linux/kernel/dma/pool.c
Geert Uytterhoeven 3ee06a6d53 dma-pool: fix too large DMA pools on medium memory size systems
On systems with at least 32 MiB, but less than 32 GiB of RAM, the DMA
memory pools are much larger than intended (e.g. 2 MiB instead of 128
KiB on a 256 MiB system).

Fix this by correcting the calculation of the number of GiBs of RAM in
the system.  Invert the order of the min/max operations, to keep on
calculating in pages until the last step, which aids readability.

Fixes: 1d659236fb43c4d2 ("dma-pool: scale the default DMA coherent pool size with memory capacity")
Signed-off-by: Geert Uytterhoeven <geert@linux-m68k.org>
Acked-by: David Rientjes <rientjes@google.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
2020-06-09 15:25:52 +02:00

264 lines
6.7 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (C) 2012 ARM Ltd.
* Copyright (C) 2020 Google LLC
*/
#include <linux/debugfs.h>
#include <linux/dma-direct.h>
#include <linux/dma-noncoherent.h>
#include <linux/dma-contiguous.h>
#include <linux/init.h>
#include <linux/genalloc.h>
#include <linux/set_memory.h>
#include <linux/slab.h>
#include <linux/workqueue.h>
static struct gen_pool *atomic_pool_dma __ro_after_init;
static unsigned long pool_size_dma;
static struct gen_pool *atomic_pool_dma32 __ro_after_init;
static unsigned long pool_size_dma32;
static struct gen_pool *atomic_pool_kernel __ro_after_init;
static unsigned long pool_size_kernel;
/* Size can be defined by the coherent_pool command line */
static size_t atomic_pool_size;
/* Dynamic background expansion when the atomic pool is near capacity */
static struct work_struct atomic_pool_work;
static int __init early_coherent_pool(char *p)
{
atomic_pool_size = memparse(p, &p);
return 0;
}
early_param("coherent_pool", early_coherent_pool);
static void __init dma_atomic_pool_debugfs_init(void)
{
struct dentry *root;
root = debugfs_create_dir("dma_pools", NULL);
if (IS_ERR_OR_NULL(root))
return;
debugfs_create_ulong("pool_size_dma", 0400, root, &pool_size_dma);
debugfs_create_ulong("pool_size_dma32", 0400, root, &pool_size_dma32);
debugfs_create_ulong("pool_size_kernel", 0400, root, &pool_size_kernel);
}
static void dma_atomic_pool_size_add(gfp_t gfp, size_t size)
{
if (gfp & __GFP_DMA)
pool_size_dma += size;
else if (gfp & __GFP_DMA32)
pool_size_dma32 += size;
else
pool_size_kernel += size;
}
static int atomic_pool_expand(struct gen_pool *pool, size_t pool_size,
gfp_t gfp)
{
unsigned int order;
struct page *page;
void *addr;
int ret = -ENOMEM;
/* Cannot allocate larger than MAX_ORDER-1 */
order = min(get_order(pool_size), MAX_ORDER-1);
do {
pool_size = 1 << (PAGE_SHIFT + order);
if (dev_get_cma_area(NULL))
page = dma_alloc_from_contiguous(NULL, 1 << order,
order, false);
else
page = alloc_pages(gfp, order);
} while (!page && order-- > 0);
if (!page)
goto out;
arch_dma_prep_coherent(page, pool_size);
#ifdef CONFIG_DMA_DIRECT_REMAP
addr = dma_common_contiguous_remap(page, pool_size,
pgprot_dmacoherent(PAGE_KERNEL),
__builtin_return_address(0));
if (!addr)
goto free_page;
#else
addr = page_to_virt(page);
#endif
/*
* Memory in the atomic DMA pools must be unencrypted, the pools do not
* shrink so no re-encryption occurs in dma_direct_free_pages().
*/
ret = set_memory_decrypted((unsigned long)page_to_virt(page),
1 << order);
if (ret)
goto remove_mapping;
ret = gen_pool_add_virt(pool, (unsigned long)addr, page_to_phys(page),
pool_size, NUMA_NO_NODE);
if (ret)
goto encrypt_mapping;
dma_atomic_pool_size_add(gfp, pool_size);
return 0;
encrypt_mapping:
ret = set_memory_encrypted((unsigned long)page_to_virt(page),
1 << order);
if (WARN_ON_ONCE(ret)) {
/* Decrypt succeeded but encrypt failed, purposely leak */
goto out;
}
remove_mapping:
#ifdef CONFIG_DMA_DIRECT_REMAP
dma_common_free_remap(addr, pool_size);
#endif
free_page: __maybe_unused
if (!dma_release_from_contiguous(NULL, page, 1 << order))
__free_pages(page, order);
out:
return ret;
}
static void atomic_pool_resize(struct gen_pool *pool, gfp_t gfp)
{
if (pool && gen_pool_avail(pool) < atomic_pool_size)
atomic_pool_expand(pool, gen_pool_size(pool), gfp);
}
static void atomic_pool_work_fn(struct work_struct *work)
{
if (IS_ENABLED(CONFIG_ZONE_DMA))
atomic_pool_resize(atomic_pool_dma,
GFP_KERNEL | GFP_DMA);
if (IS_ENABLED(CONFIG_ZONE_DMA32))
atomic_pool_resize(atomic_pool_dma32,
GFP_KERNEL | GFP_DMA32);
atomic_pool_resize(atomic_pool_kernel, GFP_KERNEL);
}
static __init struct gen_pool *__dma_atomic_pool_init(size_t pool_size,
gfp_t gfp)
{
struct gen_pool *pool;
int ret;
pool = gen_pool_create(PAGE_SHIFT, NUMA_NO_NODE);
if (!pool)
return NULL;
gen_pool_set_algo(pool, gen_pool_first_fit_order_align, NULL);
ret = atomic_pool_expand(pool, pool_size, gfp);
if (ret) {
gen_pool_destroy(pool);
pr_err("DMA: failed to allocate %zu KiB %pGg pool for atomic allocation\n",
pool_size >> 10, &gfp);
return NULL;
}
pr_info("DMA: preallocated %zu KiB %pGg pool for atomic allocations\n",
gen_pool_size(pool) >> 10, &gfp);
return pool;
}
static int __init dma_atomic_pool_init(void)
{
int ret = 0;
/*
* If coherent_pool was not used on the command line, default the pool
* sizes to 128KB per 1GB of memory, min 128KB, max MAX_ORDER-1.
*/
if (!atomic_pool_size) {
unsigned long pages = totalram_pages() / (SZ_1G / SZ_128K);
pages = min_t(unsigned long, pages, MAX_ORDER_NR_PAGES);
atomic_pool_size = max_t(size_t, pages << PAGE_SHIFT, SZ_128K);
}
INIT_WORK(&atomic_pool_work, atomic_pool_work_fn);
atomic_pool_kernel = __dma_atomic_pool_init(atomic_pool_size,
GFP_KERNEL);
if (!atomic_pool_kernel)
ret = -ENOMEM;
if (IS_ENABLED(CONFIG_ZONE_DMA)) {
atomic_pool_dma = __dma_atomic_pool_init(atomic_pool_size,
GFP_KERNEL | GFP_DMA);
if (!atomic_pool_dma)
ret = -ENOMEM;
}
if (IS_ENABLED(CONFIG_ZONE_DMA32)) {
atomic_pool_dma32 = __dma_atomic_pool_init(atomic_pool_size,
GFP_KERNEL | GFP_DMA32);
if (!atomic_pool_dma32)
ret = -ENOMEM;
}
dma_atomic_pool_debugfs_init();
return ret;
}
postcore_initcall(dma_atomic_pool_init);
static inline struct gen_pool *dev_to_pool(struct device *dev)
{
u64 phys_mask;
gfp_t gfp;
gfp = dma_direct_optimal_gfp_mask(dev, dev->coherent_dma_mask,
&phys_mask);
if (IS_ENABLED(CONFIG_ZONE_DMA) && gfp == GFP_DMA)
return atomic_pool_dma;
if (IS_ENABLED(CONFIG_ZONE_DMA32) && gfp == GFP_DMA32)
return atomic_pool_dma32;
return atomic_pool_kernel;
}
static bool dma_in_atomic_pool(struct device *dev, void *start, size_t size)
{
struct gen_pool *pool = dev_to_pool(dev);
if (unlikely(!pool))
return false;
return gen_pool_has_addr(pool, (unsigned long)start, size);
}
void *dma_alloc_from_pool(struct device *dev, size_t size,
struct page **ret_page, gfp_t flags)
{
struct gen_pool *pool = dev_to_pool(dev);
unsigned long val;
void *ptr = NULL;
if (!pool) {
WARN(1, "%pGg atomic pool not initialised!\n", &flags);
return NULL;
}
val = gen_pool_alloc(pool, size);
if (val) {
phys_addr_t phys = gen_pool_virt_to_phys(pool, val);
*ret_page = pfn_to_page(__phys_to_pfn(phys));
ptr = (void *)val;
memset(ptr, 0, size);
}
if (gen_pool_avail(pool) < atomic_pool_size)
schedule_work(&atomic_pool_work);
return ptr;
}
bool dma_free_from_pool(struct device *dev, void *start, size_t size)
{
struct gen_pool *pool = dev_to_pool(dev);
if (!dma_in_atomic_pool(dev, start, size))
return false;
gen_pool_free(pool, (unsigned long)start, size);
return true;
}