linux/drivers/rtc/rtc-cmos.c
Mateusz Jończyk 454f47ff46 rtc: cmos: take rtc_lock while reading from CMOS
Reading from the CMOS involves writing to the index register and then
reading from the data register. Therefore access to the CMOS has to be
serialized with rtc_lock. This invocation of CMOS_READ was not
serialized, which could cause trouble when other code is accessing CMOS
at the same time.

Use spin_lock_irq() like the rest of the function.

Nothing in kernel modifies the RTC_DM_BINARY bit, so there could be a
separate pair of spin_lock_irq() / spin_unlock_irq() before doing the
math.

Signed-off-by: Mateusz Jończyk <mat.jonczyk@o2.pl>
Reviewed-by: Nobuhiro Iwamatsu <iwamatsu@nigauri.org>
Cc: Alessandro Zummo <a.zummo@towertech.it>
Cc: Alexandre Belloni <alexandre.belloni@bootlin.com>
Cc: stable@vger.kernel.org
Signed-off-by: Alexandre Belloni <alexandre.belloni@bootlin.com>
Link: https://lore.kernel.org/r/20211210200131.153887-2-mat.jonczyk@o2.pl
2021-12-16 21:50:06 +01:00

1502 lines
37 KiB
C

// SPDX-License-Identifier: GPL-2.0-or-later
/*
* RTC class driver for "CMOS RTC": PCs, ACPI, etc
*
* Copyright (C) 1996 Paul Gortmaker (drivers/char/rtc.c)
* Copyright (C) 2006 David Brownell (convert to new framework)
*/
/*
* The original "cmos clock" chip was an MC146818 chip, now obsolete.
* That defined the register interface now provided by all PCs, some
* non-PC systems, and incorporated into ACPI. Modern PC chipsets
* integrate an MC146818 clone in their southbridge, and boards use
* that instead of discrete clones like the DS12887 or M48T86. There
* are also clones that connect using the LPC bus.
*
* That register API is also used directly by various other drivers
* (notably for integrated NVRAM), infrastructure (x86 has code to
* bypass the RTC framework, directly reading the RTC during boot
* and updating minutes/seconds for systems using NTP synch) and
* utilities (like userspace 'hwclock', if no /dev node exists).
*
* So **ALL** calls to CMOS_READ and CMOS_WRITE must be done with
* interrupts disabled, holding the global rtc_lock, to exclude those
* other drivers and utilities on correctly configured systems.
*/
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/spinlock.h>
#include <linux/platform_device.h>
#include <linux/log2.h>
#include <linux/pm.h>
#include <linux/of.h>
#include <linux/of_platform.h>
#ifdef CONFIG_X86
#include <asm/i8259.h>
#include <asm/processor.h>
#include <linux/dmi.h>
#endif
/* this is for "generic access to PC-style RTC" using CMOS_READ/CMOS_WRITE */
#include <linux/mc146818rtc.h>
#ifdef CONFIG_ACPI
/*
* Use ACPI SCI to replace HPET interrupt for RTC Alarm event
*
* If cleared, ACPI SCI is only used to wake up the system from suspend
*
* If set, ACPI SCI is used to handle UIE/AIE and system wakeup
*/
static bool use_acpi_alarm;
module_param(use_acpi_alarm, bool, 0444);
static inline int cmos_use_acpi_alarm(void)
{
return use_acpi_alarm;
}
#else /* !CONFIG_ACPI */
static inline int cmos_use_acpi_alarm(void)
{
return 0;
}
#endif
struct cmos_rtc {
struct rtc_device *rtc;
struct device *dev;
int irq;
struct resource *iomem;
time64_t alarm_expires;
void (*wake_on)(struct device *);
void (*wake_off)(struct device *);
u8 enabled_wake;
u8 suspend_ctrl;
/* newer hardware extends the original register set */
u8 day_alrm;
u8 mon_alrm;
u8 century;
struct rtc_wkalrm saved_wkalrm;
};
/* both platform and pnp busses use negative numbers for invalid irqs */
#define is_valid_irq(n) ((n) > 0)
static const char driver_name[] = "rtc_cmos";
/* The RTC_INTR register may have e.g. RTC_PF set even if RTC_PIE is clear;
* always mask it against the irq enable bits in RTC_CONTROL. Bit values
* are the same: PF==PIE, AF=AIE, UF=UIE; so RTC_IRQMASK works with both.
*/
#define RTC_IRQMASK (RTC_PF | RTC_AF | RTC_UF)
static inline int is_intr(u8 rtc_intr)
{
if (!(rtc_intr & RTC_IRQF))
return 0;
return rtc_intr & RTC_IRQMASK;
}
/*----------------------------------------------------------------*/
/* Much modern x86 hardware has HPETs (10+ MHz timers) which, because
* many BIOS programmers don't set up "sane mode" IRQ routing, are mostly
* used in a broken "legacy replacement" mode. The breakage includes
* HPET #1 hijacking the IRQ for this RTC, and being unavailable for
* other (better) use.
*
* When that broken mode is in use, platform glue provides a partial
* emulation of hardware RTC IRQ facilities using HPET #1. We don't
* want to use HPET for anything except those IRQs though...
*/
#ifdef CONFIG_HPET_EMULATE_RTC
#include <asm/hpet.h>
#else
static inline int is_hpet_enabled(void)
{
return 0;
}
static inline int hpet_mask_rtc_irq_bit(unsigned long mask)
{
return 0;
}
static inline int hpet_set_rtc_irq_bit(unsigned long mask)
{
return 0;
}
static inline int
hpet_set_alarm_time(unsigned char hrs, unsigned char min, unsigned char sec)
{
return 0;
}
static inline int hpet_set_periodic_freq(unsigned long freq)
{
return 0;
}
static inline int hpet_rtc_dropped_irq(void)
{
return 0;
}
static inline int hpet_rtc_timer_init(void)
{
return 0;
}
extern irq_handler_t hpet_rtc_interrupt;
static inline int hpet_register_irq_handler(irq_handler_t handler)
{
return 0;
}
static inline int hpet_unregister_irq_handler(irq_handler_t handler)
{
return 0;
}
#endif
/* Don't use HPET for RTC Alarm event if ACPI Fixed event is used */
static inline int use_hpet_alarm(void)
{
return is_hpet_enabled() && !cmos_use_acpi_alarm();
}
/*----------------------------------------------------------------*/
#ifdef RTC_PORT
/* Most newer x86 systems have two register banks, the first used
* for RTC and NVRAM and the second only for NVRAM. Caller must
* own rtc_lock ... and we won't worry about access during NMI.
*/
#define can_bank2 true
static inline unsigned char cmos_read_bank2(unsigned char addr)
{
outb(addr, RTC_PORT(2));
return inb(RTC_PORT(3));
}
static inline void cmos_write_bank2(unsigned char val, unsigned char addr)
{
outb(addr, RTC_PORT(2));
outb(val, RTC_PORT(3));
}
#else
#define can_bank2 false
static inline unsigned char cmos_read_bank2(unsigned char addr)
{
return 0;
}
static inline void cmos_write_bank2(unsigned char val, unsigned char addr)
{
}
#endif
/*----------------------------------------------------------------*/
static int cmos_read_time(struct device *dev, struct rtc_time *t)
{
/*
* If pm_trace abused the RTC for storage, set the timespec to 0,
* which tells the caller that this RTC value is unusable.
*/
if (!pm_trace_rtc_valid())
return -EIO;
mc146818_get_time(t);
return 0;
}
static int cmos_set_time(struct device *dev, struct rtc_time *t)
{
/* NOTE: this ignores the issue whereby updating the seconds
* takes effect exactly 500ms after we write the register.
* (Also queueing and other delays before we get this far.)
*/
return mc146818_set_time(t);
}
static int cmos_read_alarm(struct device *dev, struct rtc_wkalrm *t)
{
struct cmos_rtc *cmos = dev_get_drvdata(dev);
unsigned char rtc_control;
/* This not only a rtc_op, but also called directly */
if (!is_valid_irq(cmos->irq))
return -EIO;
/* Basic alarms only support hour, minute, and seconds fields.
* Some also support day and month, for alarms up to a year in
* the future.
*/
spin_lock_irq(&rtc_lock);
t->time.tm_sec = CMOS_READ(RTC_SECONDS_ALARM);
t->time.tm_min = CMOS_READ(RTC_MINUTES_ALARM);
t->time.tm_hour = CMOS_READ(RTC_HOURS_ALARM);
if (cmos->day_alrm) {
/* ignore upper bits on readback per ACPI spec */
t->time.tm_mday = CMOS_READ(cmos->day_alrm) & 0x3f;
if (!t->time.tm_mday)
t->time.tm_mday = -1;
if (cmos->mon_alrm) {
t->time.tm_mon = CMOS_READ(cmos->mon_alrm);
if (!t->time.tm_mon)
t->time.tm_mon = -1;
}
}
rtc_control = CMOS_READ(RTC_CONTROL);
spin_unlock_irq(&rtc_lock);
if (!(rtc_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
if (((unsigned)t->time.tm_sec) < 0x60)
t->time.tm_sec = bcd2bin(t->time.tm_sec);
else
t->time.tm_sec = -1;
if (((unsigned)t->time.tm_min) < 0x60)
t->time.tm_min = bcd2bin(t->time.tm_min);
else
t->time.tm_min = -1;
if (((unsigned)t->time.tm_hour) < 0x24)
t->time.tm_hour = bcd2bin(t->time.tm_hour);
else
t->time.tm_hour = -1;
if (cmos->day_alrm) {
if (((unsigned)t->time.tm_mday) <= 0x31)
t->time.tm_mday = bcd2bin(t->time.tm_mday);
else
t->time.tm_mday = -1;
if (cmos->mon_alrm) {
if (((unsigned)t->time.tm_mon) <= 0x12)
t->time.tm_mon = bcd2bin(t->time.tm_mon)-1;
else
t->time.tm_mon = -1;
}
}
}
t->enabled = !!(rtc_control & RTC_AIE);
t->pending = 0;
return 0;
}
static void cmos_checkintr(struct cmos_rtc *cmos, unsigned char rtc_control)
{
unsigned char rtc_intr;
/* NOTE after changing RTC_xIE bits we always read INTR_FLAGS;
* allegedly some older rtcs need that to handle irqs properly
*/
rtc_intr = CMOS_READ(RTC_INTR_FLAGS);
if (use_hpet_alarm())
return;
rtc_intr &= (rtc_control & RTC_IRQMASK) | RTC_IRQF;
if (is_intr(rtc_intr))
rtc_update_irq(cmos->rtc, 1, rtc_intr);
}
static void cmos_irq_enable(struct cmos_rtc *cmos, unsigned char mask)
{
unsigned char rtc_control;
/* flush any pending IRQ status, notably for update irqs,
* before we enable new IRQs
*/
rtc_control = CMOS_READ(RTC_CONTROL);
cmos_checkintr(cmos, rtc_control);
rtc_control |= mask;
CMOS_WRITE(rtc_control, RTC_CONTROL);
if (use_hpet_alarm())
hpet_set_rtc_irq_bit(mask);
if ((mask & RTC_AIE) && cmos_use_acpi_alarm()) {
if (cmos->wake_on)
cmos->wake_on(cmos->dev);
}
cmos_checkintr(cmos, rtc_control);
}
static void cmos_irq_disable(struct cmos_rtc *cmos, unsigned char mask)
{
unsigned char rtc_control;
rtc_control = CMOS_READ(RTC_CONTROL);
rtc_control &= ~mask;
CMOS_WRITE(rtc_control, RTC_CONTROL);
if (use_hpet_alarm())
hpet_mask_rtc_irq_bit(mask);
if ((mask & RTC_AIE) && cmos_use_acpi_alarm()) {
if (cmos->wake_off)
cmos->wake_off(cmos->dev);
}
cmos_checkintr(cmos, rtc_control);
}
static int cmos_validate_alarm(struct device *dev, struct rtc_wkalrm *t)
{
struct cmos_rtc *cmos = dev_get_drvdata(dev);
struct rtc_time now;
cmos_read_time(dev, &now);
if (!cmos->day_alrm) {
time64_t t_max_date;
time64_t t_alrm;
t_max_date = rtc_tm_to_time64(&now);
t_max_date += 24 * 60 * 60 - 1;
t_alrm = rtc_tm_to_time64(&t->time);
if (t_alrm > t_max_date) {
dev_err(dev,
"Alarms can be up to one day in the future\n");
return -EINVAL;
}
} else if (!cmos->mon_alrm) {
struct rtc_time max_date = now;
time64_t t_max_date;
time64_t t_alrm;
int max_mday;
if (max_date.tm_mon == 11) {
max_date.tm_mon = 0;
max_date.tm_year += 1;
} else {
max_date.tm_mon += 1;
}
max_mday = rtc_month_days(max_date.tm_mon, max_date.tm_year);
if (max_date.tm_mday > max_mday)
max_date.tm_mday = max_mday;
t_max_date = rtc_tm_to_time64(&max_date);
t_max_date -= 1;
t_alrm = rtc_tm_to_time64(&t->time);
if (t_alrm > t_max_date) {
dev_err(dev,
"Alarms can be up to one month in the future\n");
return -EINVAL;
}
} else {
struct rtc_time max_date = now;
time64_t t_max_date;
time64_t t_alrm;
int max_mday;
max_date.tm_year += 1;
max_mday = rtc_month_days(max_date.tm_mon, max_date.tm_year);
if (max_date.tm_mday > max_mday)
max_date.tm_mday = max_mday;
t_max_date = rtc_tm_to_time64(&max_date);
t_max_date -= 1;
t_alrm = rtc_tm_to_time64(&t->time);
if (t_alrm > t_max_date) {
dev_err(dev,
"Alarms can be up to one year in the future\n");
return -EINVAL;
}
}
return 0;
}
static int cmos_set_alarm(struct device *dev, struct rtc_wkalrm *t)
{
struct cmos_rtc *cmos = dev_get_drvdata(dev);
unsigned char mon, mday, hrs, min, sec, rtc_control;
int ret;
/* This not only a rtc_op, but also called directly */
if (!is_valid_irq(cmos->irq))
return -EIO;
ret = cmos_validate_alarm(dev, t);
if (ret < 0)
return ret;
mon = t->time.tm_mon + 1;
mday = t->time.tm_mday;
hrs = t->time.tm_hour;
min = t->time.tm_min;
sec = t->time.tm_sec;
spin_lock_irq(&rtc_lock);
rtc_control = CMOS_READ(RTC_CONTROL);
spin_unlock_irq(&rtc_lock);
if (!(rtc_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
/* Writing 0xff means "don't care" or "match all". */
mon = (mon <= 12) ? bin2bcd(mon) : 0xff;
mday = (mday >= 1 && mday <= 31) ? bin2bcd(mday) : 0xff;
hrs = (hrs < 24) ? bin2bcd(hrs) : 0xff;
min = (min < 60) ? bin2bcd(min) : 0xff;
sec = (sec < 60) ? bin2bcd(sec) : 0xff;
}
spin_lock_irq(&rtc_lock);
/* next rtc irq must not be from previous alarm setting */
cmos_irq_disable(cmos, RTC_AIE);
/* update alarm */
CMOS_WRITE(hrs, RTC_HOURS_ALARM);
CMOS_WRITE(min, RTC_MINUTES_ALARM);
CMOS_WRITE(sec, RTC_SECONDS_ALARM);
/* the system may support an "enhanced" alarm */
if (cmos->day_alrm) {
CMOS_WRITE(mday, cmos->day_alrm);
if (cmos->mon_alrm)
CMOS_WRITE(mon, cmos->mon_alrm);
}
if (use_hpet_alarm()) {
/*
* FIXME the HPET alarm glue currently ignores day_alrm
* and mon_alrm ...
*/
hpet_set_alarm_time(t->time.tm_hour, t->time.tm_min,
t->time.tm_sec);
}
if (t->enabled)
cmos_irq_enable(cmos, RTC_AIE);
spin_unlock_irq(&rtc_lock);
cmos->alarm_expires = rtc_tm_to_time64(&t->time);
return 0;
}
static int cmos_alarm_irq_enable(struct device *dev, unsigned int enabled)
{
struct cmos_rtc *cmos = dev_get_drvdata(dev);
unsigned long flags;
spin_lock_irqsave(&rtc_lock, flags);
if (enabled)
cmos_irq_enable(cmos, RTC_AIE);
else
cmos_irq_disable(cmos, RTC_AIE);
spin_unlock_irqrestore(&rtc_lock, flags);
return 0;
}
#if IS_ENABLED(CONFIG_RTC_INTF_PROC)
static int cmos_procfs(struct device *dev, struct seq_file *seq)
{
struct cmos_rtc *cmos = dev_get_drvdata(dev);
unsigned char rtc_control, valid;
spin_lock_irq(&rtc_lock);
rtc_control = CMOS_READ(RTC_CONTROL);
valid = CMOS_READ(RTC_VALID);
spin_unlock_irq(&rtc_lock);
/* NOTE: at least ICH6 reports battery status using a different
* (non-RTC) bit; and SQWE is ignored on many current systems.
*/
seq_printf(seq,
"periodic_IRQ\t: %s\n"
"update_IRQ\t: %s\n"
"HPET_emulated\t: %s\n"
// "square_wave\t: %s\n"
"BCD\t\t: %s\n"
"DST_enable\t: %s\n"
"periodic_freq\t: %d\n"
"batt_status\t: %s\n",
(rtc_control & RTC_PIE) ? "yes" : "no",
(rtc_control & RTC_UIE) ? "yes" : "no",
use_hpet_alarm() ? "yes" : "no",
// (rtc_control & RTC_SQWE) ? "yes" : "no",
(rtc_control & RTC_DM_BINARY) ? "no" : "yes",
(rtc_control & RTC_DST_EN) ? "yes" : "no",
cmos->rtc->irq_freq,
(valid & RTC_VRT) ? "okay" : "dead");
return 0;
}
#else
#define cmos_procfs NULL
#endif
static const struct rtc_class_ops cmos_rtc_ops = {
.read_time = cmos_read_time,
.set_time = cmos_set_time,
.read_alarm = cmos_read_alarm,
.set_alarm = cmos_set_alarm,
.proc = cmos_procfs,
.alarm_irq_enable = cmos_alarm_irq_enable,
};
/*----------------------------------------------------------------*/
/*
* All these chips have at least 64 bytes of address space, shared by
* RTC registers and NVRAM. Most of those bytes of NVRAM are used
* by boot firmware. Modern chips have 128 or 256 bytes.
*/
#define NVRAM_OFFSET (RTC_REG_D + 1)
static int cmos_nvram_read(void *priv, unsigned int off, void *val,
size_t count)
{
unsigned char *buf = val;
int retval;
off += NVRAM_OFFSET;
spin_lock_irq(&rtc_lock);
for (retval = 0; count; count--, off++, retval++) {
if (off < 128)
*buf++ = CMOS_READ(off);
else if (can_bank2)
*buf++ = cmos_read_bank2(off);
else
break;
}
spin_unlock_irq(&rtc_lock);
return retval;
}
static int cmos_nvram_write(void *priv, unsigned int off, void *val,
size_t count)
{
struct cmos_rtc *cmos = priv;
unsigned char *buf = val;
int retval;
/* NOTE: on at least PCs and Ataris, the boot firmware uses a
* checksum on part of the NVRAM data. That's currently ignored
* here. If userspace is smart enough to know what fields of
* NVRAM to update, updating checksums is also part of its job.
*/
off += NVRAM_OFFSET;
spin_lock_irq(&rtc_lock);
for (retval = 0; count; count--, off++, retval++) {
/* don't trash RTC registers */
if (off == cmos->day_alrm
|| off == cmos->mon_alrm
|| off == cmos->century)
buf++;
else if (off < 128)
CMOS_WRITE(*buf++, off);
else if (can_bank2)
cmos_write_bank2(*buf++, off);
else
break;
}
spin_unlock_irq(&rtc_lock);
return retval;
}
/*----------------------------------------------------------------*/
static struct cmos_rtc cmos_rtc;
static irqreturn_t cmos_interrupt(int irq, void *p)
{
u8 irqstat;
u8 rtc_control;
spin_lock(&rtc_lock);
/* When the HPET interrupt handler calls us, the interrupt
* status is passed as arg1 instead of the irq number. But
* always clear irq status, even when HPET is in the way.
*
* Note that HPET and RTC are almost certainly out of phase,
* giving different IRQ status ...
*/
irqstat = CMOS_READ(RTC_INTR_FLAGS);
rtc_control = CMOS_READ(RTC_CONTROL);
if (use_hpet_alarm())
irqstat = (unsigned long)irq & 0xF0;
/* If we were suspended, RTC_CONTROL may not be accurate since the
* bios may have cleared it.
*/
if (!cmos_rtc.suspend_ctrl)
irqstat &= (rtc_control & RTC_IRQMASK) | RTC_IRQF;
else
irqstat &= (cmos_rtc.suspend_ctrl & RTC_IRQMASK) | RTC_IRQF;
/* All Linux RTC alarms should be treated as if they were oneshot.
* Similar code may be needed in system wakeup paths, in case the
* alarm woke the system.
*/
if (irqstat & RTC_AIE) {
cmos_rtc.suspend_ctrl &= ~RTC_AIE;
rtc_control &= ~RTC_AIE;
CMOS_WRITE(rtc_control, RTC_CONTROL);
if (use_hpet_alarm())
hpet_mask_rtc_irq_bit(RTC_AIE);
CMOS_READ(RTC_INTR_FLAGS);
}
spin_unlock(&rtc_lock);
if (is_intr(irqstat)) {
rtc_update_irq(p, 1, irqstat);
return IRQ_HANDLED;
} else
return IRQ_NONE;
}
#ifdef CONFIG_PNP
#define INITSECTION
#else
#define INITSECTION __init
#endif
static int INITSECTION
cmos_do_probe(struct device *dev, struct resource *ports, int rtc_irq)
{
struct cmos_rtc_board_info *info = dev_get_platdata(dev);
int retval = 0;
unsigned char rtc_control;
unsigned address_space;
u32 flags = 0;
struct nvmem_config nvmem_cfg = {
.name = "cmos_nvram",
.word_size = 1,
.stride = 1,
.reg_read = cmos_nvram_read,
.reg_write = cmos_nvram_write,
.priv = &cmos_rtc,
};
/* there can be only one ... */
if (cmos_rtc.dev)
return -EBUSY;
if (!ports)
return -ENODEV;
/* Claim I/O ports ASAP, minimizing conflict with legacy driver.
*
* REVISIT non-x86 systems may instead use memory space resources
* (needing ioremap etc), not i/o space resources like this ...
*/
if (RTC_IOMAPPED)
ports = request_region(ports->start, resource_size(ports),
driver_name);
else
ports = request_mem_region(ports->start, resource_size(ports),
driver_name);
if (!ports) {
dev_dbg(dev, "i/o registers already in use\n");
return -EBUSY;
}
cmos_rtc.irq = rtc_irq;
cmos_rtc.iomem = ports;
/* Heuristic to deduce NVRAM size ... do what the legacy NVRAM
* driver did, but don't reject unknown configs. Old hardware
* won't address 128 bytes. Newer chips have multiple banks,
* though they may not be listed in one I/O resource.
*/
#if defined(CONFIG_ATARI)
address_space = 64;
#elif defined(__i386__) || defined(__x86_64__) || defined(__arm__) \
|| defined(__sparc__) || defined(__mips__) \
|| defined(__powerpc__)
address_space = 128;
#else
#warning Assuming 128 bytes of RTC+NVRAM address space, not 64 bytes.
address_space = 128;
#endif
if (can_bank2 && ports->end > (ports->start + 1))
address_space = 256;
/* For ACPI systems extension info comes from the FADT. On others,
* board specific setup provides it as appropriate. Systems where
* the alarm IRQ isn't automatically a wakeup IRQ (like ACPI, and
* some almost-clones) can provide hooks to make that behave.
*
* Note that ACPI doesn't preclude putting these registers into
* "extended" areas of the chip, including some that we won't yet
* expect CMOS_READ and friends to handle.
*/
if (info) {
if (info->flags)
flags = info->flags;
if (info->address_space)
address_space = info->address_space;
if (info->rtc_day_alarm && info->rtc_day_alarm < 128)
cmos_rtc.day_alrm = info->rtc_day_alarm;
if (info->rtc_mon_alarm && info->rtc_mon_alarm < 128)
cmos_rtc.mon_alrm = info->rtc_mon_alarm;
if (info->rtc_century && info->rtc_century < 128)
cmos_rtc.century = info->rtc_century;
if (info->wake_on && info->wake_off) {
cmos_rtc.wake_on = info->wake_on;
cmos_rtc.wake_off = info->wake_off;
}
}
cmos_rtc.dev = dev;
dev_set_drvdata(dev, &cmos_rtc);
cmos_rtc.rtc = devm_rtc_allocate_device(dev);
if (IS_ERR(cmos_rtc.rtc)) {
retval = PTR_ERR(cmos_rtc.rtc);
goto cleanup0;
}
rename_region(ports, dev_name(&cmos_rtc.rtc->dev));
spin_lock_irq(&rtc_lock);
/* Ensure that the RTC is accessible. Bit 6 must be 0! */
if ((CMOS_READ(RTC_VALID) & 0x40) != 0) {
spin_unlock_irq(&rtc_lock);
dev_warn(dev, "not accessible\n");
retval = -ENXIO;
goto cleanup1;
}
if (!(flags & CMOS_RTC_FLAGS_NOFREQ)) {
/* force periodic irq to CMOS reset default of 1024Hz;
*
* REVISIT it's been reported that at least one x86_64 ALI
* mobo doesn't use 32KHz here ... for portability we might
* need to do something about other clock frequencies.
*/
cmos_rtc.rtc->irq_freq = 1024;
if (use_hpet_alarm())
hpet_set_periodic_freq(cmos_rtc.rtc->irq_freq);
CMOS_WRITE(RTC_REF_CLCK_32KHZ | 0x06, RTC_FREQ_SELECT);
}
/* disable irqs */
if (is_valid_irq(rtc_irq))
cmos_irq_disable(&cmos_rtc, RTC_PIE | RTC_AIE | RTC_UIE);
rtc_control = CMOS_READ(RTC_CONTROL);
spin_unlock_irq(&rtc_lock);
if (is_valid_irq(rtc_irq) && !(rtc_control & RTC_24H)) {
dev_warn(dev, "only 24-hr supported\n");
retval = -ENXIO;
goto cleanup1;
}
if (use_hpet_alarm())
hpet_rtc_timer_init();
if (is_valid_irq(rtc_irq)) {
irq_handler_t rtc_cmos_int_handler;
if (use_hpet_alarm()) {
rtc_cmos_int_handler = hpet_rtc_interrupt;
retval = hpet_register_irq_handler(cmos_interrupt);
if (retval) {
hpet_mask_rtc_irq_bit(RTC_IRQMASK);
dev_warn(dev, "hpet_register_irq_handler "
" failed in rtc_init().");
goto cleanup1;
}
} else
rtc_cmos_int_handler = cmos_interrupt;
retval = request_irq(rtc_irq, rtc_cmos_int_handler,
0, dev_name(&cmos_rtc.rtc->dev),
cmos_rtc.rtc);
if (retval < 0) {
dev_dbg(dev, "IRQ %d is already in use\n", rtc_irq);
goto cleanup1;
}
} else {
clear_bit(RTC_FEATURE_ALARM, cmos_rtc.rtc->features);
}
cmos_rtc.rtc->ops = &cmos_rtc_ops;
retval = devm_rtc_register_device(cmos_rtc.rtc);
if (retval)
goto cleanup2;
/* Set the sync offset for the periodic 11min update correct */
cmos_rtc.rtc->set_offset_nsec = NSEC_PER_SEC / 2;
/* export at least the first block of NVRAM */
nvmem_cfg.size = address_space - NVRAM_OFFSET;
devm_rtc_nvmem_register(cmos_rtc.rtc, &nvmem_cfg);
dev_info(dev, "%s%s, %d bytes nvram%s\n",
!is_valid_irq(rtc_irq) ? "no alarms" :
cmos_rtc.mon_alrm ? "alarms up to one year" :
cmos_rtc.day_alrm ? "alarms up to one month" :
"alarms up to one day",
cmos_rtc.century ? ", y3k" : "",
nvmem_cfg.size,
use_hpet_alarm() ? ", hpet irqs" : "");
return 0;
cleanup2:
if (is_valid_irq(rtc_irq))
free_irq(rtc_irq, cmos_rtc.rtc);
cleanup1:
cmos_rtc.dev = NULL;
cleanup0:
if (RTC_IOMAPPED)
release_region(ports->start, resource_size(ports));
else
release_mem_region(ports->start, resource_size(ports));
return retval;
}
static void cmos_do_shutdown(int rtc_irq)
{
spin_lock_irq(&rtc_lock);
if (is_valid_irq(rtc_irq))
cmos_irq_disable(&cmos_rtc, RTC_IRQMASK);
spin_unlock_irq(&rtc_lock);
}
static void cmos_do_remove(struct device *dev)
{
struct cmos_rtc *cmos = dev_get_drvdata(dev);
struct resource *ports;
cmos_do_shutdown(cmos->irq);
if (is_valid_irq(cmos->irq)) {
free_irq(cmos->irq, cmos->rtc);
if (use_hpet_alarm())
hpet_unregister_irq_handler(cmos_interrupt);
}
cmos->rtc = NULL;
ports = cmos->iomem;
if (RTC_IOMAPPED)
release_region(ports->start, resource_size(ports));
else
release_mem_region(ports->start, resource_size(ports));
cmos->iomem = NULL;
cmos->dev = NULL;
}
static int cmos_aie_poweroff(struct device *dev)
{
struct cmos_rtc *cmos = dev_get_drvdata(dev);
struct rtc_time now;
time64_t t_now;
int retval = 0;
unsigned char rtc_control;
if (!cmos->alarm_expires)
return -EINVAL;
spin_lock_irq(&rtc_lock);
rtc_control = CMOS_READ(RTC_CONTROL);
spin_unlock_irq(&rtc_lock);
/* We only care about the situation where AIE is disabled. */
if (rtc_control & RTC_AIE)
return -EBUSY;
cmos_read_time(dev, &now);
t_now = rtc_tm_to_time64(&now);
/*
* When enabling "RTC wake-up" in BIOS setup, the machine reboots
* automatically right after shutdown on some buggy boxes.
* This automatic rebooting issue won't happen when the alarm
* time is larger than now+1 seconds.
*
* If the alarm time is equal to now+1 seconds, the issue can be
* prevented by cancelling the alarm.
*/
if (cmos->alarm_expires == t_now + 1) {
struct rtc_wkalrm alarm;
/* Cancel the AIE timer by configuring the past time. */
rtc_time64_to_tm(t_now - 1, &alarm.time);
alarm.enabled = 0;
retval = cmos_set_alarm(dev, &alarm);
} else if (cmos->alarm_expires > t_now + 1) {
retval = -EBUSY;
}
return retval;
}
static int cmos_suspend(struct device *dev)
{
struct cmos_rtc *cmos = dev_get_drvdata(dev);
unsigned char tmp;
/* only the alarm might be a wakeup event source */
spin_lock_irq(&rtc_lock);
cmos->suspend_ctrl = tmp = CMOS_READ(RTC_CONTROL);
if (tmp & (RTC_PIE|RTC_AIE|RTC_UIE)) {
unsigned char mask;
if (device_may_wakeup(dev))
mask = RTC_IRQMASK & ~RTC_AIE;
else
mask = RTC_IRQMASK;
tmp &= ~mask;
CMOS_WRITE(tmp, RTC_CONTROL);
if (use_hpet_alarm())
hpet_mask_rtc_irq_bit(mask);
cmos_checkintr(cmos, tmp);
}
spin_unlock_irq(&rtc_lock);
if ((tmp & RTC_AIE) && !cmos_use_acpi_alarm()) {
cmos->enabled_wake = 1;
if (cmos->wake_on)
cmos->wake_on(dev);
else
enable_irq_wake(cmos->irq);
}
memset(&cmos->saved_wkalrm, 0, sizeof(struct rtc_wkalrm));
cmos_read_alarm(dev, &cmos->saved_wkalrm);
dev_dbg(dev, "suspend%s, ctrl %02x\n",
(tmp & RTC_AIE) ? ", alarm may wake" : "",
tmp);
return 0;
}
/* We want RTC alarms to wake us from e.g. ACPI G2/S5 "soft off", even
* after a detour through G3 "mechanical off", although the ACPI spec
* says wakeup should only work from G1/S4 "hibernate". To most users,
* distinctions between S4 and S5 are pointless. So when the hardware
* allows, don't draw that distinction.
*/
static inline int cmos_poweroff(struct device *dev)
{
if (!IS_ENABLED(CONFIG_PM))
return -ENOSYS;
return cmos_suspend(dev);
}
static void cmos_check_wkalrm(struct device *dev)
{
struct cmos_rtc *cmos = dev_get_drvdata(dev);
struct rtc_wkalrm current_alarm;
time64_t t_now;
time64_t t_current_expires;
time64_t t_saved_expires;
struct rtc_time now;
/* Check if we have RTC Alarm armed */
if (!(cmos->suspend_ctrl & RTC_AIE))
return;
cmos_read_time(dev, &now);
t_now = rtc_tm_to_time64(&now);
/*
* ACPI RTC wake event is cleared after resume from STR,
* ACK the rtc irq here
*/
if (t_now >= cmos->alarm_expires && cmos_use_acpi_alarm()) {
local_irq_disable();
cmos_interrupt(0, (void *)cmos->rtc);
local_irq_enable();
return;
}
memset(&current_alarm, 0, sizeof(struct rtc_wkalrm));
cmos_read_alarm(dev, &current_alarm);
t_current_expires = rtc_tm_to_time64(&current_alarm.time);
t_saved_expires = rtc_tm_to_time64(&cmos->saved_wkalrm.time);
if (t_current_expires != t_saved_expires ||
cmos->saved_wkalrm.enabled != current_alarm.enabled) {
cmos_set_alarm(dev, &cmos->saved_wkalrm);
}
}
static void cmos_check_acpi_rtc_status(struct device *dev,
unsigned char *rtc_control);
static int __maybe_unused cmos_resume(struct device *dev)
{
struct cmos_rtc *cmos = dev_get_drvdata(dev);
unsigned char tmp;
if (cmos->enabled_wake && !cmos_use_acpi_alarm()) {
if (cmos->wake_off)
cmos->wake_off(dev);
else
disable_irq_wake(cmos->irq);
cmos->enabled_wake = 0;
}
/* The BIOS might have changed the alarm, restore it */
cmos_check_wkalrm(dev);
spin_lock_irq(&rtc_lock);
tmp = cmos->suspend_ctrl;
cmos->suspend_ctrl = 0;
/* re-enable any irqs previously active */
if (tmp & RTC_IRQMASK) {
unsigned char mask;
if (device_may_wakeup(dev) && use_hpet_alarm())
hpet_rtc_timer_init();
do {
CMOS_WRITE(tmp, RTC_CONTROL);
if (use_hpet_alarm())
hpet_set_rtc_irq_bit(tmp & RTC_IRQMASK);
mask = CMOS_READ(RTC_INTR_FLAGS);
mask &= (tmp & RTC_IRQMASK) | RTC_IRQF;
if (!use_hpet_alarm() || !is_intr(mask))
break;
/* force one-shot behavior if HPET blocked
* the wake alarm's irq
*/
rtc_update_irq(cmos->rtc, 1, mask);
tmp &= ~RTC_AIE;
hpet_mask_rtc_irq_bit(RTC_AIE);
} while (mask & RTC_AIE);
if (tmp & RTC_AIE)
cmos_check_acpi_rtc_status(dev, &tmp);
}
spin_unlock_irq(&rtc_lock);
dev_dbg(dev, "resume, ctrl %02x\n", tmp);
return 0;
}
static SIMPLE_DEV_PM_OPS(cmos_pm_ops, cmos_suspend, cmos_resume);
/*----------------------------------------------------------------*/
/* On non-x86 systems, a "CMOS" RTC lives most naturally on platform_bus.
* ACPI systems always list these as PNPACPI devices, and pre-ACPI PCs
* probably list them in similar PNPBIOS tables; so PNP is more common.
*
* We don't use legacy "poke at the hardware" probing. Ancient PCs that
* predate even PNPBIOS should set up platform_bus devices.
*/
#ifdef CONFIG_ACPI
#include <linux/acpi.h>
static u32 rtc_handler(void *context)
{
struct device *dev = context;
struct cmos_rtc *cmos = dev_get_drvdata(dev);
unsigned char rtc_control = 0;
unsigned char rtc_intr;
unsigned long flags;
/*
* Always update rtc irq when ACPI is used as RTC Alarm.
* Or else, ACPI SCI is enabled during suspend/resume only,
* update rtc irq in that case.
*/
if (cmos_use_acpi_alarm())
cmos_interrupt(0, (void *)cmos->rtc);
else {
/* Fix me: can we use cmos_interrupt() here as well? */
spin_lock_irqsave(&rtc_lock, flags);
if (cmos_rtc.suspend_ctrl)
rtc_control = CMOS_READ(RTC_CONTROL);
if (rtc_control & RTC_AIE) {
cmos_rtc.suspend_ctrl &= ~RTC_AIE;
CMOS_WRITE(rtc_control, RTC_CONTROL);
rtc_intr = CMOS_READ(RTC_INTR_FLAGS);
rtc_update_irq(cmos->rtc, 1, rtc_intr);
}
spin_unlock_irqrestore(&rtc_lock, flags);
}
pm_wakeup_hard_event(dev);
acpi_clear_event(ACPI_EVENT_RTC);
acpi_disable_event(ACPI_EVENT_RTC, 0);
return ACPI_INTERRUPT_HANDLED;
}
static inline void rtc_wake_setup(struct device *dev)
{
acpi_install_fixed_event_handler(ACPI_EVENT_RTC, rtc_handler, dev);
/*
* After the RTC handler is installed, the Fixed_RTC event should
* be disabled. Only when the RTC alarm is set will it be enabled.
*/
acpi_clear_event(ACPI_EVENT_RTC);
acpi_disable_event(ACPI_EVENT_RTC, 0);
}
static void rtc_wake_on(struct device *dev)
{
acpi_clear_event(ACPI_EVENT_RTC);
acpi_enable_event(ACPI_EVENT_RTC, 0);
}
static void rtc_wake_off(struct device *dev)
{
acpi_disable_event(ACPI_EVENT_RTC, 0);
}
#ifdef CONFIG_X86
/* Enable use_acpi_alarm mode for Intel platforms no earlier than 2015 */
static void use_acpi_alarm_quirks(void)
{
if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
return;
if (!(acpi_gbl_FADT.flags & ACPI_FADT_LOW_POWER_S0))
return;
if (!is_hpet_enabled())
return;
if (dmi_get_bios_year() < 2015)
return;
use_acpi_alarm = true;
}
#else
static inline void use_acpi_alarm_quirks(void) { }
#endif
/* Every ACPI platform has a mc146818 compatible "cmos rtc". Here we find
* its device node and pass extra config data. This helps its driver use
* capabilities that the now-obsolete mc146818 didn't have, and informs it
* that this board's RTC is wakeup-capable (per ACPI spec).
*/
static struct cmos_rtc_board_info acpi_rtc_info;
static void cmos_wake_setup(struct device *dev)
{
if (acpi_disabled)
return;
use_acpi_alarm_quirks();
rtc_wake_setup(dev);
acpi_rtc_info.wake_on = rtc_wake_on;
acpi_rtc_info.wake_off = rtc_wake_off;
/* workaround bug in some ACPI tables */
if (acpi_gbl_FADT.month_alarm && !acpi_gbl_FADT.day_alarm) {
dev_dbg(dev, "bogus FADT month_alarm (%d)\n",
acpi_gbl_FADT.month_alarm);
acpi_gbl_FADT.month_alarm = 0;
}
acpi_rtc_info.rtc_day_alarm = acpi_gbl_FADT.day_alarm;
acpi_rtc_info.rtc_mon_alarm = acpi_gbl_FADT.month_alarm;
acpi_rtc_info.rtc_century = acpi_gbl_FADT.century;
/* NOTE: S4_RTC_WAKE is NOT currently useful to Linux */
if (acpi_gbl_FADT.flags & ACPI_FADT_S4_RTC_WAKE)
dev_info(dev, "RTC can wake from S4\n");
dev->platform_data = &acpi_rtc_info;
/* RTC always wakes from S1/S2/S3, and often S4/STD */
device_init_wakeup(dev, 1);
}
static void cmos_check_acpi_rtc_status(struct device *dev,
unsigned char *rtc_control)
{
struct cmos_rtc *cmos = dev_get_drvdata(dev);
acpi_event_status rtc_status;
acpi_status status;
if (acpi_gbl_FADT.flags & ACPI_FADT_FIXED_RTC)
return;
status = acpi_get_event_status(ACPI_EVENT_RTC, &rtc_status);
if (ACPI_FAILURE(status)) {
dev_err(dev, "Could not get RTC status\n");
} else if (rtc_status & ACPI_EVENT_FLAG_SET) {
unsigned char mask;
*rtc_control &= ~RTC_AIE;
CMOS_WRITE(*rtc_control, RTC_CONTROL);
mask = CMOS_READ(RTC_INTR_FLAGS);
rtc_update_irq(cmos->rtc, 1, mask);
}
}
#else
static void cmos_wake_setup(struct device *dev)
{
}
static void cmos_check_acpi_rtc_status(struct device *dev,
unsigned char *rtc_control)
{
}
#endif
#ifdef CONFIG_PNP
#include <linux/pnp.h>
static int cmos_pnp_probe(struct pnp_dev *pnp, const struct pnp_device_id *id)
{
cmos_wake_setup(&pnp->dev);
if (pnp_port_start(pnp, 0) == 0x70 && !pnp_irq_valid(pnp, 0)) {
unsigned int irq = 0;
#ifdef CONFIG_X86
/* Some machines contain a PNP entry for the RTC, but
* don't define the IRQ. It should always be safe to
* hardcode it on systems with a legacy PIC.
*/
if (nr_legacy_irqs())
irq = RTC_IRQ;
#endif
return cmos_do_probe(&pnp->dev,
pnp_get_resource(pnp, IORESOURCE_IO, 0), irq);
} else {
return cmos_do_probe(&pnp->dev,
pnp_get_resource(pnp, IORESOURCE_IO, 0),
pnp_irq(pnp, 0));
}
}
static void cmos_pnp_remove(struct pnp_dev *pnp)
{
cmos_do_remove(&pnp->dev);
}
static void cmos_pnp_shutdown(struct pnp_dev *pnp)
{
struct device *dev = &pnp->dev;
struct cmos_rtc *cmos = dev_get_drvdata(dev);
if (system_state == SYSTEM_POWER_OFF) {
int retval = cmos_poweroff(dev);
if (cmos_aie_poweroff(dev) < 0 && !retval)
return;
}
cmos_do_shutdown(cmos->irq);
}
static const struct pnp_device_id rtc_ids[] = {
{ .id = "PNP0b00", },
{ .id = "PNP0b01", },
{ .id = "PNP0b02", },
{ },
};
MODULE_DEVICE_TABLE(pnp, rtc_ids);
static struct pnp_driver cmos_pnp_driver = {
.name = driver_name,
.id_table = rtc_ids,
.probe = cmos_pnp_probe,
.remove = cmos_pnp_remove,
.shutdown = cmos_pnp_shutdown,
/* flag ensures resume() gets called, and stops syslog spam */
.flags = PNP_DRIVER_RES_DO_NOT_CHANGE,
.driver = {
.pm = &cmos_pm_ops,
},
};
#endif /* CONFIG_PNP */
#ifdef CONFIG_OF
static const struct of_device_id of_cmos_match[] = {
{
.compatible = "motorola,mc146818",
},
{ },
};
MODULE_DEVICE_TABLE(of, of_cmos_match);
static __init void cmos_of_init(struct platform_device *pdev)
{
struct device_node *node = pdev->dev.of_node;
const __be32 *val;
if (!node)
return;
val = of_get_property(node, "ctrl-reg", NULL);
if (val)
CMOS_WRITE(be32_to_cpup(val), RTC_CONTROL);
val = of_get_property(node, "freq-reg", NULL);
if (val)
CMOS_WRITE(be32_to_cpup(val), RTC_FREQ_SELECT);
}
#else
static inline void cmos_of_init(struct platform_device *pdev) {}
#endif
/*----------------------------------------------------------------*/
/* Platform setup should have set up an RTC device, when PNP is
* unavailable ... this could happen even on (older) PCs.
*/
static int __init cmos_platform_probe(struct platform_device *pdev)
{
struct resource *resource;
int irq;
cmos_of_init(pdev);
cmos_wake_setup(&pdev->dev);
if (RTC_IOMAPPED)
resource = platform_get_resource(pdev, IORESOURCE_IO, 0);
else
resource = platform_get_resource(pdev, IORESOURCE_MEM, 0);
irq = platform_get_irq(pdev, 0);
if (irq < 0)
irq = -1;
return cmos_do_probe(&pdev->dev, resource, irq);
}
static int cmos_platform_remove(struct platform_device *pdev)
{
cmos_do_remove(&pdev->dev);
return 0;
}
static void cmos_platform_shutdown(struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
struct cmos_rtc *cmos = dev_get_drvdata(dev);
if (system_state == SYSTEM_POWER_OFF) {
int retval = cmos_poweroff(dev);
if (cmos_aie_poweroff(dev) < 0 && !retval)
return;
}
cmos_do_shutdown(cmos->irq);
}
/* work with hotplug and coldplug */
MODULE_ALIAS("platform:rtc_cmos");
static struct platform_driver cmos_platform_driver = {
.remove = cmos_platform_remove,
.shutdown = cmos_platform_shutdown,
.driver = {
.name = driver_name,
.pm = &cmos_pm_ops,
.of_match_table = of_match_ptr(of_cmos_match),
}
};
#ifdef CONFIG_PNP
static bool pnp_driver_registered;
#endif
static bool platform_driver_registered;
static int __init cmos_init(void)
{
int retval = 0;
#ifdef CONFIG_PNP
retval = pnp_register_driver(&cmos_pnp_driver);
if (retval == 0)
pnp_driver_registered = true;
#endif
if (!cmos_rtc.dev) {
retval = platform_driver_probe(&cmos_platform_driver,
cmos_platform_probe);
if (retval == 0)
platform_driver_registered = true;
}
if (retval == 0)
return 0;
#ifdef CONFIG_PNP
if (pnp_driver_registered)
pnp_unregister_driver(&cmos_pnp_driver);
#endif
return retval;
}
module_init(cmos_init);
static void __exit cmos_exit(void)
{
#ifdef CONFIG_PNP
if (pnp_driver_registered)
pnp_unregister_driver(&cmos_pnp_driver);
#endif
if (platform_driver_registered)
platform_driver_unregister(&cmos_platform_driver);
}
module_exit(cmos_exit);
MODULE_AUTHOR("David Brownell");
MODULE_DESCRIPTION("Driver for PC-style 'CMOS' RTCs");
MODULE_LICENSE("GPL");