35f96de041
Add new kind of BPF kernel object, BPF token. BPF token is meant to allow delegating privileged BPF functionality, like loading a BPF program or creating a BPF map, from privileged process to a *trusted* unprivileged process, all while having a good amount of control over which privileged operations could be performed using provided BPF token. This is achieved through mounting BPF FS instance with extra delegation mount options, which determine what operations are delegatable, and also constraining it to the owning user namespace (as mentioned in the previous patch). BPF token itself is just a derivative from BPF FS and can be created through a new bpf() syscall command, BPF_TOKEN_CREATE, which accepts BPF FS FD, which can be attained through open() API by opening BPF FS mount point. Currently, BPF token "inherits" delegated command, map types, prog type, and attach type bit sets from BPF FS as is. In the future, having an BPF token as a separate object with its own FD, we can allow to further restrict BPF token's allowable set of things either at the creation time or after the fact, allowing the process to guard itself further from unintentionally trying to load undesired kind of BPF programs. But for now we keep things simple and just copy bit sets as is. When BPF token is created from BPF FS mount, we take reference to the BPF super block's owning user namespace, and then use that namespace for checking all the {CAP_BPF, CAP_PERFMON, CAP_NET_ADMIN, CAP_SYS_ADMIN} capabilities that are normally only checked against init userns (using capable()), but now we check them using ns_capable() instead (if BPF token is provided). See bpf_token_capable() for details. Such setup means that BPF token in itself is not sufficient to grant BPF functionality. User namespaced process has to *also* have necessary combination of capabilities inside that user namespace. So while previously CAP_BPF was useless when granted within user namespace, now it gains a meaning and allows container managers and sys admins to have a flexible control over which processes can and need to use BPF functionality within the user namespace (i.e., container in practice). And BPF FS delegation mount options and derived BPF tokens serve as a per-container "flag" to grant overall ability to use bpf() (plus further restrict on which parts of bpf() syscalls are treated as namespaced). Note also, BPF_TOKEN_CREATE command itself requires ns_capable(CAP_BPF) within the BPF FS owning user namespace, rounding up the ns_capable() story of BPF token. Also creating BPF token in init user namespace is currently not supported, given BPF token doesn't have any effect in init user namespace anyways. Signed-off-by: Andrii Nakryiko <andrii@kernel.org> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Acked-by: Christian Brauner <brauner@kernel.org> Link: https://lore.kernel.org/bpf/20240124022127.2379740-4-andrii@kernel.org
49 lines
1.8 KiB
Makefile
49 lines
1.8 KiB
Makefile
# SPDX-License-Identifier: GPL-2.0
|
|
obj-y := core.o
|
|
ifneq ($(CONFIG_BPF_JIT_ALWAYS_ON),y)
|
|
# ___bpf_prog_run() needs GCSE disabled on x86; see 3193c0836f203 for details
|
|
cflags-nogcse-$(CONFIG_X86)$(CONFIG_CC_IS_GCC) := -fno-gcse
|
|
endif
|
|
CFLAGS_core.o += $(call cc-disable-warning, override-init) $(cflags-nogcse-yy)
|
|
|
|
obj-$(CONFIG_BPF_SYSCALL) += syscall.o verifier.o inode.o helpers.o tnum.o log.o token.o
|
|
obj-$(CONFIG_BPF_SYSCALL) += bpf_iter.o map_iter.o task_iter.o prog_iter.o link_iter.o
|
|
obj-$(CONFIG_BPF_SYSCALL) += hashtab.o arraymap.o percpu_freelist.o bpf_lru_list.o lpm_trie.o map_in_map.o bloom_filter.o
|
|
obj-$(CONFIG_BPF_SYSCALL) += local_storage.o queue_stack_maps.o ringbuf.o
|
|
obj-$(CONFIG_BPF_SYSCALL) += bpf_local_storage.o bpf_task_storage.o
|
|
obj-${CONFIG_BPF_LSM} += bpf_inode_storage.o
|
|
obj-$(CONFIG_BPF_SYSCALL) += disasm.o mprog.o
|
|
obj-$(CONFIG_BPF_JIT) += trampoline.o
|
|
obj-$(CONFIG_BPF_SYSCALL) += btf.o memalloc.o
|
|
obj-$(CONFIG_BPF_JIT) += dispatcher.o
|
|
ifeq ($(CONFIG_NET),y)
|
|
obj-$(CONFIG_BPF_SYSCALL) += devmap.o
|
|
obj-$(CONFIG_BPF_SYSCALL) += cpumap.o
|
|
obj-$(CONFIG_BPF_SYSCALL) += offload.o
|
|
obj-$(CONFIG_BPF_SYSCALL) += net_namespace.o
|
|
obj-$(CONFIG_BPF_SYSCALL) += tcx.o
|
|
endif
|
|
ifeq ($(CONFIG_PERF_EVENTS),y)
|
|
obj-$(CONFIG_BPF_SYSCALL) += stackmap.o
|
|
endif
|
|
ifeq ($(CONFIG_CGROUPS),y)
|
|
obj-$(CONFIG_BPF_SYSCALL) += cgroup_iter.o bpf_cgrp_storage.o
|
|
endif
|
|
obj-$(CONFIG_CGROUP_BPF) += cgroup.o
|
|
ifeq ($(CONFIG_INET),y)
|
|
obj-$(CONFIG_BPF_SYSCALL) += reuseport_array.o
|
|
endif
|
|
ifeq ($(CONFIG_SYSFS),y)
|
|
obj-$(CONFIG_DEBUG_INFO_BTF) += sysfs_btf.o
|
|
endif
|
|
ifeq ($(CONFIG_BPF_JIT),y)
|
|
obj-$(CONFIG_BPF_SYSCALL) += bpf_struct_ops.o
|
|
obj-$(CONFIG_BPF_SYSCALL) += cpumask.o
|
|
obj-${CONFIG_BPF_LSM} += bpf_lsm.o
|
|
endif
|
|
obj-$(CONFIG_BPF_PRELOAD) += preload/
|
|
|
|
obj-$(CONFIG_BPF_SYSCALL) += relo_core.o
|
|
$(obj)/relo_core.o: $(srctree)/tools/lib/bpf/relo_core.c FORCE
|
|
$(call if_changed_rule,cc_o_c)
|