers directly instead of assuming availability.  As this conversion
needs to touch large number of source files, the following script is
used as the basis of conversion.

  http://userweb.kernel.org/~tj/misc/slabh-sweep.py

The script does the followings.

* Scan files for gfp and slab usages and update includes such that
  only the necessary includes are there.  ie. if only gfp is used,
  gfp.h, if slab is used, slab.h.

* When the script inserts a new include, it looks at the include
  blocks and try to put the new include such that its order conforms
  to its surrounding.  It's put in the include block which contains
  core kernel includes, in the same order that the rest are ordered -
  alphabetical, Christmas tree, rev-Xmas-tree or at the end if there
  doesn't seem to be any matching order.

* If the script can't find a place to put a new include (mostly
  because the file doesn't have fitting include block), it prints out
  an error message indicating which .h file needs to be added to the
  file.

The conversion was done in the following steps.

1. The initial automatic conversion of all .c files updated slightly
   over 4000 files, deleting around 700 includes and adding ~480 gfp.h
   and ~3000 slab.h inclusions.  The script emitted errors for ~400
   files.

2. Each error was manually checked.  Some didn't need the inclusion,
   some needed manual addition while adding it to implementation .h or
   embedding .c file was more appropriate for others.  This step added
   inclusions to around 150 files.

3. The script was run again and the output was compared to the edits
   from #2 to make sure no file was left behind.

4. Several build tests were done and a couple of problems were fixed.
   e.g. lib/decompress_*.c used malloc/free() wrappers around slab
   APIs requiring slab.h to be added manually.

5. The script was run on all .h files but without automatically
   editing them as sprinkling gfp.h and slab.h inclusions around .h
   files could easily lead to inclusion dependency hell.  Most gfp.h
   inclusion directives were ignored as stuff from gfp.h was usually
   wildly available and often used in preprocessor macros.  Each
   slab.h inclusion directive was examined and added manually as
   necessary.

6. percpu.h was updated not to include slab.h.

7. Build test were done on the following configurations and failures
   were fixed.  CONFIG_GCOV_KERNEL was turned off for all tests (as my
   distributed build env didn't work with gcov compiles) and a few
   more options had to be turned off depending on archs to make things
   build (like ipr on powerpc/64 which failed due to missing writeq).

   * x86 and x86_64 UP and SMP allmodconfig and a custom test config.
   * powerpc and powerpc64 SMP allmodconfig
   * sparc and sparc64 SMP allmodconfig
   * ia64 SMP allmodconfig
   * s390 SMP allmodconfig
   * alpha SMP allmodconfig
   * um on x86_64 SMP allmodconfig

8. percpu.h modifications were reverted so that it could be applied as
   a separate patch and serve as bisection point.

Given the fact that I had only a couple of failures from tests on step
6, I'm fairly confident about the coverage of this conversion patch.
If there is a breakage, it's likely to be something in one of the arch
headers which should be easily discoverable easily on most builds of
the specific arch.

Signed-off-by: Tejun Heo <tj@kernel.org>
Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-30 22:02:32 +09:00

1255 lines
33 KiB
C

/*
* Copyright (c) 2005 Ammasso, Inc. All rights reserved.
* Copyright (c) 2005 Open Grid Computing, Inc. All rights reserved.
*
* This software is available to you under a choice of one of two
* licenses. You may choose to be licensed under the terms of the GNU
* General Public License (GPL) Version 2, available from the file
* COPYING in the main directory of this source tree, or the
* OpenIB.org BSD license below:
*
* Redistribution and use in source and binary forms, with or
* without modification, are permitted provided that the following
* conditions are met:
*
* - Redistributions of source code must retain the above
* copyright notice, this list of conditions and the following
* disclaimer.
*
* - Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials
* provided with the distribution.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
* BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
* ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include <linux/module.h>
#include <linux/moduleparam.h>
#include <linux/pci.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/inetdevice.h>
#include <linux/delay.h>
#include <linux/ethtool.h>
#include <linux/mii.h>
#include <linux/if_vlan.h>
#include <linux/crc32.h>
#include <linux/in.h>
#include <linux/ip.h>
#include <linux/tcp.h>
#include <linux/init.h>
#include <linux/dma-mapping.h>
#include <linux/slab.h>
#include <asm/io.h>
#include <asm/irq.h>
#include <asm/byteorder.h>
#include <rdma/ib_smi.h>
#include "c2.h"
#include "c2_provider.h"
MODULE_AUTHOR("Tom Tucker <tom@opengridcomputing.com>");
MODULE_DESCRIPTION("Ammasso AMSO1100 Low-level iWARP Driver");
MODULE_LICENSE("Dual BSD/GPL");
MODULE_VERSION(DRV_VERSION);
static const u32 default_msg = NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK
| NETIF_MSG_IFUP | NETIF_MSG_IFDOWN;
static int debug = -1; /* defaults above */
module_param(debug, int, 0);
MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
static int c2_up(struct net_device *netdev);
static int c2_down(struct net_device *netdev);
static int c2_xmit_frame(struct sk_buff *skb, struct net_device *netdev);
static void c2_tx_interrupt(struct net_device *netdev);
static void c2_rx_interrupt(struct net_device *netdev);
static irqreturn_t c2_interrupt(int irq, void *dev_id);
static void c2_tx_timeout(struct net_device *netdev);
static int c2_change_mtu(struct net_device *netdev, int new_mtu);
static void c2_reset(struct c2_port *c2_port);
static struct pci_device_id c2_pci_table[] = {
{ PCI_DEVICE(0x18b8, 0xb001) },
{ 0 }
};
MODULE_DEVICE_TABLE(pci, c2_pci_table);
static void c2_print_macaddr(struct net_device *netdev)
{
pr_debug("%s: MAC %pM, IRQ %u\n", netdev->name, netdev->dev_addr, netdev->irq);
}
static void c2_set_rxbufsize(struct c2_port *c2_port)
{
struct net_device *netdev = c2_port->netdev;
if (netdev->mtu > RX_BUF_SIZE)
c2_port->rx_buf_size =
netdev->mtu + ETH_HLEN + sizeof(struct c2_rxp_hdr) +
NET_IP_ALIGN;
else
c2_port->rx_buf_size = sizeof(struct c2_rxp_hdr) + RX_BUF_SIZE;
}
/*
* Allocate TX ring elements and chain them together.
* One-to-one association of adapter descriptors with ring elements.
*/
static int c2_tx_ring_alloc(struct c2_ring *tx_ring, void *vaddr,
dma_addr_t base, void __iomem * mmio_txp_ring)
{
struct c2_tx_desc *tx_desc;
struct c2_txp_desc __iomem *txp_desc;
struct c2_element *elem;
int i;
tx_ring->start = kmalloc(sizeof(*elem) * tx_ring->count, GFP_KERNEL);
if (!tx_ring->start)
return -ENOMEM;
elem = tx_ring->start;
tx_desc = vaddr;
txp_desc = mmio_txp_ring;
for (i = 0; i < tx_ring->count; i++, elem++, tx_desc++, txp_desc++) {
tx_desc->len = 0;
tx_desc->status = 0;
/* Set TXP_HTXD_UNINIT */
__raw_writeq((__force u64) cpu_to_be64(0x1122334455667788ULL),
(void __iomem *) txp_desc + C2_TXP_ADDR);
__raw_writew(0, (void __iomem *) txp_desc + C2_TXP_LEN);
__raw_writew((__force u16) cpu_to_be16(TXP_HTXD_UNINIT),
(void __iomem *) txp_desc + C2_TXP_FLAGS);
elem->skb = NULL;
elem->ht_desc = tx_desc;
elem->hw_desc = txp_desc;
if (i == tx_ring->count - 1) {
elem->next = tx_ring->start;
tx_desc->next_offset = base;
} else {
elem->next = elem + 1;
tx_desc->next_offset =
base + (i + 1) * sizeof(*tx_desc);
}
}
tx_ring->to_use = tx_ring->to_clean = tx_ring->start;
return 0;
}
/*
* Allocate RX ring elements and chain them together.
* One-to-one association of adapter descriptors with ring elements.
*/
static int c2_rx_ring_alloc(struct c2_ring *rx_ring, void *vaddr,
dma_addr_t base, void __iomem * mmio_rxp_ring)
{
struct c2_rx_desc *rx_desc;
struct c2_rxp_desc __iomem *rxp_desc;
struct c2_element *elem;
int i;
rx_ring->start = kmalloc(sizeof(*elem) * rx_ring->count, GFP_KERNEL);
if (!rx_ring->start)
return -ENOMEM;
elem = rx_ring->start;
rx_desc = vaddr;
rxp_desc = mmio_rxp_ring;
for (i = 0; i < rx_ring->count; i++, elem++, rx_desc++, rxp_desc++) {
rx_desc->len = 0;
rx_desc->status = 0;
/* Set RXP_HRXD_UNINIT */
__raw_writew((__force u16) cpu_to_be16(RXP_HRXD_OK),
(void __iomem *) rxp_desc + C2_RXP_STATUS);
__raw_writew(0, (void __iomem *) rxp_desc + C2_RXP_COUNT);
__raw_writew(0, (void __iomem *) rxp_desc + C2_RXP_LEN);
__raw_writeq((__force u64) cpu_to_be64(0x99aabbccddeeffULL),
(void __iomem *) rxp_desc + C2_RXP_ADDR);
__raw_writew((__force u16) cpu_to_be16(RXP_HRXD_UNINIT),
(void __iomem *) rxp_desc + C2_RXP_FLAGS);
elem->skb = NULL;
elem->ht_desc = rx_desc;
elem->hw_desc = rxp_desc;
if (i == rx_ring->count - 1) {
elem->next = rx_ring->start;
rx_desc->next_offset = base;
} else {
elem->next = elem + 1;
rx_desc->next_offset =
base + (i + 1) * sizeof(*rx_desc);
}
}
rx_ring->to_use = rx_ring->to_clean = rx_ring->start;
return 0;
}
/* Setup buffer for receiving */
static inline int c2_rx_alloc(struct c2_port *c2_port, struct c2_element *elem)
{
struct c2_dev *c2dev = c2_port->c2dev;
struct c2_rx_desc *rx_desc = elem->ht_desc;
struct sk_buff *skb;
dma_addr_t mapaddr;
u32 maplen;
struct c2_rxp_hdr *rxp_hdr;
skb = dev_alloc_skb(c2_port->rx_buf_size);
if (unlikely(!skb)) {
pr_debug("%s: out of memory for receive\n",
c2_port->netdev->name);
return -ENOMEM;
}
/* Zero out the rxp hdr in the sk_buff */
memset(skb->data, 0, sizeof(*rxp_hdr));
skb->dev = c2_port->netdev;
maplen = c2_port->rx_buf_size;
mapaddr =
pci_map_single(c2dev->pcidev, skb->data, maplen,
PCI_DMA_FROMDEVICE);
/* Set the sk_buff RXP_header to RXP_HRXD_READY */
rxp_hdr = (struct c2_rxp_hdr *) skb->data;
rxp_hdr->flags = RXP_HRXD_READY;
__raw_writew(0, elem->hw_desc + C2_RXP_STATUS);
__raw_writew((__force u16) cpu_to_be16((u16) maplen - sizeof(*rxp_hdr)),
elem->hw_desc + C2_RXP_LEN);
__raw_writeq((__force u64) cpu_to_be64(mapaddr), elem->hw_desc + C2_RXP_ADDR);
__raw_writew((__force u16) cpu_to_be16(RXP_HRXD_READY),
elem->hw_desc + C2_RXP_FLAGS);
elem->skb = skb;
elem->mapaddr = mapaddr;
elem->maplen = maplen;
rx_desc->len = maplen;
return 0;
}
/*
* Allocate buffers for the Rx ring
* For receive: rx_ring.to_clean is next received frame
*/
static int c2_rx_fill(struct c2_port *c2_port)
{
struct c2_ring *rx_ring = &c2_port->rx_ring;
struct c2_element *elem;
int ret = 0;
elem = rx_ring->start;
do {
if (c2_rx_alloc(c2_port, elem)) {
ret = 1;
break;
}
} while ((elem = elem->next) != rx_ring->start);
rx_ring->to_clean = rx_ring->start;
return ret;
}
/* Free all buffers in RX ring, assumes receiver stopped */
static void c2_rx_clean(struct c2_port *c2_port)
{
struct c2_dev *c2dev = c2_port->c2dev;
struct c2_ring *rx_ring = &c2_port->rx_ring;
struct c2_element *elem;
struct c2_rx_desc *rx_desc;
elem = rx_ring->start;
do {
rx_desc = elem->ht_desc;
rx_desc->len = 0;
__raw_writew(0, elem->hw_desc + C2_RXP_STATUS);
__raw_writew(0, elem->hw_desc + C2_RXP_COUNT);
__raw_writew(0, elem->hw_desc + C2_RXP_LEN);
__raw_writeq((__force u64) cpu_to_be64(0x99aabbccddeeffULL),
elem->hw_desc + C2_RXP_ADDR);
__raw_writew((__force u16) cpu_to_be16(RXP_HRXD_UNINIT),
elem->hw_desc + C2_RXP_FLAGS);
if (elem->skb) {
pci_unmap_single(c2dev->pcidev, elem->mapaddr,
elem->maplen, PCI_DMA_FROMDEVICE);
dev_kfree_skb(elem->skb);
elem->skb = NULL;
}
} while ((elem = elem->next) != rx_ring->start);
}
static inline int c2_tx_free(struct c2_dev *c2dev, struct c2_element *elem)
{
struct c2_tx_desc *tx_desc = elem->ht_desc;
tx_desc->len = 0;
pci_unmap_single(c2dev->pcidev, elem->mapaddr, elem->maplen,
PCI_DMA_TODEVICE);
if (elem->skb) {
dev_kfree_skb_any(elem->skb);
elem->skb = NULL;
}
return 0;
}
/* Free all buffers in TX ring, assumes transmitter stopped */
static void c2_tx_clean(struct c2_port *c2_port)
{
struct c2_ring *tx_ring = &c2_port->tx_ring;
struct c2_element *elem;
struct c2_txp_desc txp_htxd;
int retry;
unsigned long flags;
spin_lock_irqsave(&c2_port->tx_lock, flags);
elem = tx_ring->start;
do {
retry = 0;
do {
txp_htxd.flags =
readw(elem->hw_desc + C2_TXP_FLAGS);
if (txp_htxd.flags == TXP_HTXD_READY) {
retry = 1;
__raw_writew(0,
elem->hw_desc + C2_TXP_LEN);
__raw_writeq(0,
elem->hw_desc + C2_TXP_ADDR);
__raw_writew((__force u16) cpu_to_be16(TXP_HTXD_DONE),
elem->hw_desc + C2_TXP_FLAGS);
c2_port->netdev->stats.tx_dropped++;
break;
} else {
__raw_writew(0,
elem->hw_desc + C2_TXP_LEN);
__raw_writeq((__force u64) cpu_to_be64(0x1122334455667788ULL),
elem->hw_desc + C2_TXP_ADDR);
__raw_writew((__force u16) cpu_to_be16(TXP_HTXD_UNINIT),
elem->hw_desc + C2_TXP_FLAGS);
}
c2_tx_free(c2_port->c2dev, elem);
} while ((elem = elem->next) != tx_ring->start);
} while (retry);
c2_port->tx_avail = c2_port->tx_ring.count - 1;
c2_port->c2dev->cur_tx = tx_ring->to_use - tx_ring->start;
if (c2_port->tx_avail > MAX_SKB_FRAGS + 1)
netif_wake_queue(c2_port->netdev);
spin_unlock_irqrestore(&c2_port->tx_lock, flags);
}
/*
* Process transmit descriptors marked 'DONE' by the firmware,
* freeing up their unneeded sk_buffs.
*/
static void c2_tx_interrupt(struct net_device *netdev)
{
struct c2_port *c2_port = netdev_priv(netdev);
struct c2_dev *c2dev = c2_port->c2dev;
struct c2_ring *tx_ring = &c2_port->tx_ring;
struct c2_element *elem;
struct c2_txp_desc txp_htxd;
spin_lock(&c2_port->tx_lock);
for (elem = tx_ring->to_clean; elem != tx_ring->to_use;
elem = elem->next) {
txp_htxd.flags =
be16_to_cpu((__force __be16) readw(elem->hw_desc + C2_TXP_FLAGS));
if (txp_htxd.flags != TXP_HTXD_DONE)
break;
if (netif_msg_tx_done(c2_port)) {
/* PCI reads are expensive in fast path */
txp_htxd.len =
be16_to_cpu((__force __be16) readw(elem->hw_desc + C2_TXP_LEN));
pr_debug("%s: tx done slot %3Zu status 0x%x len "
"%5u bytes\n",
netdev->name, elem - tx_ring->start,
txp_htxd.flags, txp_htxd.len);
}
c2_tx_free(c2dev, elem);
++(c2_port->tx_avail);
}
tx_ring->to_clean = elem;
if (netif_queue_stopped(netdev)
&& c2_port->tx_avail > MAX_SKB_FRAGS + 1)
netif_wake_queue(netdev);
spin_unlock(&c2_port->tx_lock);
}
static void c2_rx_error(struct c2_port *c2_port, struct c2_element *elem)
{
struct c2_rx_desc *rx_desc = elem->ht_desc;
struct c2_rxp_hdr *rxp_hdr = (struct c2_rxp_hdr *) elem->skb->data;
if (rxp_hdr->status != RXP_HRXD_OK ||
rxp_hdr->len > (rx_desc->len - sizeof(*rxp_hdr))) {
pr_debug("BAD RXP_HRXD\n");
pr_debug(" rx_desc : %p\n", rx_desc);
pr_debug(" index : %Zu\n",
elem - c2_port->rx_ring.start);
pr_debug(" len : %u\n", rx_desc->len);
pr_debug(" rxp_hdr : %p [PA %p]\n", rxp_hdr,
(void *) __pa((unsigned long) rxp_hdr));
pr_debug(" flags : 0x%x\n", rxp_hdr->flags);
pr_debug(" status: 0x%x\n", rxp_hdr->status);
pr_debug(" len : %u\n", rxp_hdr->len);
pr_debug(" rsvd : 0x%x\n", rxp_hdr->rsvd);
}
/* Setup the skb for reuse since we're dropping this pkt */
elem->skb->data = elem->skb->head;
skb_reset_tail_pointer(elem->skb);
/* Zero out the rxp hdr in the sk_buff */
memset(elem->skb->data, 0, sizeof(*rxp_hdr));
/* Write the descriptor to the adapter's rx ring */
__raw_writew(0, elem->hw_desc + C2_RXP_STATUS);
__raw_writew(0, elem->hw_desc + C2_RXP_COUNT);
__raw_writew((__force u16) cpu_to_be16((u16) elem->maplen - sizeof(*rxp_hdr)),
elem->hw_desc + C2_RXP_LEN);
__raw_writeq((__force u64) cpu_to_be64(elem->mapaddr),
elem->hw_desc + C2_RXP_ADDR);
__raw_writew((__force u16) cpu_to_be16(RXP_HRXD_READY),
elem->hw_desc + C2_RXP_FLAGS);
pr_debug("packet dropped\n");
c2_port->netdev->stats.rx_dropped++;
}
static void c2_rx_interrupt(struct net_device *netdev)
{
struct c2_port *c2_port = netdev_priv(netdev);
struct c2_dev *c2dev = c2_port->c2dev;
struct c2_ring *rx_ring = &c2_port->rx_ring;
struct c2_element *elem;
struct c2_rx_desc *rx_desc;
struct c2_rxp_hdr *rxp_hdr;
struct sk_buff *skb;
dma_addr_t mapaddr;
u32 maplen, buflen;
unsigned long flags;
spin_lock_irqsave(&c2dev->lock, flags);
/* Begin where we left off */
rx_ring->to_clean = rx_ring->start + c2dev->cur_rx;
for (elem = rx_ring->to_clean; elem->next != rx_ring->to_clean;
elem = elem->next) {
rx_desc = elem->ht_desc;
mapaddr = elem->mapaddr;
maplen = elem->maplen;
skb = elem->skb;
rxp_hdr = (struct c2_rxp_hdr *) skb->data;
if (rxp_hdr->flags != RXP_HRXD_DONE)
break;
buflen = rxp_hdr->len;
/* Sanity check the RXP header */
if (rxp_hdr->status != RXP_HRXD_OK ||
buflen > (rx_desc->len - sizeof(*rxp_hdr))) {
c2_rx_error(c2_port, elem);
continue;
}
/*
* Allocate and map a new skb for replenishing the host
* RX desc
*/
if (c2_rx_alloc(c2_port, elem)) {
c2_rx_error(c2_port, elem);
continue;
}
/* Unmap the old skb */
pci_unmap_single(c2dev->pcidev, mapaddr, maplen,
PCI_DMA_FROMDEVICE);
prefetch(skb->data);
/*
* Skip past the leading 8 bytes comprising of the
* "struct c2_rxp_hdr", prepended by the adapter
* to the usual Ethernet header ("struct ethhdr"),
* to the start of the raw Ethernet packet.
*
* Fix up the various fields in the sk_buff before
* passing it up to netif_rx(). The transfer size
* (in bytes) specified by the adapter len field of
* the "struct rxp_hdr_t" does NOT include the
* "sizeof(struct c2_rxp_hdr)".
*/
skb->data += sizeof(*rxp_hdr);
skb_set_tail_pointer(skb, buflen);
skb->len = buflen;
skb->protocol = eth_type_trans(skb, netdev);
netif_rx(skb);
netdev->stats.rx_packets++;
netdev->stats.rx_bytes += buflen;
}
/* Save where we left off */
rx_ring->to_clean = elem;
c2dev->cur_rx = elem - rx_ring->start;
C2_SET_CUR_RX(c2dev, c2dev->cur_rx);
spin_unlock_irqrestore(&c2dev->lock, flags);
}
/*
* Handle netisr0 TX & RX interrupts.
*/
static irqreturn_t c2_interrupt(int irq, void *dev_id)
{
unsigned int netisr0, dmaisr;
int handled = 0;
struct c2_dev *c2dev = (struct c2_dev *) dev_id;
/* Process CCILNET interrupts */
netisr0 = readl(c2dev->regs + C2_NISR0);
if (netisr0) {
/*
* There is an issue with the firmware that always
* provides the status of RX for both TX & RX
* interrupts. So process both queues here.
*/
c2_rx_interrupt(c2dev->netdev);
c2_tx_interrupt(c2dev->netdev);
/* Clear the interrupt */
writel(netisr0, c2dev->regs + C2_NISR0);
handled++;
}
/* Process RNIC interrupts */
dmaisr = readl(c2dev->regs + C2_DISR);
if (dmaisr) {
writel(dmaisr, c2dev->regs + C2_DISR);
c2_rnic_interrupt(c2dev);
handled++;
}
if (handled) {
return IRQ_HANDLED;
} else {
return IRQ_NONE;
}
}
static int c2_up(struct net_device *netdev)
{
struct c2_port *c2_port = netdev_priv(netdev);
struct c2_dev *c2dev = c2_port->c2dev;
struct c2_element *elem;
struct c2_rxp_hdr *rxp_hdr;
struct in_device *in_dev;
size_t rx_size, tx_size;
int ret, i;
unsigned int netimr0;
if (netif_msg_ifup(c2_port))
pr_debug("%s: enabling interface\n", netdev->name);
/* Set the Rx buffer size based on MTU */
c2_set_rxbufsize(c2_port);
/* Allocate DMA'able memory for Tx/Rx host descriptor rings */
rx_size = c2_port->rx_ring.count * sizeof(struct c2_rx_desc);
tx_size = c2_port->tx_ring.count * sizeof(struct c2_tx_desc);
c2_port->mem_size = tx_size + rx_size;
c2_port->mem = pci_alloc_consistent(c2dev->pcidev, c2_port->mem_size,
&c2_port->dma);
if (c2_port->mem == NULL) {
pr_debug("Unable to allocate memory for "
"host descriptor rings\n");
return -ENOMEM;
}
memset(c2_port->mem, 0, c2_port->mem_size);
/* Create the Rx host descriptor ring */
if ((ret =
c2_rx_ring_alloc(&c2_port->rx_ring, c2_port->mem, c2_port->dma,
c2dev->mmio_rxp_ring))) {
pr_debug("Unable to create RX ring\n");
goto bail0;
}
/* Allocate Rx buffers for the host descriptor ring */
if (c2_rx_fill(c2_port)) {
pr_debug("Unable to fill RX ring\n");
goto bail1;
}
/* Create the Tx host descriptor ring */
if ((ret = c2_tx_ring_alloc(&c2_port->tx_ring, c2_port->mem + rx_size,
c2_port->dma + rx_size,
c2dev->mmio_txp_ring))) {
pr_debug("Unable to create TX ring\n");
goto bail1;
}
/* Set the TX pointer to where we left off */
c2_port->tx_avail = c2_port->tx_ring.count - 1;
c2_port->tx_ring.to_use = c2_port->tx_ring.to_clean =
c2_port->tx_ring.start + c2dev->cur_tx;
/* missing: Initialize MAC */
BUG_ON(c2_port->tx_ring.to_use != c2_port->tx_ring.to_clean);
/* Reset the adapter, ensures the driver is in sync with the RXP */
c2_reset(c2_port);
/* Reset the READY bit in the sk_buff RXP headers & adapter HRXDQ */
for (i = 0, elem = c2_port->rx_ring.start; i < c2_port->rx_ring.count;
i++, elem++) {
rxp_hdr = (struct c2_rxp_hdr *) elem->skb->data;
rxp_hdr->flags = 0;
__raw_writew((__force u16) cpu_to_be16(RXP_HRXD_READY),
elem->hw_desc + C2_RXP_FLAGS);
}
/* Enable network packets */
netif_start_queue(netdev);
/* Enable IRQ */
writel(0, c2dev->regs + C2_IDIS);
netimr0 = readl(c2dev->regs + C2_NIMR0);
netimr0 &= ~(C2_PCI_HTX_INT | C2_PCI_HRX_INT);
writel(netimr0, c2dev->regs + C2_NIMR0);
/* Tell the stack to ignore arp requests for ipaddrs bound to
* other interfaces. This is needed to prevent the host stack
* from responding to arp requests to the ipaddr bound on the
* rdma interface.
*/
in_dev = in_dev_get(netdev);
IN_DEV_CONF_SET(in_dev, ARP_IGNORE, 1);
in_dev_put(in_dev);
return 0;
bail1:
c2_rx_clean(c2_port);
kfree(c2_port->rx_ring.start);
bail0:
pci_free_consistent(c2dev->pcidev, c2_port->mem_size, c2_port->mem,
c2_port->dma);
return ret;
}
static int c2_down(struct net_device *netdev)
{
struct c2_port *c2_port = netdev_priv(netdev);
struct c2_dev *c2dev = c2_port->c2dev;
if (netif_msg_ifdown(c2_port))
pr_debug("%s: disabling interface\n",
netdev->name);
/* Wait for all the queued packets to get sent */
c2_tx_interrupt(netdev);
/* Disable network packets */
netif_stop_queue(netdev);
/* Disable IRQs by clearing the interrupt mask */
writel(1, c2dev->regs + C2_IDIS);
writel(0, c2dev->regs + C2_NIMR0);
/* missing: Stop transmitter */
/* missing: Stop receiver */
/* Reset the adapter, ensures the driver is in sync with the RXP */
c2_reset(c2_port);
/* missing: Turn off LEDs here */
/* Free all buffers in the host descriptor rings */
c2_tx_clean(c2_port);
c2_rx_clean(c2_port);
/* Free the host descriptor rings */
kfree(c2_port->rx_ring.start);
kfree(c2_port->tx_ring.start);
pci_free_consistent(c2dev->pcidev, c2_port->mem_size, c2_port->mem,
c2_port->dma);
return 0;
}
static void c2_reset(struct c2_port *c2_port)
{
struct c2_dev *c2dev = c2_port->c2dev;
unsigned int cur_rx = c2dev->cur_rx;
/* Tell the hardware to quiesce */
C2_SET_CUR_RX(c2dev, cur_rx | C2_PCI_HRX_QUI);
/*
* The hardware will reset the C2_PCI_HRX_QUI bit once
* the RXP is quiesced. Wait 2 seconds for this.
*/
ssleep(2);
cur_rx = C2_GET_CUR_RX(c2dev);
if (cur_rx & C2_PCI_HRX_QUI)
pr_debug("c2_reset: failed to quiesce the hardware!\n");
cur_rx &= ~C2_PCI_HRX_QUI;
c2dev->cur_rx = cur_rx;
pr_debug("Current RX: %u\n", c2dev->cur_rx);
}
static int c2_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
{
struct c2_port *c2_port = netdev_priv(netdev);
struct c2_dev *c2dev = c2_port->c2dev;
struct c2_ring *tx_ring = &c2_port->tx_ring;
struct c2_element *elem;
dma_addr_t mapaddr;
u32 maplen;
unsigned long flags;
unsigned int i;
spin_lock_irqsave(&c2_port->tx_lock, flags);
if (unlikely(c2_port->tx_avail < (skb_shinfo(skb)->nr_frags + 1))) {
netif_stop_queue(netdev);
spin_unlock_irqrestore(&c2_port->tx_lock, flags);
pr_debug("%s: Tx ring full when queue awake!\n",
netdev->name);
return NETDEV_TX_BUSY;
}
maplen = skb_headlen(skb);
mapaddr =
pci_map_single(c2dev->pcidev, skb->data, maplen, PCI_DMA_TODEVICE);
elem = tx_ring->to_use;
elem->skb = skb;
elem->mapaddr = mapaddr;
elem->maplen = maplen;
/* Tell HW to xmit */
__raw_writeq((__force u64) cpu_to_be64(mapaddr),
elem->hw_desc + C2_TXP_ADDR);
__raw_writew((__force u16) cpu_to_be16(maplen),
elem->hw_desc + C2_TXP_LEN);
__raw_writew((__force u16) cpu_to_be16(TXP_HTXD_READY),
elem->hw_desc + C2_TXP_FLAGS);
netdev->stats.tx_packets++;
netdev->stats.tx_bytes += maplen;
/* Loop thru additional data fragments and queue them */
if (skb_shinfo(skb)->nr_frags) {
for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
maplen = frag->size;
mapaddr =
pci_map_page(c2dev->pcidev, frag->page,
frag->page_offset, maplen,
PCI_DMA_TODEVICE);
elem = elem->next;
elem->skb = NULL;
elem->mapaddr = mapaddr;
elem->maplen = maplen;
/* Tell HW to xmit */
__raw_writeq((__force u64) cpu_to_be64(mapaddr),
elem->hw_desc + C2_TXP_ADDR);
__raw_writew((__force u16) cpu_to_be16(maplen),
elem->hw_desc + C2_TXP_LEN);
__raw_writew((__force u16) cpu_to_be16(TXP_HTXD_READY),
elem->hw_desc + C2_TXP_FLAGS);
netdev->stats.tx_packets++;
netdev->stats.tx_bytes += maplen;
}
}
tx_ring->to_use = elem->next;
c2_port->tx_avail -= (skb_shinfo(skb)->nr_frags + 1);
if (c2_port->tx_avail <= MAX_SKB_FRAGS + 1) {
netif_stop_queue(netdev);
if (netif_msg_tx_queued(c2_port))
pr_debug("%s: transmit queue full\n",
netdev->name);
}
spin_unlock_irqrestore(&c2_port->tx_lock, flags);
netdev->trans_start = jiffies;
return NETDEV_TX_OK;
}
static void c2_tx_timeout(struct net_device *netdev)
{
struct c2_port *c2_port = netdev_priv(netdev);
if (netif_msg_timer(c2_port))
pr_debug("%s: tx timeout\n", netdev->name);
c2_tx_clean(c2_port);
}
static int c2_change_mtu(struct net_device *netdev, int new_mtu)
{
int ret = 0;
if (new_mtu < ETH_ZLEN || new_mtu > ETH_JUMBO_MTU)
return -EINVAL;
netdev->mtu = new_mtu;
if (netif_running(netdev)) {
c2_down(netdev);
c2_up(netdev);
}
return ret;
}
static const struct net_device_ops c2_netdev = {
.ndo_open = c2_up,
.ndo_stop = c2_down,
.ndo_start_xmit = c2_xmit_frame,
.ndo_tx_timeout = c2_tx_timeout,
.ndo_change_mtu = c2_change_mtu,
.ndo_set_mac_address = eth_mac_addr,
.ndo_validate_addr = eth_validate_addr,
};
/* Initialize network device */
static struct net_device *c2_devinit(struct c2_dev *c2dev,
void __iomem * mmio_addr)
{
struct c2_port *c2_port = NULL;
struct net_device *netdev = alloc_etherdev(sizeof(*c2_port));
if (!netdev) {
pr_debug("c2_port etherdev alloc failed");
return NULL;
}
SET_NETDEV_DEV(netdev, &c2dev->pcidev->dev);
netdev->netdev_ops = &c2_netdev;
netdev->watchdog_timeo = C2_TX_TIMEOUT;
netdev->irq = c2dev->pcidev->irq;
c2_port = netdev_priv(netdev);
c2_port->netdev = netdev;
c2_port->c2dev = c2dev;
c2_port->msg_enable = netif_msg_init(debug, default_msg);
c2_port->tx_ring.count = C2_NUM_TX_DESC;
c2_port->rx_ring.count = C2_NUM_RX_DESC;
spin_lock_init(&c2_port->tx_lock);
/* Copy our 48-bit ethernet hardware address */
memcpy_fromio(netdev->dev_addr, mmio_addr + C2_REGS_ENADDR, 6);
/* Validate the MAC address */
if (!is_valid_ether_addr(netdev->dev_addr)) {
pr_debug("Invalid MAC Address\n");
c2_print_macaddr(netdev);
free_netdev(netdev);
return NULL;
}
c2dev->netdev = netdev;
return netdev;
}
static int __devinit c2_probe(struct pci_dev *pcidev,
const struct pci_device_id *ent)
{
int ret = 0, i;
unsigned long reg0_start, reg0_flags, reg0_len;
unsigned long reg2_start, reg2_flags, reg2_len;
unsigned long reg4_start, reg4_flags, reg4_len;
unsigned kva_map_size;
struct net_device *netdev = NULL;
struct c2_dev *c2dev = NULL;
void __iomem *mmio_regs = NULL;
printk(KERN_INFO PFX "AMSO1100 Gigabit Ethernet driver v%s loaded\n",
DRV_VERSION);
/* Enable PCI device */
ret = pci_enable_device(pcidev);
if (ret) {
printk(KERN_ERR PFX "%s: Unable to enable PCI device\n",
pci_name(pcidev));
goto bail0;
}
reg0_start = pci_resource_start(pcidev, BAR_0);
reg0_len = pci_resource_len(pcidev, BAR_0);
reg0_flags = pci_resource_flags(pcidev, BAR_0);
reg2_start = pci_resource_start(pcidev, BAR_2);
reg2_len = pci_resource_len(pcidev, BAR_2);
reg2_flags = pci_resource_flags(pcidev, BAR_2);
reg4_start = pci_resource_start(pcidev, BAR_4);
reg4_len = pci_resource_len(pcidev, BAR_4);
reg4_flags = pci_resource_flags(pcidev, BAR_4);
pr_debug("BAR0 size = 0x%lX bytes\n", reg0_len);
pr_debug("BAR2 size = 0x%lX bytes\n", reg2_len);
pr_debug("BAR4 size = 0x%lX bytes\n", reg4_len);
/* Make sure PCI base addr are MMIO */
if (!(reg0_flags & IORESOURCE_MEM) ||
!(reg2_flags & IORESOURCE_MEM) || !(reg4_flags & IORESOURCE_MEM)) {
printk(KERN_ERR PFX "PCI regions not an MMIO resource\n");
ret = -ENODEV;
goto bail1;
}
/* Check for weird/broken PCI region reporting */
if ((reg0_len < C2_REG0_SIZE) ||
(reg2_len < C2_REG2_SIZE) || (reg4_len < C2_REG4_SIZE)) {
printk(KERN_ERR PFX "Invalid PCI region sizes\n");
ret = -ENODEV;
goto bail1;
}
/* Reserve PCI I/O and memory resources */
ret = pci_request_regions(pcidev, DRV_NAME);
if (ret) {
printk(KERN_ERR PFX "%s: Unable to request regions\n",
pci_name(pcidev));
goto bail1;
}
if ((sizeof(dma_addr_t) > 4)) {
ret = pci_set_dma_mask(pcidev, DMA_BIT_MASK(64));
if (ret < 0) {
printk(KERN_ERR PFX "64b DMA configuration failed\n");
goto bail2;
}
} else {
ret = pci_set_dma_mask(pcidev, DMA_BIT_MASK(32));
if (ret < 0) {
printk(KERN_ERR PFX "32b DMA configuration failed\n");
goto bail2;
}
}
/* Enables bus-mastering on the device */
pci_set_master(pcidev);
/* Remap the adapter PCI registers in BAR4 */
mmio_regs = ioremap_nocache(reg4_start + C2_PCI_REGS_OFFSET,
sizeof(struct c2_adapter_pci_regs));
if (!mmio_regs) {
printk(KERN_ERR PFX
"Unable to remap adapter PCI registers in BAR4\n");
ret = -EIO;
goto bail2;
}
/* Validate PCI regs magic */
for (i = 0; i < sizeof(c2_magic); i++) {
if (c2_magic[i] != readb(mmio_regs + C2_REGS_MAGIC + i)) {
printk(KERN_ERR PFX "Downlevel Firmware boot loader "
"[%d/%Zd: got 0x%x, exp 0x%x]. Use the cc_flash "
"utility to update your boot loader\n",
i + 1, sizeof(c2_magic),
readb(mmio_regs + C2_REGS_MAGIC + i),
c2_magic[i]);
printk(KERN_ERR PFX "Adapter not claimed\n");
iounmap(mmio_regs);
ret = -EIO;
goto bail2;
}
}
/* Validate the adapter version */
if (be32_to_cpu((__force __be32) readl(mmio_regs + C2_REGS_VERS)) != C2_VERSION) {
printk(KERN_ERR PFX "Version mismatch "
"[fw=%u, c2=%u], Adapter not claimed\n",
be32_to_cpu((__force __be32) readl(mmio_regs + C2_REGS_VERS)),
C2_VERSION);
ret = -EINVAL;
iounmap(mmio_regs);
goto bail2;
}
/* Validate the adapter IVN */
if (be32_to_cpu((__force __be32) readl(mmio_regs + C2_REGS_IVN)) != C2_IVN) {
printk(KERN_ERR PFX "Downlevel FIrmware level. You should be using "
"the OpenIB device support kit. "
"[fw=0x%x, c2=0x%x], Adapter not claimed\n",
be32_to_cpu((__force __be32) readl(mmio_regs + C2_REGS_IVN)),
C2_IVN);
ret = -EINVAL;
iounmap(mmio_regs);
goto bail2;
}
/* Allocate hardware structure */
c2dev = (struct c2_dev *) ib_alloc_device(sizeof(*c2dev));
if (!c2dev) {
printk(KERN_ERR PFX "%s: Unable to alloc hardware struct\n",
pci_name(pcidev));
ret = -ENOMEM;
iounmap(mmio_regs);
goto bail2;
}
memset(c2dev, 0, sizeof(*c2dev));
spin_lock_init(&c2dev->lock);
c2dev->pcidev = pcidev;
c2dev->cur_tx = 0;
/* Get the last RX index */
c2dev->cur_rx =
(be32_to_cpu((__force __be32) readl(mmio_regs + C2_REGS_HRX_CUR)) -
0xffffc000) / sizeof(struct c2_rxp_desc);
/* Request an interrupt line for the driver */
ret = request_irq(pcidev->irq, c2_interrupt, IRQF_SHARED, DRV_NAME, c2dev);
if (ret) {
printk(KERN_ERR PFX "%s: requested IRQ %u is busy\n",
pci_name(pcidev), pcidev->irq);
iounmap(mmio_regs);
goto bail3;
}
/* Set driver specific data */
pci_set_drvdata(pcidev, c2dev);
/* Initialize network device */
if ((netdev = c2_devinit(c2dev, mmio_regs)) == NULL) {
iounmap(mmio_regs);
goto bail4;
}
/* Save off the actual size prior to unmapping mmio_regs */
kva_map_size = be32_to_cpu((__force __be32) readl(mmio_regs + C2_REGS_PCI_WINSIZE));
/* Unmap the adapter PCI registers in BAR4 */
iounmap(mmio_regs);
/* Register network device */
ret = register_netdev(netdev);
if (ret) {
printk(KERN_ERR PFX "Unable to register netdev, ret = %d\n",
ret);
goto bail5;
}
/* Disable network packets */
netif_stop_queue(netdev);
/* Remap the adapter HRXDQ PA space to kernel VA space */
c2dev->mmio_rxp_ring = ioremap_nocache(reg4_start + C2_RXP_HRXDQ_OFFSET,
C2_RXP_HRXDQ_SIZE);
if (!c2dev->mmio_rxp_ring) {
printk(KERN_ERR PFX "Unable to remap MMIO HRXDQ region\n");
ret = -EIO;
goto bail6;
}
/* Remap the adapter HTXDQ PA space to kernel VA space */
c2dev->mmio_txp_ring = ioremap_nocache(reg4_start + C2_TXP_HTXDQ_OFFSET,
C2_TXP_HTXDQ_SIZE);
if (!c2dev->mmio_txp_ring) {
printk(KERN_ERR PFX "Unable to remap MMIO HTXDQ region\n");
ret = -EIO;
goto bail7;
}
/* Save off the current RX index in the last 4 bytes of the TXP Ring */
C2_SET_CUR_RX(c2dev, c2dev->cur_rx);
/* Remap the PCI registers in adapter BAR0 to kernel VA space */
c2dev->regs = ioremap_nocache(reg0_start, reg0_len);
if (!c2dev->regs) {
printk(KERN_ERR PFX "Unable to remap BAR0\n");
ret = -EIO;
goto bail8;
}
/* Remap the PCI registers in adapter BAR4 to kernel VA space */
c2dev->pa = reg4_start + C2_PCI_REGS_OFFSET;
c2dev->kva = ioremap_nocache(reg4_start + C2_PCI_REGS_OFFSET,
kva_map_size);
if (!c2dev->kva) {
printk(KERN_ERR PFX "Unable to remap BAR4\n");
ret = -EIO;
goto bail9;
}
/* Print out the MAC address */
c2_print_macaddr(netdev);
ret = c2_rnic_init(c2dev);
if (ret) {
printk(KERN_ERR PFX "c2_rnic_init failed: %d\n", ret);
goto bail10;
}
if (c2_register_device(c2dev))
goto bail10;
return 0;
bail10:
iounmap(c2dev->kva);
bail9:
iounmap(c2dev->regs);
bail8:
iounmap(c2dev->mmio_txp_ring);
bail7:
iounmap(c2dev->mmio_rxp_ring);
bail6:
unregister_netdev(netdev);
bail5:
free_netdev(netdev);
bail4:
free_irq(pcidev->irq, c2dev);
bail3:
ib_dealloc_device(&c2dev->ibdev);
bail2:
pci_release_regions(pcidev);
bail1:
pci_disable_device(pcidev);
bail0:
return ret;
}
static void __devexit c2_remove(struct pci_dev *pcidev)
{
struct c2_dev *c2dev = pci_get_drvdata(pcidev);
struct net_device *netdev = c2dev->netdev;
/* Unregister with OpenIB */
c2_unregister_device(c2dev);
/* Clean up the RNIC resources */
c2_rnic_term(c2dev);
/* Remove network device from the kernel */
unregister_netdev(netdev);
/* Free network device */
free_netdev(netdev);
/* Free the interrupt line */
free_irq(pcidev->irq, c2dev);
/* missing: Turn LEDs off here */
/* Unmap adapter PA space */
iounmap(c2dev->kva);
iounmap(c2dev->regs);
iounmap(c2dev->mmio_txp_ring);
iounmap(c2dev->mmio_rxp_ring);
/* Free the hardware structure */
ib_dealloc_device(&c2dev->ibdev);
/* Release reserved PCI I/O and memory resources */
pci_release_regions(pcidev);
/* Disable PCI device */
pci_disable_device(pcidev);
/* Clear driver specific data */
pci_set_drvdata(pcidev, NULL);
}
static struct pci_driver c2_pci_driver = {
.name = DRV_NAME,
.id_table = c2_pci_table,
.probe = c2_probe,
.remove = __devexit_p(c2_remove),
};
static int __init c2_init_module(void)
{
return pci_register_driver(&c2_pci_driver);
}
static void __exit c2_exit_module(void)
{
pci_unregister_driver(&c2_pci_driver);
}
module_init(c2_init_module);
module_exit(c2_exit_module);