linux/arch/sparc64/kernel/of_device.c
David S. Miller 7ee766d8fb sparc64: Fix disappearing PCI devices on e3500.
Based upon a bug report by Meelis Roos.

The OF device layer builds properties by matching bus types and
applying 'range' properties as appropriate, up to the root.

The match for "PCI" busses is looking at the 'device_type' property,
and this does work %99 of the time.

But on an E3500 system with a PCI QFE card, the DEC 21153 bridge
sitting above the QFE network interface devices has a 'name' of "pci",
but it completely lacks a 'device_type' property.  So we don't match
it as a PCI bus, and subsequently we end up with no resource values at
all for the devices sitting under that DEC bridge.

Signed-off-by: David S. Miller <davem@davemloft.net>
2008-09-20 22:00:40 -07:00

877 lines
18 KiB
C

#include <linux/string.h>
#include <linux/kernel.h>
#include <linux/of.h>
#include <linux/init.h>
#include <linux/module.h>
#include <linux/mod_devicetable.h>
#include <linux/slab.h>
#include <linux/errno.h>
#include <linux/irq.h>
#include <linux/of_device.h>
#include <linux/of_platform.h>
void __iomem *of_ioremap(struct resource *res, unsigned long offset, unsigned long size, char *name)
{
unsigned long ret = res->start + offset;
struct resource *r;
if (res->flags & IORESOURCE_MEM)
r = request_mem_region(ret, size, name);
else
r = request_region(ret, size, name);
if (!r)
ret = 0;
return (void __iomem *) ret;
}
EXPORT_SYMBOL(of_ioremap);
void of_iounmap(struct resource *res, void __iomem *base, unsigned long size)
{
if (res->flags & IORESOURCE_MEM)
release_mem_region((unsigned long) base, size);
else
release_region((unsigned long) base, size);
}
EXPORT_SYMBOL(of_iounmap);
static int node_match(struct device *dev, void *data)
{
struct of_device *op = to_of_device(dev);
struct device_node *dp = data;
return (op->node == dp);
}
struct of_device *of_find_device_by_node(struct device_node *dp)
{
struct device *dev = bus_find_device(&of_platform_bus_type, NULL,
dp, node_match);
if (dev)
return to_of_device(dev);
return NULL;
}
EXPORT_SYMBOL(of_find_device_by_node);
#ifdef CONFIG_PCI
struct bus_type ebus_bus_type;
EXPORT_SYMBOL(ebus_bus_type);
#endif
#ifdef CONFIG_SBUS
struct bus_type sbus_bus_type;
EXPORT_SYMBOL(sbus_bus_type);
#endif
struct bus_type of_platform_bus_type;
EXPORT_SYMBOL(of_platform_bus_type);
static inline u64 of_read_addr(const u32 *cell, int size)
{
u64 r = 0;
while (size--)
r = (r << 32) | *(cell++);
return r;
}
static void __init get_cells(struct device_node *dp,
int *addrc, int *sizec)
{
if (addrc)
*addrc = of_n_addr_cells(dp);
if (sizec)
*sizec = of_n_size_cells(dp);
}
/* Max address size we deal with */
#define OF_MAX_ADDR_CELLS 4
struct of_bus {
const char *name;
const char *addr_prop_name;
int (*match)(struct device_node *parent);
void (*count_cells)(struct device_node *child,
int *addrc, int *sizec);
int (*map)(u32 *addr, const u32 *range,
int na, int ns, int pna);
unsigned long (*get_flags)(const u32 *addr, unsigned long);
};
/*
* Default translator (generic bus)
*/
static void of_bus_default_count_cells(struct device_node *dev,
int *addrc, int *sizec)
{
get_cells(dev, addrc, sizec);
}
/* Make sure the least significant 64-bits are in-range. Even
* for 3 or 4 cell values it is a good enough approximation.
*/
static int of_out_of_range(const u32 *addr, const u32 *base,
const u32 *size, int na, int ns)
{
u64 a = of_read_addr(addr, na);
u64 b = of_read_addr(base, na);
if (a < b)
return 1;
b += of_read_addr(size, ns);
if (a >= b)
return 1;
return 0;
}
static int of_bus_default_map(u32 *addr, const u32 *range,
int na, int ns, int pna)
{
u32 result[OF_MAX_ADDR_CELLS];
int i;
if (ns > 2) {
printk("of_device: Cannot handle size cells (%d) > 2.", ns);
return -EINVAL;
}
if (of_out_of_range(addr, range, range + na + pna, na, ns))
return -EINVAL;
/* Start with the parent range base. */
memcpy(result, range + na, pna * 4);
/* Add in the child address offset. */
for (i = 0; i < na; i++)
result[pna - 1 - i] +=
(addr[na - 1 - i] -
range[na - 1 - i]);
memcpy(addr, result, pna * 4);
return 0;
}
static unsigned long of_bus_default_get_flags(const u32 *addr, unsigned long flags)
{
if (flags)
return flags;
return IORESOURCE_MEM;
}
/*
* PCI bus specific translator
*/
static int of_bus_pci_match(struct device_node *np)
{
if (!strcmp(np->name, "pci")) {
const char *model = of_get_property(np, "model", NULL);
if (model && !strcmp(model, "SUNW,simba"))
return 0;
/* Do not do PCI specific frobbing if the
* PCI bridge lacks a ranges property. We
* want to pass it through up to the next
* parent as-is, not with the PCI translate
* method which chops off the top address cell.
*/
if (!of_find_property(np, "ranges", NULL))
return 0;
return 1;
}
return 0;
}
static int of_bus_simba_match(struct device_node *np)
{
const char *model = of_get_property(np, "model", NULL);
if (model && !strcmp(model, "SUNW,simba"))
return 1;
/* Treat PCI busses lacking ranges property just like
* simba.
*/
if (!strcmp(np->name, "pci")) {
if (!of_find_property(np, "ranges", NULL))
return 1;
}
return 0;
}
static int of_bus_simba_map(u32 *addr, const u32 *range,
int na, int ns, int pna)
{
return 0;
}
static void of_bus_pci_count_cells(struct device_node *np,
int *addrc, int *sizec)
{
if (addrc)
*addrc = 3;
if (sizec)
*sizec = 2;
}
static int of_bus_pci_map(u32 *addr, const u32 *range,
int na, int ns, int pna)
{
u32 result[OF_MAX_ADDR_CELLS];
int i;
/* Check address type match */
if ((addr[0] ^ range[0]) & 0x03000000)
return -EINVAL;
if (of_out_of_range(addr + 1, range + 1, range + na + pna,
na - 1, ns))
return -EINVAL;
/* Start with the parent range base. */
memcpy(result, range + na, pna * 4);
/* Add in the child address offset, skipping high cell. */
for (i = 0; i < na - 1; i++)
result[pna - 1 - i] +=
(addr[na - 1 - i] -
range[na - 1 - i]);
memcpy(addr, result, pna * 4);
return 0;
}
static unsigned long of_bus_pci_get_flags(const u32 *addr, unsigned long flags)
{
u32 w = addr[0];
/* For PCI, we override whatever child busses may have used. */
flags = 0;
switch((w >> 24) & 0x03) {
case 0x01:
flags |= IORESOURCE_IO;
break;
case 0x02: /* 32 bits */
case 0x03: /* 64 bits */
flags |= IORESOURCE_MEM;
break;
}
if (w & 0x40000000)
flags |= IORESOURCE_PREFETCH;
return flags;
}
/*
* SBUS bus specific translator
*/
static int of_bus_sbus_match(struct device_node *np)
{
return !strcmp(np->name, "sbus") ||
!strcmp(np->name, "sbi");
}
static void of_bus_sbus_count_cells(struct device_node *child,
int *addrc, int *sizec)
{
if (addrc)
*addrc = 2;
if (sizec)
*sizec = 1;
}
/*
* FHC/Central bus specific translator.
*
* This is just needed to hard-code the address and size cell
* counts. 'fhc' and 'central' nodes lack the #address-cells and
* #size-cells properties, and if you walk to the root on such
* Enterprise boxes all you'll get is a #size-cells of 2 which is
* not what we want to use.
*/
static int of_bus_fhc_match(struct device_node *np)
{
return !strcmp(np->name, "fhc") ||
!strcmp(np->name, "central");
}
#define of_bus_fhc_count_cells of_bus_sbus_count_cells
/*
* Array of bus specific translators
*/
static struct of_bus of_busses[] = {
/* PCI */
{
.name = "pci",
.addr_prop_name = "assigned-addresses",
.match = of_bus_pci_match,
.count_cells = of_bus_pci_count_cells,
.map = of_bus_pci_map,
.get_flags = of_bus_pci_get_flags,
},
/* SIMBA */
{
.name = "simba",
.addr_prop_name = "assigned-addresses",
.match = of_bus_simba_match,
.count_cells = of_bus_pci_count_cells,
.map = of_bus_simba_map,
.get_flags = of_bus_pci_get_flags,
},
/* SBUS */
{
.name = "sbus",
.addr_prop_name = "reg",
.match = of_bus_sbus_match,
.count_cells = of_bus_sbus_count_cells,
.map = of_bus_default_map,
.get_flags = of_bus_default_get_flags,
},
/* FHC */
{
.name = "fhc",
.addr_prop_name = "reg",
.match = of_bus_fhc_match,
.count_cells = of_bus_fhc_count_cells,
.map = of_bus_default_map,
.get_flags = of_bus_default_get_flags,
},
/* Default */
{
.name = "default",
.addr_prop_name = "reg",
.match = NULL,
.count_cells = of_bus_default_count_cells,
.map = of_bus_default_map,
.get_flags = of_bus_default_get_flags,
},
};
static struct of_bus *of_match_bus(struct device_node *np)
{
int i;
for (i = 0; i < ARRAY_SIZE(of_busses); i ++)
if (!of_busses[i].match || of_busses[i].match(np))
return &of_busses[i];
BUG();
return NULL;
}
static int __init build_one_resource(struct device_node *parent,
struct of_bus *bus,
struct of_bus *pbus,
u32 *addr,
int na, int ns, int pna)
{
const u32 *ranges;
unsigned int rlen;
int rone;
ranges = of_get_property(parent, "ranges", &rlen);
if (ranges == NULL || rlen == 0) {
u32 result[OF_MAX_ADDR_CELLS];
int i;
memset(result, 0, pna * 4);
for (i = 0; i < na; i++)
result[pna - 1 - i] =
addr[na - 1 - i];
memcpy(addr, result, pna * 4);
return 0;
}
/* Now walk through the ranges */
rlen /= 4;
rone = na + pna + ns;
for (; rlen >= rone; rlen -= rone, ranges += rone) {
if (!bus->map(addr, ranges, na, ns, pna))
return 0;
}
/* When we miss an I/O space match on PCI, just pass it up
* to the next PCI bridge and/or controller.
*/
if (!strcmp(bus->name, "pci") &&
(addr[0] & 0x03000000) == 0x01000000)
return 0;
return 1;
}
static int __init use_1to1_mapping(struct device_node *pp)
{
/* If we have a ranges property in the parent, use it. */
if (of_find_property(pp, "ranges", NULL) != NULL)
return 0;
/* If the parent is the dma node of an ISA bus, pass
* the translation up to the root.
*/
if (!strcmp(pp->name, "dma"))
return 0;
/* Similarly for all PCI bridges, if we get this far
* it lacks a ranges property, and this will include
* cases like Simba.
*/
if (!strcmp(pp->name, "pci"))
return 0;
return 1;
}
static int of_resource_verbose;
static void __init build_device_resources(struct of_device *op,
struct device *parent)
{
struct of_device *p_op;
struct of_bus *bus;
int na, ns;
int index, num_reg;
const void *preg;
if (!parent)
return;
p_op = to_of_device(parent);
bus = of_match_bus(p_op->node);
bus->count_cells(op->node, &na, &ns);
preg = of_get_property(op->node, bus->addr_prop_name, &num_reg);
if (!preg || num_reg == 0)
return;
/* Convert to num-cells. */
num_reg /= 4;
/* Convert to num-entries. */
num_reg /= na + ns;
/* Prevent overrunning the op->resources[] array. */
if (num_reg > PROMREG_MAX) {
printk(KERN_WARNING "%s: Too many regs (%d), "
"limiting to %d.\n",
op->node->full_name, num_reg, PROMREG_MAX);
num_reg = PROMREG_MAX;
}
for (index = 0; index < num_reg; index++) {
struct resource *r = &op->resource[index];
u32 addr[OF_MAX_ADDR_CELLS];
const u32 *reg = (preg + (index * ((na + ns) * 4)));
struct device_node *dp = op->node;
struct device_node *pp = p_op->node;
struct of_bus *pbus, *dbus;
u64 size, result = OF_BAD_ADDR;
unsigned long flags;
int dna, dns;
int pna, pns;
size = of_read_addr(reg + na, ns);
memcpy(addr, reg, na * 4);
flags = bus->get_flags(addr, 0);
if (use_1to1_mapping(pp)) {
result = of_read_addr(addr, na);
goto build_res;
}
dna = na;
dns = ns;
dbus = bus;
while (1) {
dp = pp;
pp = dp->parent;
if (!pp) {
result = of_read_addr(addr, dna);
break;
}
pbus = of_match_bus(pp);
pbus->count_cells(dp, &pna, &pns);
if (build_one_resource(dp, dbus, pbus, addr,
dna, dns, pna))
break;
flags = pbus->get_flags(addr, flags);
dna = pna;
dns = pns;
dbus = pbus;
}
build_res:
memset(r, 0, sizeof(*r));
if (of_resource_verbose)
printk("%s reg[%d] -> %lx\n",
op->node->full_name, index,
result);
if (result != OF_BAD_ADDR) {
if (tlb_type == hypervisor)
result &= 0x0fffffffffffffffUL;
r->start = result;
r->end = result + size - 1;
r->flags = flags;
}
r->name = op->node->name;
}
}
static struct device_node * __init
apply_interrupt_map(struct device_node *dp, struct device_node *pp,
const u32 *imap, int imlen, const u32 *imask,
unsigned int *irq_p)
{
struct device_node *cp;
unsigned int irq = *irq_p;
struct of_bus *bus;
phandle handle;
const u32 *reg;
int na, num_reg, i;
bus = of_match_bus(pp);
bus->count_cells(dp, &na, NULL);
reg = of_get_property(dp, "reg", &num_reg);
if (!reg || !num_reg)
return NULL;
imlen /= ((na + 3) * 4);
handle = 0;
for (i = 0; i < imlen; i++) {
int j;
for (j = 0; j < na; j++) {
if ((reg[j] & imask[j]) != imap[j])
goto next;
}
if (imap[na] == irq) {
handle = imap[na + 1];
irq = imap[na + 2];
break;
}
next:
imap += (na + 3);
}
if (i == imlen) {
/* Psycho and Sabre PCI controllers can have 'interrupt-map'
* properties that do not include the on-board device
* interrupts. Instead, the device's 'interrupts' property
* is already a fully specified INO value.
*
* Handle this by deciding that, if we didn't get a
* match in the parent's 'interrupt-map', and the
* parent is an IRQ translater, then use the parent as
* our IRQ controller.
*/
if (pp->irq_trans)
return pp;
return NULL;
}
*irq_p = irq;
cp = of_find_node_by_phandle(handle);
return cp;
}
static unsigned int __init pci_irq_swizzle(struct device_node *dp,
struct device_node *pp,
unsigned int irq)
{
const struct linux_prom_pci_registers *regs;
unsigned int bus, devfn, slot, ret;
if (irq < 1 || irq > 4)
return irq;
regs = of_get_property(dp, "reg", NULL);
if (!regs)
return irq;
bus = (regs->phys_hi >> 16) & 0xff;
devfn = (regs->phys_hi >> 8) & 0xff;
slot = (devfn >> 3) & 0x1f;
if (pp->irq_trans) {
/* Derived from Table 8-3, U2P User's Manual. This branch
* is handling a PCI controller that lacks a proper set of
* interrupt-map and interrupt-map-mask properties. The
* Ultra-E450 is one example.
*
* The bit layout is BSSLL, where:
* B: 0 on bus A, 1 on bus B
* D: 2-bit slot number, derived from PCI device number as
* (dev - 1) for bus A, or (dev - 2) for bus B
* L: 2-bit line number
*/
if (bus & 0x80) {
/* PBM-A */
bus = 0x00;
slot = (slot - 1) << 2;
} else {
/* PBM-B */
bus = 0x10;
slot = (slot - 2) << 2;
}
irq -= 1;
ret = (bus | slot | irq);
} else {
/* Going through a PCI-PCI bridge that lacks a set of
* interrupt-map and interrupt-map-mask properties.
*/
ret = ((irq - 1 + (slot & 3)) & 3) + 1;
}
return ret;
}
static int of_irq_verbose;
static unsigned int __init build_one_device_irq(struct of_device *op,
struct device *parent,
unsigned int irq)
{
struct device_node *dp = op->node;
struct device_node *pp, *ip;
unsigned int orig_irq = irq;
int nid;
if (irq == 0xffffffff)
return irq;
if (dp->irq_trans) {
irq = dp->irq_trans->irq_build(dp, irq,
dp->irq_trans->data);
if (of_irq_verbose)
printk("%s: direct translate %x --> %x\n",
dp->full_name, orig_irq, irq);
goto out;
}
/* Something more complicated. Walk up to the root, applying
* interrupt-map or bus specific translations, until we hit
* an IRQ translator.
*
* If we hit a bus type or situation we cannot handle, we
* stop and assume that the original IRQ number was in a
* format which has special meaning to it's immediate parent.
*/
pp = dp->parent;
ip = NULL;
while (pp) {
const void *imap, *imsk;
int imlen;
imap = of_get_property(pp, "interrupt-map", &imlen);
imsk = of_get_property(pp, "interrupt-map-mask", NULL);
if (imap && imsk) {
struct device_node *iret;
int this_orig_irq = irq;
iret = apply_interrupt_map(dp, pp,
imap, imlen, imsk,
&irq);
if (of_irq_verbose)
printk("%s: Apply [%s:%x] imap --> [%s:%x]\n",
op->node->full_name,
pp->full_name, this_orig_irq,
(iret ? iret->full_name : "NULL"), irq);
if (!iret)
break;
if (iret->irq_trans) {
ip = iret;
break;
}
} else {
if (!strcmp(pp->name, "pci")) {
unsigned int this_orig_irq = irq;
irq = pci_irq_swizzle(dp, pp, irq);
if (of_irq_verbose)
printk("%s: PCI swizzle [%s] "
"%x --> %x\n",
op->node->full_name,
pp->full_name, this_orig_irq,
irq);
}
if (pp->irq_trans) {
ip = pp;
break;
}
}
dp = pp;
pp = pp->parent;
}
if (!ip)
return orig_irq;
irq = ip->irq_trans->irq_build(op->node, irq,
ip->irq_trans->data);
if (of_irq_verbose)
printk("%s: Apply IRQ trans [%s] %x --> %x\n",
op->node->full_name, ip->full_name, orig_irq, irq);
out:
nid = of_node_to_nid(dp);
if (nid != -1) {
cpumask_t numa_mask = node_to_cpumask(nid);
irq_set_affinity(irq, numa_mask);
}
return irq;
}
static struct of_device * __init scan_one_device(struct device_node *dp,
struct device *parent)
{
struct of_device *op = kzalloc(sizeof(*op), GFP_KERNEL);
const unsigned int *irq;
struct dev_archdata *sd;
int len, i;
if (!op)
return NULL;
sd = &op->dev.archdata;
sd->prom_node = dp;
sd->op = op;
op->node = dp;
op->clock_freq = of_getintprop_default(dp, "clock-frequency",
(25*1000*1000));
op->portid = of_getintprop_default(dp, "upa-portid", -1);
if (op->portid == -1)
op->portid = of_getintprop_default(dp, "portid", -1);
irq = of_get_property(dp, "interrupts", &len);
if (irq) {
memcpy(op->irqs, irq, len);
op->num_irqs = len / 4;
} else {
op->num_irqs = 0;
}
/* Prevent overrunning the op->irqs[] array. */
if (op->num_irqs > PROMINTR_MAX) {
printk(KERN_WARNING "%s: Too many irqs (%d), "
"limiting to %d.\n",
dp->full_name, op->num_irqs, PROMINTR_MAX);
op->num_irqs = PROMINTR_MAX;
}
build_device_resources(op, parent);
for (i = 0; i < op->num_irqs; i++)
op->irqs[i] = build_one_device_irq(op, parent, op->irqs[i]);
op->dev.parent = parent;
op->dev.bus = &of_platform_bus_type;
if (!parent)
dev_set_name(&op->dev, "root");
else
dev_set_name(&op->dev, "%08x", dp->node);
if (of_device_register(op)) {
printk("%s: Could not register of device.\n",
dp->full_name);
kfree(op);
op = NULL;
}
return op;
}
static void __init scan_tree(struct device_node *dp, struct device *parent)
{
while (dp) {
struct of_device *op = scan_one_device(dp, parent);
if (op)
scan_tree(dp->child, &op->dev);
dp = dp->sibling;
}
}
static void __init scan_of_devices(void)
{
struct device_node *root = of_find_node_by_path("/");
struct of_device *parent;
parent = scan_one_device(root, NULL);
if (!parent)
return;
scan_tree(root->child, &parent->dev);
}
static int __init of_bus_driver_init(void)
{
int err;
err = of_bus_type_init(&of_platform_bus_type, "of");
#ifdef CONFIG_PCI
if (!err)
err = of_bus_type_init(&ebus_bus_type, "ebus");
#endif
#ifdef CONFIG_SBUS
if (!err)
err = of_bus_type_init(&sbus_bus_type, "sbus");
#endif
if (!err)
scan_of_devices();
return err;
}
postcore_initcall(of_bus_driver_init);
static int __init of_debug(char *str)
{
int val = 0;
get_option(&str, &val);
if (val & 1)
of_resource_verbose = 1;
if (val & 2)
of_irq_verbose = 1;
return 1;
}
__setup("of_debug=", of_debug);