1fe93f88c3
Signed-off-by: Kent Overstreet <kent.overstreet@linux.dev>
1949 lines
48 KiB
C
1949 lines
48 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/*
|
|
* Some low level IO code, and hacks for various block layer limitations
|
|
*
|
|
* Copyright 2010, 2011 Kent Overstreet <kent.overstreet@gmail.com>
|
|
* Copyright 2012 Google, Inc.
|
|
*/
|
|
|
|
#include "bcachefs.h"
|
|
#include "alloc_foreground.h"
|
|
#include "bset.h"
|
|
#include "btree_update.h"
|
|
#include "buckets.h"
|
|
#include "checksum.h"
|
|
#include "compress.h"
|
|
#include "clock.h"
|
|
#include "debug.h"
|
|
#include "disk_groups.h"
|
|
#include "ec.h"
|
|
#include "error.h"
|
|
#include "extents.h"
|
|
#include "io.h"
|
|
#include "journal.h"
|
|
#include "keylist.h"
|
|
#include "move.h"
|
|
#include "rebalance.h"
|
|
#include "super.h"
|
|
#include "super-io.h"
|
|
#include "trace.h"
|
|
|
|
#include <linux/blkdev.h>
|
|
#include <linux/random.h>
|
|
|
|
#ifndef CONFIG_BCACHEFS_NO_LATENCY_ACCT
|
|
|
|
static bool bch2_target_congested(struct bch_fs *c, u16 target)
|
|
{
|
|
const struct bch_devs_mask *devs;
|
|
unsigned d, nr = 0, total = 0;
|
|
u64 now = local_clock(), last;
|
|
s64 congested;
|
|
struct bch_dev *ca;
|
|
|
|
if (!target)
|
|
return false;
|
|
|
|
rcu_read_lock();
|
|
devs = bch2_target_to_mask(c, target);
|
|
for_each_set_bit(d, devs->d, BCH_SB_MEMBERS_MAX) {
|
|
ca = rcu_dereference(c->devs[d]);
|
|
if (!ca)
|
|
continue;
|
|
|
|
congested = atomic_read(&ca->congested);
|
|
last = READ_ONCE(ca->congested_last);
|
|
if (time_after64(now, last))
|
|
congested -= (now - last) >> 12;
|
|
|
|
total += max(congested, 0LL);
|
|
nr++;
|
|
}
|
|
rcu_read_unlock();
|
|
|
|
return bch2_rand_range(nr * CONGESTED_MAX) < total;
|
|
}
|
|
|
|
static inline void bch2_congested_acct(struct bch_dev *ca, u64 io_latency,
|
|
u64 now, int rw)
|
|
{
|
|
u64 latency_capable =
|
|
ca->io_latency[rw].quantiles.entries[QUANTILE_IDX(1)].m;
|
|
/* ideally we'd be taking into account the device's variance here: */
|
|
u64 latency_threshold = latency_capable << (rw == READ ? 2 : 3);
|
|
s64 latency_over = io_latency - latency_threshold;
|
|
|
|
if (latency_threshold && latency_over > 0) {
|
|
/*
|
|
* bump up congested by approximately latency_over * 4 /
|
|
* latency_threshold - we don't need much accuracy here so don't
|
|
* bother with the divide:
|
|
*/
|
|
if (atomic_read(&ca->congested) < CONGESTED_MAX)
|
|
atomic_add(latency_over >>
|
|
max_t(int, ilog2(latency_threshold) - 2, 0),
|
|
&ca->congested);
|
|
|
|
ca->congested_last = now;
|
|
} else if (atomic_read(&ca->congested) > 0) {
|
|
atomic_dec(&ca->congested);
|
|
}
|
|
}
|
|
|
|
void bch2_latency_acct(struct bch_dev *ca, u64 submit_time, int rw)
|
|
{
|
|
atomic64_t *latency = &ca->cur_latency[rw];
|
|
u64 now = local_clock();
|
|
u64 io_latency = time_after64(now, submit_time)
|
|
? now - submit_time
|
|
: 0;
|
|
u64 old, new, v = atomic64_read(latency);
|
|
|
|
do {
|
|
old = v;
|
|
|
|
/*
|
|
* If the io latency was reasonably close to the current
|
|
* latency, skip doing the update and atomic operation - most of
|
|
* the time:
|
|
*/
|
|
if (abs((int) (old - io_latency)) < (old >> 1) &&
|
|
now & ~(~0 << 5))
|
|
break;
|
|
|
|
new = ewma_add(old, io_latency, 5);
|
|
} while ((v = atomic64_cmpxchg(latency, old, new)) != old);
|
|
|
|
bch2_congested_acct(ca, io_latency, now, rw);
|
|
|
|
__bch2_time_stats_update(&ca->io_latency[rw], submit_time, now);
|
|
}
|
|
|
|
#else
|
|
|
|
static bool bch2_target_congested(struct bch_fs *c, u16 target)
|
|
{
|
|
return false;
|
|
}
|
|
|
|
#endif
|
|
|
|
/* Allocate, free from mempool: */
|
|
|
|
void bch2_bio_free_pages_pool(struct bch_fs *c, struct bio *bio)
|
|
{
|
|
struct bvec_iter_all iter;
|
|
struct bio_vec *bv;
|
|
|
|
bio_for_each_segment_all(bv, bio, iter)
|
|
if (bv->bv_page != ZERO_PAGE(0))
|
|
mempool_free(bv->bv_page, &c->bio_bounce_pages);
|
|
bio->bi_vcnt = 0;
|
|
}
|
|
|
|
static void bch2_bio_alloc_page_pool(struct bch_fs *c, struct bio *bio,
|
|
bool *using_mempool)
|
|
{
|
|
struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt++];
|
|
|
|
if (likely(!*using_mempool)) {
|
|
bv->bv_page = alloc_page(GFP_NOIO);
|
|
if (unlikely(!bv->bv_page)) {
|
|
mutex_lock(&c->bio_bounce_pages_lock);
|
|
*using_mempool = true;
|
|
goto pool_alloc;
|
|
|
|
}
|
|
} else {
|
|
pool_alloc:
|
|
bv->bv_page = mempool_alloc(&c->bio_bounce_pages, GFP_NOIO);
|
|
}
|
|
|
|
bv->bv_len = PAGE_SIZE;
|
|
bv->bv_offset = 0;
|
|
}
|
|
|
|
void bch2_bio_alloc_pages_pool(struct bch_fs *c, struct bio *bio,
|
|
size_t bytes)
|
|
{
|
|
bool using_mempool = false;
|
|
|
|
BUG_ON(DIV_ROUND_UP(bytes, PAGE_SIZE) > bio->bi_max_vecs);
|
|
|
|
bio->bi_iter.bi_size = bytes;
|
|
|
|
while (bio->bi_vcnt < DIV_ROUND_UP(bytes, PAGE_SIZE))
|
|
bch2_bio_alloc_page_pool(c, bio, &using_mempool);
|
|
|
|
if (using_mempool)
|
|
mutex_unlock(&c->bio_bounce_pages_lock);
|
|
}
|
|
|
|
void bch2_bio_alloc_more_pages_pool(struct bch_fs *c, struct bio *bio,
|
|
size_t bytes)
|
|
{
|
|
while (bio->bi_vcnt < DIV_ROUND_UP(bytes, PAGE_SIZE)) {
|
|
struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt];
|
|
|
|
BUG_ON(bio->bi_vcnt >= bio->bi_max_vecs);
|
|
|
|
bv->bv_page = alloc_page(GFP_NOIO);
|
|
if (!bv->bv_page) {
|
|
/*
|
|
* We already allocated from mempool, we can't allocate from it again
|
|
* without freeing the pages we already allocated or else we could
|
|
* deadlock:
|
|
*/
|
|
bch2_bio_free_pages_pool(c, bio);
|
|
bch2_bio_alloc_pages_pool(c, bio, bytes);
|
|
return;
|
|
}
|
|
|
|
bv->bv_len = PAGE_SIZE;
|
|
bv->bv_offset = 0;
|
|
bio->bi_vcnt++;
|
|
}
|
|
|
|
bio->bi_iter.bi_size = bytes;
|
|
}
|
|
|
|
/* Writes */
|
|
|
|
void bch2_submit_wbio_replicas(struct bch_write_bio *wbio, struct bch_fs *c,
|
|
enum bch_data_type type,
|
|
const struct bkey_i *k)
|
|
{
|
|
struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(bkey_i_to_s_c(k));
|
|
const struct bch_extent_ptr *ptr;
|
|
struct bch_write_bio *n;
|
|
struct bch_dev *ca;
|
|
|
|
BUG_ON(c->opts.nochanges);
|
|
|
|
bkey_for_each_ptr(ptrs, ptr) {
|
|
BUG_ON(ptr->dev >= BCH_SB_MEMBERS_MAX ||
|
|
!c->devs[ptr->dev]);
|
|
|
|
ca = bch_dev_bkey_exists(c, ptr->dev);
|
|
|
|
if (to_entry(ptr + 1) < ptrs.end) {
|
|
n = to_wbio(bio_alloc_clone(NULL, &wbio->bio,
|
|
GFP_NOIO, &ca->replica_set));
|
|
|
|
n->bio.bi_end_io = wbio->bio.bi_end_io;
|
|
n->bio.bi_private = wbio->bio.bi_private;
|
|
n->parent = wbio;
|
|
n->split = true;
|
|
n->bounce = false;
|
|
n->put_bio = true;
|
|
n->bio.bi_opf = wbio->bio.bi_opf;
|
|
bio_inc_remaining(&wbio->bio);
|
|
} else {
|
|
n = wbio;
|
|
n->split = false;
|
|
}
|
|
|
|
n->c = c;
|
|
n->dev = ptr->dev;
|
|
n->have_ioref = bch2_dev_get_ioref(ca, WRITE);
|
|
n->submit_time = local_clock();
|
|
n->bio.bi_iter.bi_sector = ptr->offset;
|
|
|
|
if (!journal_flushes_device(ca))
|
|
n->bio.bi_opf |= REQ_FUA;
|
|
|
|
if (likely(n->have_ioref)) {
|
|
this_cpu_add(ca->io_done->sectors[WRITE][type],
|
|
bio_sectors(&n->bio));
|
|
|
|
bio_set_dev(&n->bio, ca->disk_sb.bdev);
|
|
|
|
if (type != BCH_DATA_BTREE && unlikely(c->opts.no_data_io)) {
|
|
bio_endio(&n->bio);
|
|
continue;
|
|
}
|
|
|
|
submit_bio(&n->bio);
|
|
} else {
|
|
n->bio.bi_status = BLK_STS_REMOVED;
|
|
bio_endio(&n->bio);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void __bch2_write(struct closure *);
|
|
|
|
static void bch2_write_done(struct closure *cl)
|
|
{
|
|
struct bch_write_op *op = container_of(cl, struct bch_write_op, cl);
|
|
struct bch_fs *c = op->c;
|
|
|
|
if (!op->error && (op->flags & BCH_WRITE_FLUSH))
|
|
op->error = bch2_journal_error(&c->journal);
|
|
|
|
if (!(op->flags & BCH_WRITE_NOPUT_RESERVATION))
|
|
bch2_disk_reservation_put(c, &op->res);
|
|
percpu_ref_put(&c->writes);
|
|
bch2_keylist_free(&op->insert_keys, op->inline_keys);
|
|
|
|
bch2_time_stats_update(&c->times[BCH_TIME_data_write], op->start_time);
|
|
|
|
closure_return(cl);
|
|
}
|
|
|
|
int bch2_write_index_default(struct bch_write_op *op)
|
|
{
|
|
struct bch_fs *c = op->c;
|
|
struct btree_trans trans;
|
|
struct btree_iter *iter;
|
|
struct keylist *keys = &op->insert_keys;
|
|
int ret;
|
|
|
|
BUG_ON(bch2_keylist_empty(keys));
|
|
bch2_verify_keylist_sorted(keys);
|
|
|
|
bch2_trans_init(&trans, c);
|
|
|
|
iter = bch2_trans_get_iter(&trans, BTREE_ID_EXTENTS,
|
|
bkey_start_pos(&bch2_keylist_front(keys)->k),
|
|
BTREE_ITER_INTENT);
|
|
|
|
do {
|
|
BKEY_PADDED(k) split;
|
|
|
|
bkey_copy(&split.k, bch2_keylist_front(keys));
|
|
|
|
bch2_extent_trim_atomic(&split.k, iter);
|
|
|
|
bch2_trans_update(&trans,
|
|
BTREE_INSERT_ENTRY(iter, &split.k));
|
|
|
|
ret = bch2_trans_commit(&trans, &op->res, op_journal_seq(op),
|
|
BTREE_INSERT_NOFAIL|
|
|
BTREE_INSERT_USE_RESERVE);
|
|
if (ret)
|
|
break;
|
|
|
|
if (bkey_cmp(iter->pos, bch2_keylist_front(keys)->k.p) < 0)
|
|
bch2_cut_front(iter->pos, bch2_keylist_front(keys));
|
|
else
|
|
bch2_keylist_pop_front(keys);
|
|
} while (!bch2_keylist_empty(keys));
|
|
|
|
bch2_trans_exit(&trans);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* bch_write_index - after a write, update index to point to new data
|
|
*/
|
|
static void __bch2_write_index(struct bch_write_op *op)
|
|
{
|
|
struct bch_fs *c = op->c;
|
|
struct keylist *keys = &op->insert_keys;
|
|
struct bch_extent_ptr *ptr;
|
|
struct bkey_i *src, *dst = keys->keys, *n, *k;
|
|
unsigned dev;
|
|
int ret;
|
|
|
|
for (src = keys->keys; src != keys->top; src = n) {
|
|
n = bkey_next(src);
|
|
bkey_copy(dst, src);
|
|
|
|
bch2_bkey_drop_ptrs(bkey_i_to_s(dst), ptr,
|
|
test_bit(ptr->dev, op->failed.d));
|
|
|
|
if (!bch2_bkey_nr_ptrs(bkey_i_to_s_c(dst))) {
|
|
ret = -EIO;
|
|
goto err;
|
|
}
|
|
|
|
dst = bkey_next(dst);
|
|
}
|
|
|
|
keys->top = dst;
|
|
|
|
/*
|
|
* probably not the ideal place to hook this in, but I don't
|
|
* particularly want to plumb io_opts all the way through the btree
|
|
* update stack right now
|
|
*/
|
|
for_each_keylist_key(keys, k)
|
|
bch2_rebalance_add_key(c, bkey_i_to_s_c(k), &op->opts);
|
|
|
|
if (!bch2_keylist_empty(keys)) {
|
|
u64 sectors_start = keylist_sectors(keys);
|
|
int ret = op->index_update_fn(op);
|
|
|
|
BUG_ON(keylist_sectors(keys) && !ret);
|
|
|
|
op->written += sectors_start - keylist_sectors(keys);
|
|
|
|
if (ret) {
|
|
__bcache_io_error(c, "btree IO error %i", ret);
|
|
op->error = ret;
|
|
}
|
|
}
|
|
out:
|
|
/* If some a bucket wasn't written, we can't erasure code it: */
|
|
for_each_set_bit(dev, op->failed.d, BCH_SB_MEMBERS_MAX)
|
|
bch2_open_bucket_write_error(c, &op->open_buckets, dev);
|
|
|
|
bch2_open_buckets_put(c, &op->open_buckets);
|
|
return;
|
|
err:
|
|
keys->top = keys->keys;
|
|
op->error = ret;
|
|
goto out;
|
|
}
|
|
|
|
static void bch2_write_index(struct closure *cl)
|
|
{
|
|
struct bch_write_op *op = container_of(cl, struct bch_write_op, cl);
|
|
struct bch_fs *c = op->c;
|
|
|
|
__bch2_write_index(op);
|
|
|
|
if (!op->error && (op->flags & BCH_WRITE_FLUSH)) {
|
|
bch2_journal_flush_seq_async(&c->journal,
|
|
*op_journal_seq(op),
|
|
cl);
|
|
continue_at(cl, bch2_write_done, index_update_wq(op));
|
|
} else {
|
|
continue_at_nobarrier(cl, bch2_write_done, NULL);
|
|
}
|
|
}
|
|
|
|
static void bch2_write_endio(struct bio *bio)
|
|
{
|
|
struct closure *cl = bio->bi_private;
|
|
struct bch_write_op *op = container_of(cl, struct bch_write_op, cl);
|
|
struct bch_write_bio *wbio = to_wbio(bio);
|
|
struct bch_write_bio *parent = wbio->split ? wbio->parent : NULL;
|
|
struct bch_fs *c = wbio->c;
|
|
struct bch_dev *ca = bch_dev_bkey_exists(c, wbio->dev);
|
|
|
|
if (bch2_dev_io_err_on(bio->bi_status, ca, "data write"))
|
|
set_bit(wbio->dev, op->failed.d);
|
|
|
|
if (wbio->have_ioref) {
|
|
bch2_latency_acct(ca, wbio->submit_time, WRITE);
|
|
percpu_ref_put(&ca->io_ref);
|
|
}
|
|
|
|
if (wbio->bounce)
|
|
bch2_bio_free_pages_pool(c, bio);
|
|
|
|
if (wbio->put_bio)
|
|
bio_put(bio);
|
|
|
|
if (parent)
|
|
bio_endio(&parent->bio);
|
|
else
|
|
closure_put(cl);
|
|
}
|
|
|
|
static void init_append_extent(struct bch_write_op *op,
|
|
struct write_point *wp,
|
|
struct bversion version,
|
|
struct bch_extent_crc_unpacked crc)
|
|
{
|
|
struct bkey_i_extent *e = bkey_extent_init(op->insert_keys.top);
|
|
struct bch_extent_ptr *ptr;
|
|
|
|
op->pos.offset += crc.uncompressed_size;
|
|
e->k.p = op->pos;
|
|
e->k.size = crc.uncompressed_size;
|
|
e->k.version = version;
|
|
|
|
if (crc.csum_type ||
|
|
crc.compression_type ||
|
|
crc.nonce)
|
|
bch2_extent_crc_append(e, crc);
|
|
|
|
bch2_alloc_sectors_append_ptrs(op->c, wp, &e->k_i, crc.compressed_size);
|
|
|
|
if (op->flags & BCH_WRITE_CACHED)
|
|
extent_for_each_ptr(extent_i_to_s(e), ptr)
|
|
ptr->cached = true;
|
|
|
|
bch2_keylist_push(&op->insert_keys);
|
|
}
|
|
|
|
static struct bio *bch2_write_bio_alloc(struct bch_fs *c,
|
|
struct write_point *wp,
|
|
struct bio *src,
|
|
bool *page_alloc_failed,
|
|
void *buf)
|
|
{
|
|
struct bch_write_bio *wbio;
|
|
struct bio *bio;
|
|
unsigned output_available =
|
|
min(wp->sectors_free << 9, src->bi_iter.bi_size);
|
|
unsigned pages = DIV_ROUND_UP(output_available, PAGE_SIZE);
|
|
|
|
bio = bio_alloc_bioset(NULL, pages, 0,
|
|
GFP_NOIO, &c->bio_write);
|
|
wbio = wbio_init(bio);
|
|
wbio->put_bio = true;
|
|
/* copy WRITE_SYNC flag */
|
|
wbio->bio.bi_opf = src->bi_opf;
|
|
|
|
if (buf) {
|
|
bio->bi_iter.bi_size = output_available;
|
|
bch2_bio_map(bio, buf);
|
|
return bio;
|
|
}
|
|
|
|
wbio->bounce = true;
|
|
|
|
/*
|
|
* We can't use mempool for more than c->sb.encoded_extent_max
|
|
* worth of pages, but we'd like to allocate more if we can:
|
|
*/
|
|
while (bio->bi_iter.bi_size < output_available) {
|
|
unsigned len = min_t(unsigned, PAGE_SIZE,
|
|
output_available - bio->bi_iter.bi_size);
|
|
struct page *p;
|
|
|
|
p = alloc_page(GFP_NOIO);
|
|
if (!p) {
|
|
unsigned pool_max =
|
|
min_t(unsigned, output_available,
|
|
c->sb.encoded_extent_max << 9);
|
|
|
|
if (bio_sectors(bio) < pool_max)
|
|
bch2_bio_alloc_pages_pool(c, bio, pool_max);
|
|
break;
|
|
}
|
|
|
|
bio->bi_io_vec[bio->bi_vcnt++] = (struct bio_vec) {
|
|
.bv_page = p,
|
|
.bv_len = len,
|
|
.bv_offset = 0,
|
|
};
|
|
bio->bi_iter.bi_size += len;
|
|
}
|
|
|
|
*page_alloc_failed = bio->bi_vcnt < pages;
|
|
return bio;
|
|
}
|
|
|
|
static int bch2_write_rechecksum(struct bch_fs *c,
|
|
struct bch_write_op *op,
|
|
unsigned new_csum_type)
|
|
{
|
|
struct bio *bio = &op->wbio.bio;
|
|
struct bch_extent_crc_unpacked new_crc;
|
|
int ret;
|
|
|
|
/* bch2_rechecksum_bio() can't encrypt or decrypt data: */
|
|
|
|
if (bch2_csum_type_is_encryption(op->crc.csum_type) !=
|
|
bch2_csum_type_is_encryption(new_csum_type))
|
|
new_csum_type = op->crc.csum_type;
|
|
|
|
ret = bch2_rechecksum_bio(c, bio, op->version, op->crc,
|
|
NULL, &new_crc,
|
|
op->crc.offset, op->crc.live_size,
|
|
new_csum_type);
|
|
if (ret)
|
|
return ret;
|
|
|
|
bio_advance(bio, op->crc.offset << 9);
|
|
bio->bi_iter.bi_size = op->crc.live_size << 9;
|
|
op->crc = new_crc;
|
|
return 0;
|
|
}
|
|
|
|
static int bch2_write_decrypt(struct bch_write_op *op)
|
|
{
|
|
struct bch_fs *c = op->c;
|
|
struct nonce nonce = extent_nonce(op->version, op->crc);
|
|
struct bch_csum csum;
|
|
|
|
if (!bch2_csum_type_is_encryption(op->crc.csum_type))
|
|
return 0;
|
|
|
|
/*
|
|
* If we need to decrypt data in the write path, we'll no longer be able
|
|
* to verify the existing checksum (poly1305 mac, in this case) after
|
|
* it's decrypted - this is the last point we'll be able to reverify the
|
|
* checksum:
|
|
*/
|
|
csum = bch2_checksum_bio(c, op->crc.csum_type, nonce, &op->wbio.bio);
|
|
if (bch2_crc_cmp(op->crc.csum, csum))
|
|
return -EIO;
|
|
|
|
bch2_encrypt_bio(c, op->crc.csum_type, nonce, &op->wbio.bio);
|
|
op->crc.csum_type = 0;
|
|
op->crc.csum = (struct bch_csum) { 0, 0 };
|
|
return 0;
|
|
}
|
|
|
|
static enum prep_encoded_ret {
|
|
PREP_ENCODED_OK,
|
|
PREP_ENCODED_ERR,
|
|
PREP_ENCODED_CHECKSUM_ERR,
|
|
PREP_ENCODED_DO_WRITE,
|
|
} bch2_write_prep_encoded_data(struct bch_write_op *op, struct write_point *wp)
|
|
{
|
|
struct bch_fs *c = op->c;
|
|
struct bio *bio = &op->wbio.bio;
|
|
|
|
if (!(op->flags & BCH_WRITE_DATA_ENCODED))
|
|
return PREP_ENCODED_OK;
|
|
|
|
BUG_ON(bio_sectors(bio) != op->crc.compressed_size);
|
|
|
|
/* Can we just write the entire extent as is? */
|
|
if (op->crc.uncompressed_size == op->crc.live_size &&
|
|
op->crc.compressed_size <= wp->sectors_free &&
|
|
op->crc.compression_type == op->compression_type) {
|
|
if (!op->crc.compression_type &&
|
|
op->csum_type != op->crc.csum_type &&
|
|
bch2_write_rechecksum(c, op, op->csum_type))
|
|
return PREP_ENCODED_CHECKSUM_ERR;
|
|
|
|
return PREP_ENCODED_DO_WRITE;
|
|
}
|
|
|
|
/*
|
|
* If the data is compressed and we couldn't write the entire extent as
|
|
* is, we have to decompress it:
|
|
*/
|
|
if (op->crc.compression_type) {
|
|
struct bch_csum csum;
|
|
|
|
if (bch2_write_decrypt(op))
|
|
return PREP_ENCODED_CHECKSUM_ERR;
|
|
|
|
/* Last point we can still verify checksum: */
|
|
csum = bch2_checksum_bio(c, op->crc.csum_type,
|
|
extent_nonce(op->version, op->crc),
|
|
bio);
|
|
if (bch2_crc_cmp(op->crc.csum, csum))
|
|
return PREP_ENCODED_CHECKSUM_ERR;
|
|
|
|
if (bch2_bio_uncompress_inplace(c, bio, &op->crc))
|
|
return PREP_ENCODED_ERR;
|
|
}
|
|
|
|
/*
|
|
* No longer have compressed data after this point - data might be
|
|
* encrypted:
|
|
*/
|
|
|
|
/*
|
|
* If the data is checksummed and we're only writing a subset,
|
|
* rechecksum and adjust bio to point to currently live data:
|
|
*/
|
|
if ((op->crc.live_size != op->crc.uncompressed_size ||
|
|
op->crc.csum_type != op->csum_type) &&
|
|
bch2_write_rechecksum(c, op, op->csum_type))
|
|
return PREP_ENCODED_CHECKSUM_ERR;
|
|
|
|
/*
|
|
* If we want to compress the data, it has to be decrypted:
|
|
*/
|
|
if ((op->compression_type ||
|
|
bch2_csum_type_is_encryption(op->crc.csum_type) !=
|
|
bch2_csum_type_is_encryption(op->csum_type)) &&
|
|
bch2_write_decrypt(op))
|
|
return PREP_ENCODED_CHECKSUM_ERR;
|
|
|
|
return PREP_ENCODED_OK;
|
|
}
|
|
|
|
static int bch2_write_extent(struct bch_write_op *op, struct write_point *wp)
|
|
{
|
|
struct bch_fs *c = op->c;
|
|
struct bio *src = &op->wbio.bio, *dst = src;
|
|
struct bvec_iter saved_iter;
|
|
struct bkey_i *key_to_write;
|
|
void *ec_buf;
|
|
unsigned key_to_write_offset = op->insert_keys.top_p -
|
|
op->insert_keys.keys_p;
|
|
unsigned total_output = 0, total_input = 0;
|
|
bool bounce = false;
|
|
bool page_alloc_failed = false;
|
|
int ret, more = 0;
|
|
|
|
BUG_ON(!bio_sectors(src));
|
|
|
|
ec_buf = bch2_writepoint_ec_buf(c, wp);
|
|
|
|
switch (bch2_write_prep_encoded_data(op, wp)) {
|
|
case PREP_ENCODED_OK:
|
|
break;
|
|
case PREP_ENCODED_ERR:
|
|
ret = -EIO;
|
|
goto err;
|
|
case PREP_ENCODED_CHECKSUM_ERR:
|
|
goto csum_err;
|
|
case PREP_ENCODED_DO_WRITE:
|
|
if (ec_buf) {
|
|
dst = bch2_write_bio_alloc(c, wp, src,
|
|
&page_alloc_failed,
|
|
ec_buf);
|
|
bio_copy_data(dst, src);
|
|
bounce = true;
|
|
}
|
|
init_append_extent(op, wp, op->version, op->crc);
|
|
goto do_write;
|
|
}
|
|
|
|
if (ec_buf ||
|
|
op->compression_type ||
|
|
(op->csum_type &&
|
|
!(op->flags & BCH_WRITE_PAGES_STABLE)) ||
|
|
(bch2_csum_type_is_encryption(op->csum_type) &&
|
|
!(op->flags & BCH_WRITE_PAGES_OWNED))) {
|
|
dst = bch2_write_bio_alloc(c, wp, src,
|
|
&page_alloc_failed,
|
|
ec_buf);
|
|
bounce = true;
|
|
}
|
|
|
|
saved_iter = dst->bi_iter;
|
|
|
|
do {
|
|
struct bch_extent_crc_unpacked crc =
|
|
(struct bch_extent_crc_unpacked) { 0 };
|
|
struct bversion version = op->version;
|
|
size_t dst_len, src_len;
|
|
|
|
if (page_alloc_failed &&
|
|
bio_sectors(dst) < wp->sectors_free &&
|
|
bio_sectors(dst) < c->sb.encoded_extent_max)
|
|
break;
|
|
|
|
BUG_ON(op->compression_type &&
|
|
(op->flags & BCH_WRITE_DATA_ENCODED) &&
|
|
bch2_csum_type_is_encryption(op->crc.csum_type));
|
|
BUG_ON(op->compression_type && !bounce);
|
|
|
|
crc.compression_type = op->compression_type
|
|
? bch2_bio_compress(c, dst, &dst_len, src, &src_len,
|
|
op->compression_type)
|
|
: 0;
|
|
if (!crc.compression_type) {
|
|
dst_len = min(dst->bi_iter.bi_size, src->bi_iter.bi_size);
|
|
dst_len = min_t(unsigned, dst_len, wp->sectors_free << 9);
|
|
|
|
if (op->csum_type)
|
|
dst_len = min_t(unsigned, dst_len,
|
|
c->sb.encoded_extent_max << 9);
|
|
|
|
if (bounce) {
|
|
swap(dst->bi_iter.bi_size, dst_len);
|
|
bio_copy_data(dst, src);
|
|
swap(dst->bi_iter.bi_size, dst_len);
|
|
}
|
|
|
|
src_len = dst_len;
|
|
}
|
|
|
|
BUG_ON(!src_len || !dst_len);
|
|
|
|
if (bch2_csum_type_is_encryption(op->csum_type)) {
|
|
if (bversion_zero(version)) {
|
|
version.lo = atomic64_inc_return(&c->key_version) + 1;
|
|
} else {
|
|
crc.nonce = op->nonce;
|
|
op->nonce += src_len >> 9;
|
|
}
|
|
}
|
|
|
|
if ((op->flags & BCH_WRITE_DATA_ENCODED) &&
|
|
!crc.compression_type &&
|
|
bch2_csum_type_is_encryption(op->crc.csum_type) ==
|
|
bch2_csum_type_is_encryption(op->csum_type)) {
|
|
/*
|
|
* Note: when we're using rechecksum(), we need to be
|
|
* checksumming @src because it has all the data our
|
|
* existing checksum covers - if we bounced (because we
|
|
* were trying to compress), @dst will only have the
|
|
* part of the data the new checksum will cover.
|
|
*
|
|
* But normally we want to be checksumming post bounce,
|
|
* because part of the reason for bouncing is so the
|
|
* data can't be modified (by userspace) while it's in
|
|
* flight.
|
|
*/
|
|
if (bch2_rechecksum_bio(c, src, version, op->crc,
|
|
&crc, &op->crc,
|
|
src_len >> 9,
|
|
bio_sectors(src) - (src_len >> 9),
|
|
op->csum_type))
|
|
goto csum_err;
|
|
} else {
|
|
if ((op->flags & BCH_WRITE_DATA_ENCODED) &&
|
|
bch2_rechecksum_bio(c, src, version, op->crc,
|
|
NULL, &op->crc,
|
|
src_len >> 9,
|
|
bio_sectors(src) - (src_len >> 9),
|
|
op->crc.csum_type))
|
|
goto csum_err;
|
|
|
|
crc.compressed_size = dst_len >> 9;
|
|
crc.uncompressed_size = src_len >> 9;
|
|
crc.live_size = src_len >> 9;
|
|
|
|
swap(dst->bi_iter.bi_size, dst_len);
|
|
bch2_encrypt_bio(c, op->csum_type,
|
|
extent_nonce(version, crc), dst);
|
|
crc.csum = bch2_checksum_bio(c, op->csum_type,
|
|
extent_nonce(version, crc), dst);
|
|
crc.csum_type = op->csum_type;
|
|
swap(dst->bi_iter.bi_size, dst_len);
|
|
}
|
|
|
|
init_append_extent(op, wp, version, crc);
|
|
|
|
if (dst != src)
|
|
bio_advance(dst, dst_len);
|
|
bio_advance(src, src_len);
|
|
total_output += dst_len;
|
|
total_input += src_len;
|
|
} while (dst->bi_iter.bi_size &&
|
|
src->bi_iter.bi_size &&
|
|
wp->sectors_free &&
|
|
!bch2_keylist_realloc(&op->insert_keys,
|
|
op->inline_keys,
|
|
ARRAY_SIZE(op->inline_keys),
|
|
BKEY_EXTENT_U64s_MAX));
|
|
|
|
more = src->bi_iter.bi_size != 0;
|
|
|
|
dst->bi_iter = saved_iter;
|
|
|
|
if (dst == src && more) {
|
|
BUG_ON(total_output != total_input);
|
|
|
|
dst = bio_split(src, total_input >> 9,
|
|
GFP_NOIO, &c->bio_write);
|
|
wbio_init(dst)->put_bio = true;
|
|
/* copy WRITE_SYNC flag */
|
|
dst->bi_opf = src->bi_opf;
|
|
}
|
|
|
|
dst->bi_iter.bi_size = total_output;
|
|
|
|
/* Free unneeded pages after compressing: */
|
|
if (to_wbio(dst)->bounce)
|
|
while (dst->bi_vcnt > DIV_ROUND_UP(dst->bi_iter.bi_size, PAGE_SIZE))
|
|
mempool_free(dst->bi_io_vec[--dst->bi_vcnt].bv_page,
|
|
&c->bio_bounce_pages);
|
|
do_write:
|
|
/* might have done a realloc... */
|
|
|
|
key_to_write = (void *) (op->insert_keys.keys_p + key_to_write_offset);
|
|
|
|
bch2_ec_add_backpointer(c, wp,
|
|
bkey_start_pos(&key_to_write->k),
|
|
total_input >> 9);
|
|
|
|
dst->bi_end_io = bch2_write_endio;
|
|
dst->bi_private = &op->cl;
|
|
dst->bi_opf = REQ_OP_WRITE;
|
|
|
|
closure_get(dst->bi_private);
|
|
|
|
bch2_submit_wbio_replicas(to_wbio(dst), c, BCH_DATA_USER,
|
|
key_to_write);
|
|
return more;
|
|
csum_err:
|
|
bch_err(c, "error verifying existing checksum while "
|
|
"rewriting existing data (memory corruption?)");
|
|
ret = -EIO;
|
|
err:
|
|
if (to_wbio(dst)->bounce)
|
|
bch2_bio_free_pages_pool(c, dst);
|
|
if (to_wbio(dst)->put_bio)
|
|
bio_put(dst);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void __bch2_write(struct closure *cl)
|
|
{
|
|
struct bch_write_op *op = container_of(cl, struct bch_write_op, cl);
|
|
struct bch_fs *c = op->c;
|
|
struct write_point *wp;
|
|
int ret;
|
|
again:
|
|
memset(&op->failed, 0, sizeof(op->failed));
|
|
|
|
do {
|
|
/* +1 for possible cache device: */
|
|
if (op->open_buckets.nr + op->nr_replicas + 1 >
|
|
ARRAY_SIZE(op->open_buckets.v))
|
|
goto flush_io;
|
|
|
|
if (bch2_keylist_realloc(&op->insert_keys,
|
|
op->inline_keys,
|
|
ARRAY_SIZE(op->inline_keys),
|
|
BKEY_EXTENT_U64s_MAX))
|
|
goto flush_io;
|
|
|
|
wp = bch2_alloc_sectors_start(c,
|
|
op->target,
|
|
op->opts.erasure_code,
|
|
op->write_point,
|
|
&op->devs_have,
|
|
op->nr_replicas,
|
|
op->nr_replicas_required,
|
|
op->alloc_reserve,
|
|
op->flags,
|
|
(op->flags & BCH_WRITE_ALLOC_NOWAIT) ? NULL : cl);
|
|
EBUG_ON(!wp);
|
|
|
|
if (unlikely(IS_ERR(wp))) {
|
|
if (unlikely(PTR_ERR(wp) != -EAGAIN)) {
|
|
ret = PTR_ERR(wp);
|
|
goto err;
|
|
}
|
|
|
|
goto flush_io;
|
|
}
|
|
|
|
ret = bch2_write_extent(op, wp);
|
|
|
|
bch2_open_bucket_get(c, wp, &op->open_buckets);
|
|
bch2_alloc_sectors_done(c, wp);
|
|
|
|
if (ret < 0)
|
|
goto err;
|
|
} while (ret);
|
|
|
|
continue_at(cl, bch2_write_index, index_update_wq(op));
|
|
return;
|
|
err:
|
|
op->error = ret;
|
|
|
|
continue_at(cl, !bch2_keylist_empty(&op->insert_keys)
|
|
? bch2_write_index
|
|
: bch2_write_done, index_update_wq(op));
|
|
return;
|
|
flush_io:
|
|
closure_sync(cl);
|
|
|
|
if (!bch2_keylist_empty(&op->insert_keys)) {
|
|
__bch2_write_index(op);
|
|
|
|
if (op->error) {
|
|
continue_at_nobarrier(cl, bch2_write_done, NULL);
|
|
return;
|
|
}
|
|
}
|
|
|
|
goto again;
|
|
}
|
|
|
|
/**
|
|
* bch_write - handle a write to a cache device or flash only volume
|
|
*
|
|
* This is the starting point for any data to end up in a cache device; it could
|
|
* be from a normal write, or a writeback write, or a write to a flash only
|
|
* volume - it's also used by the moving garbage collector to compact data in
|
|
* mostly empty buckets.
|
|
*
|
|
* It first writes the data to the cache, creating a list of keys to be inserted
|
|
* (if the data won't fit in a single open bucket, there will be multiple keys);
|
|
* after the data is written it calls bch_journal, and after the keys have been
|
|
* added to the next journal write they're inserted into the btree.
|
|
*
|
|
* If op->discard is true, instead of inserting the data it invalidates the
|
|
* region of the cache represented by op->bio and op->inode.
|
|
*/
|
|
void bch2_write(struct closure *cl)
|
|
{
|
|
struct bch_write_op *op = container_of(cl, struct bch_write_op, cl);
|
|
struct bch_fs *c = op->c;
|
|
|
|
BUG_ON(!op->nr_replicas);
|
|
BUG_ON(!op->write_point.v);
|
|
BUG_ON(!bkey_cmp(op->pos, POS_MAX));
|
|
BUG_ON(bio_sectors(&op->wbio.bio) > U16_MAX);
|
|
|
|
op->start_time = local_clock();
|
|
|
|
bch2_keylist_init(&op->insert_keys, op->inline_keys);
|
|
wbio_init(&op->wbio.bio)->put_bio = false;
|
|
|
|
if (c->opts.nochanges ||
|
|
!percpu_ref_tryget(&c->writes)) {
|
|
__bcache_io_error(c, "read only");
|
|
op->error = -EROFS;
|
|
if (!(op->flags & BCH_WRITE_NOPUT_RESERVATION))
|
|
bch2_disk_reservation_put(c, &op->res);
|
|
closure_return(cl);
|
|
return;
|
|
}
|
|
|
|
bch2_increment_clock(c, bio_sectors(&op->wbio.bio), WRITE);
|
|
|
|
continue_at_nobarrier(cl, __bch2_write, NULL);
|
|
}
|
|
|
|
/* Cache promotion on read */
|
|
|
|
struct promote_op {
|
|
struct closure cl;
|
|
struct rcu_head rcu;
|
|
u64 start_time;
|
|
|
|
struct rhash_head hash;
|
|
struct bpos pos;
|
|
|
|
struct migrate_write write;
|
|
struct bio_vec bi_inline_vecs[0]; /* must be last */
|
|
};
|
|
|
|
static const struct rhashtable_params bch_promote_params = {
|
|
.head_offset = offsetof(struct promote_op, hash),
|
|
.key_offset = offsetof(struct promote_op, pos),
|
|
.key_len = sizeof(struct bpos),
|
|
};
|
|
|
|
static inline bool should_promote(struct bch_fs *c, struct bkey_s_c k,
|
|
struct bpos pos,
|
|
struct bch_io_opts opts,
|
|
unsigned flags)
|
|
{
|
|
if (!opts.promote_target)
|
|
return false;
|
|
|
|
if (!(flags & BCH_READ_MAY_PROMOTE))
|
|
return false;
|
|
|
|
if (percpu_ref_is_dying(&c->writes))
|
|
return false;
|
|
|
|
if (!bkey_extent_is_data(k.k))
|
|
return false;
|
|
|
|
if (bch2_extent_has_target(c, bkey_s_c_to_extent(k), opts.promote_target))
|
|
return false;
|
|
|
|
if (bch2_target_congested(c, opts.promote_target))
|
|
return false;
|
|
|
|
if (rhashtable_lookup_fast(&c->promote_table, &pos,
|
|
bch_promote_params))
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
static void promote_free(struct bch_fs *c, struct promote_op *op)
|
|
{
|
|
int ret;
|
|
|
|
ret = rhashtable_remove_fast(&c->promote_table, &op->hash,
|
|
bch_promote_params);
|
|
BUG_ON(ret);
|
|
percpu_ref_put(&c->writes);
|
|
kfree_rcu(op, rcu);
|
|
}
|
|
|
|
static void promote_done(struct closure *cl)
|
|
{
|
|
struct promote_op *op =
|
|
container_of(cl, struct promote_op, cl);
|
|
struct bch_fs *c = op->write.op.c;
|
|
|
|
bch2_time_stats_update(&c->times[BCH_TIME_data_promote],
|
|
op->start_time);
|
|
|
|
bch2_bio_free_pages_pool(c, &op->write.op.wbio.bio);
|
|
promote_free(c, op);
|
|
}
|
|
|
|
static void promote_start(struct promote_op *op, struct bch_read_bio *rbio)
|
|
{
|
|
struct bch_fs *c = rbio->c;
|
|
struct closure *cl = &op->cl;
|
|
struct bio *bio = &op->write.op.wbio.bio;
|
|
|
|
trace_promote(&rbio->bio);
|
|
|
|
/* we now own pages: */
|
|
BUG_ON(!rbio->bounce);
|
|
BUG_ON(rbio->bio.bi_vcnt > bio->bi_max_vecs);
|
|
|
|
memcpy(bio->bi_io_vec, rbio->bio.bi_io_vec,
|
|
sizeof(struct bio_vec) * rbio->bio.bi_vcnt);
|
|
swap(bio->bi_vcnt, rbio->bio.bi_vcnt);
|
|
|
|
bch2_migrate_read_done(&op->write, rbio);
|
|
|
|
closure_init(cl, NULL);
|
|
closure_call(&op->write.op.cl, bch2_write, c->wq, cl);
|
|
closure_return_with_destructor(cl, promote_done);
|
|
}
|
|
|
|
noinline
|
|
static struct promote_op *__promote_alloc(struct bch_fs *c,
|
|
struct bpos pos,
|
|
struct extent_ptr_decoded *pick,
|
|
struct bch_io_opts opts,
|
|
unsigned rbio_sectors,
|
|
struct bch_read_bio **rbio)
|
|
{
|
|
struct promote_op *op = NULL;
|
|
struct bio *bio;
|
|
unsigned rbio_pages = DIV_ROUND_UP(rbio_sectors, PAGE_SECTORS);
|
|
/* data might have to be decompressed in the write path: */
|
|
unsigned wbio_pages = DIV_ROUND_UP(pick->crc.uncompressed_size,
|
|
PAGE_SECTORS);
|
|
int ret;
|
|
|
|
if (!percpu_ref_tryget(&c->writes))
|
|
return NULL;
|
|
|
|
op = kzalloc(sizeof(*op) + sizeof(struct bio_vec) * wbio_pages,
|
|
GFP_NOIO);
|
|
if (!op)
|
|
goto err;
|
|
|
|
op->start_time = local_clock();
|
|
op->pos = pos;
|
|
|
|
/*
|
|
* promotes require bouncing, but if the extent isn't
|
|
* checksummed/compressed it might be too big for the mempool:
|
|
*/
|
|
if (rbio_sectors > c->sb.encoded_extent_max) {
|
|
*rbio = kzalloc(sizeof(struct bch_read_bio) +
|
|
sizeof(struct bio_vec) * rbio_pages,
|
|
GFP_NOIO);
|
|
if (!*rbio)
|
|
goto err;
|
|
|
|
rbio_init(&(*rbio)->bio, opts);
|
|
bio_init(&(*rbio)->bio, NULL, (*rbio)->bio.bi_inline_vecs, rbio_pages, 0);
|
|
|
|
if (bch2_bio_alloc_pages(&(*rbio)->bio, rbio_sectors << 9,
|
|
GFP_NOIO))
|
|
goto err;
|
|
|
|
(*rbio)->bounce = true;
|
|
(*rbio)->split = true;
|
|
(*rbio)->kmalloc = true;
|
|
}
|
|
|
|
if (rhashtable_lookup_insert_fast(&c->promote_table, &op->hash,
|
|
bch_promote_params))
|
|
goto err;
|
|
|
|
bio = &op->write.op.wbio.bio;
|
|
bio_init(bio, NULL, bio->bi_inline_vecs, wbio_pages, 0);
|
|
|
|
ret = bch2_migrate_write_init(c, &op->write,
|
|
writepoint_hashed((unsigned long) current),
|
|
opts,
|
|
DATA_PROMOTE,
|
|
(struct data_opts) {
|
|
.target = opts.promote_target
|
|
},
|
|
bkey_s_c_null);
|
|
BUG_ON(ret);
|
|
|
|
return op;
|
|
err:
|
|
if (*rbio)
|
|
bio_free_pages(&(*rbio)->bio);
|
|
kfree(*rbio);
|
|
*rbio = NULL;
|
|
kfree(op);
|
|
percpu_ref_put(&c->writes);
|
|
return NULL;
|
|
}
|
|
|
|
static inline struct promote_op *promote_alloc(struct bch_fs *c,
|
|
struct bvec_iter iter,
|
|
struct bkey_s_c k,
|
|
struct extent_ptr_decoded *pick,
|
|
struct bch_io_opts opts,
|
|
unsigned flags,
|
|
struct bch_read_bio **rbio,
|
|
bool *bounce,
|
|
bool *read_full)
|
|
{
|
|
bool promote_full = *read_full || READ_ONCE(c->promote_whole_extents);
|
|
unsigned sectors = promote_full
|
|
? pick->crc.compressed_size
|
|
: bvec_iter_sectors(iter);
|
|
struct bpos pos = promote_full
|
|
? bkey_start_pos(k.k)
|
|
: POS(k.k->p.inode, iter.bi_sector);
|
|
struct promote_op *promote;
|
|
|
|
if (!should_promote(c, k, pos, opts, flags))
|
|
return NULL;
|
|
|
|
promote = __promote_alloc(c, pos, pick, opts, sectors, rbio);
|
|
if (!promote)
|
|
return NULL;
|
|
|
|
*bounce = true;
|
|
*read_full = promote_full;
|
|
return promote;
|
|
}
|
|
|
|
/* Read */
|
|
|
|
#define READ_RETRY_AVOID 1
|
|
#define READ_RETRY 2
|
|
#define READ_ERR 3
|
|
|
|
enum rbio_context {
|
|
RBIO_CONTEXT_NULL,
|
|
RBIO_CONTEXT_HIGHPRI,
|
|
RBIO_CONTEXT_UNBOUND,
|
|
};
|
|
|
|
static inline struct bch_read_bio *
|
|
bch2_rbio_parent(struct bch_read_bio *rbio)
|
|
{
|
|
return rbio->split ? rbio->parent : rbio;
|
|
}
|
|
|
|
__always_inline
|
|
static void bch2_rbio_punt(struct bch_read_bio *rbio, work_func_t fn,
|
|
enum rbio_context context,
|
|
struct workqueue_struct *wq)
|
|
{
|
|
if (context <= rbio->context) {
|
|
fn(&rbio->work);
|
|
} else {
|
|
rbio->work.func = fn;
|
|
rbio->context = context;
|
|
queue_work(wq, &rbio->work);
|
|
}
|
|
}
|
|
|
|
static inline struct bch_read_bio *bch2_rbio_free(struct bch_read_bio *rbio)
|
|
{
|
|
BUG_ON(rbio->bounce && !rbio->split);
|
|
|
|
if (rbio->promote)
|
|
promote_free(rbio->c, rbio->promote);
|
|
rbio->promote = NULL;
|
|
|
|
if (rbio->bounce)
|
|
bch2_bio_free_pages_pool(rbio->c, &rbio->bio);
|
|
|
|
if (rbio->split) {
|
|
struct bch_read_bio *parent = rbio->parent;
|
|
|
|
if (rbio->kmalloc)
|
|
kfree(rbio);
|
|
else
|
|
bio_put(&rbio->bio);
|
|
|
|
rbio = parent;
|
|
}
|
|
|
|
return rbio;
|
|
}
|
|
|
|
static void bch2_rbio_done(struct bch_read_bio *rbio)
|
|
{
|
|
bch2_time_stats_update(&rbio->c->times[BCH_TIME_data_read],
|
|
rbio->start_time);
|
|
bio_endio(&rbio->bio);
|
|
}
|
|
|
|
static void bch2_read_retry_nodecode(struct bch_fs *c, struct bch_read_bio *rbio,
|
|
struct bvec_iter bvec_iter, u64 inode,
|
|
struct bch_io_failures *failed,
|
|
unsigned flags)
|
|
{
|
|
struct btree_trans trans;
|
|
struct btree_iter *iter;
|
|
BKEY_PADDED(k) tmp;
|
|
struct bkey_s_c k;
|
|
int ret;
|
|
|
|
flags &= ~BCH_READ_LAST_FRAGMENT;
|
|
|
|
bch2_trans_init(&trans, c);
|
|
|
|
iter = bch2_trans_get_iter(&trans, BTREE_ID_EXTENTS,
|
|
rbio->pos, BTREE_ITER_SLOTS);
|
|
retry:
|
|
rbio->bio.bi_status = 0;
|
|
|
|
k = bch2_btree_iter_peek_slot(iter);
|
|
if (bkey_err(k))
|
|
goto err;
|
|
|
|
bkey_reassemble(&tmp.k, k);
|
|
k = bkey_i_to_s_c(&tmp.k);
|
|
bch2_trans_unlock(&trans);
|
|
|
|
if (!bkey_extent_is_data(k.k) ||
|
|
!bch2_extent_matches_ptr(c, bkey_i_to_s_c_extent(&tmp.k),
|
|
rbio->pick.ptr,
|
|
rbio->pos.offset -
|
|
rbio->pick.crc.offset)) {
|
|
/* extent we wanted to read no longer exists: */
|
|
rbio->hole = true;
|
|
goto out;
|
|
}
|
|
|
|
ret = __bch2_read_extent(c, rbio, bvec_iter, k, failed, flags);
|
|
if (ret == READ_RETRY)
|
|
goto retry;
|
|
if (ret)
|
|
goto err;
|
|
out:
|
|
bch2_rbio_done(rbio);
|
|
bch2_trans_exit(&trans);
|
|
return;
|
|
err:
|
|
rbio->bio.bi_status = BLK_STS_IOERR;
|
|
goto out;
|
|
}
|
|
|
|
static void bch2_read_retry(struct bch_fs *c, struct bch_read_bio *rbio,
|
|
struct bvec_iter bvec_iter, u64 inode,
|
|
struct bch_io_failures *failed, unsigned flags)
|
|
{
|
|
struct btree_trans trans;
|
|
struct btree_iter *iter;
|
|
struct bkey_s_c k;
|
|
int ret;
|
|
|
|
bch2_trans_init(&trans, c);
|
|
|
|
flags &= ~BCH_READ_LAST_FRAGMENT;
|
|
flags |= BCH_READ_MUST_CLONE;
|
|
retry:
|
|
for_each_btree_key(&trans, iter, BTREE_ID_EXTENTS,
|
|
POS(inode, bvec_iter.bi_sector),
|
|
BTREE_ITER_SLOTS, k, ret) {
|
|
BKEY_PADDED(k) tmp;
|
|
unsigned bytes;
|
|
|
|
bkey_reassemble(&tmp.k, k);
|
|
k = bkey_i_to_s_c(&tmp.k);
|
|
bch2_btree_trans_unlock(&trans);
|
|
|
|
bytes = min_t(unsigned, bvec_iter.bi_size,
|
|
(k.k->p.offset - bvec_iter.bi_sector) << 9);
|
|
swap(bvec_iter.bi_size, bytes);
|
|
|
|
ret = __bch2_read_extent(c, rbio, bvec_iter, k, failed, flags);
|
|
switch (ret) {
|
|
case READ_RETRY:
|
|
goto retry;
|
|
case READ_ERR:
|
|
goto err;
|
|
};
|
|
|
|
if (bytes == bvec_iter.bi_size)
|
|
goto out;
|
|
|
|
swap(bvec_iter.bi_size, bytes);
|
|
bio_advance_iter(&rbio->bio, &bvec_iter, bytes);
|
|
}
|
|
|
|
/*
|
|
* If we get here, it better have been because there was an error
|
|
* reading a btree node
|
|
*/
|
|
BUG_ON(!ret);
|
|
__bcache_io_error(c, "btree IO error: %i", ret);
|
|
err:
|
|
rbio->bio.bi_status = BLK_STS_IOERR;
|
|
out:
|
|
bch2_trans_exit(&trans);
|
|
bch2_rbio_done(rbio);
|
|
}
|
|
|
|
static void bch2_rbio_retry(struct work_struct *work)
|
|
{
|
|
struct bch_read_bio *rbio =
|
|
container_of(work, struct bch_read_bio, work);
|
|
struct bch_fs *c = rbio->c;
|
|
struct bvec_iter iter = rbio->bvec_iter;
|
|
unsigned flags = rbio->flags;
|
|
u64 inode = rbio->pos.inode;
|
|
struct bch_io_failures failed = { .nr = 0 };
|
|
|
|
trace_read_retry(&rbio->bio);
|
|
|
|
if (rbio->retry == READ_RETRY_AVOID)
|
|
bch2_mark_io_failure(&failed, &rbio->pick);
|
|
|
|
rbio->bio.bi_status = 0;
|
|
|
|
rbio = bch2_rbio_free(rbio);
|
|
|
|
flags |= BCH_READ_IN_RETRY;
|
|
flags &= ~BCH_READ_MAY_PROMOTE;
|
|
|
|
if (flags & BCH_READ_NODECODE)
|
|
bch2_read_retry_nodecode(c, rbio, iter, inode, &failed, flags);
|
|
else
|
|
bch2_read_retry(c, rbio, iter, inode, &failed, flags);
|
|
}
|
|
|
|
static void bch2_rbio_error(struct bch_read_bio *rbio, int retry,
|
|
blk_status_t error)
|
|
{
|
|
rbio->retry = retry;
|
|
|
|
if (rbio->flags & BCH_READ_IN_RETRY)
|
|
return;
|
|
|
|
if (retry == READ_ERR) {
|
|
rbio = bch2_rbio_free(rbio);
|
|
|
|
rbio->bio.bi_status = error;
|
|
bch2_rbio_done(rbio);
|
|
} else {
|
|
bch2_rbio_punt(rbio, bch2_rbio_retry,
|
|
RBIO_CONTEXT_UNBOUND, system_unbound_wq);
|
|
}
|
|
}
|
|
|
|
static void bch2_rbio_narrow_crcs(struct bch_read_bio *rbio)
|
|
{
|
|
struct bch_fs *c = rbio->c;
|
|
struct btree_trans trans;
|
|
struct btree_iter *iter;
|
|
struct bkey_s_c k;
|
|
struct bkey_i_extent *e;
|
|
BKEY_PADDED(k) new;
|
|
struct bch_extent_crc_unpacked new_crc;
|
|
u64 data_offset = rbio->pos.offset - rbio->pick.crc.offset;
|
|
int ret;
|
|
|
|
if (rbio->pick.crc.compression_type)
|
|
return;
|
|
|
|
bch2_trans_init(&trans, c);
|
|
retry:
|
|
bch2_trans_begin(&trans);
|
|
|
|
iter = bch2_trans_get_iter(&trans, BTREE_ID_EXTENTS, rbio->pos,
|
|
BTREE_ITER_INTENT);
|
|
k = bch2_btree_iter_peek(iter);
|
|
if (IS_ERR_OR_NULL(k.k))
|
|
goto out;
|
|
|
|
if (!bkey_extent_is_data(k.k))
|
|
goto out;
|
|
|
|
bkey_reassemble(&new.k, k);
|
|
e = bkey_i_to_extent(&new.k);
|
|
|
|
if (!bch2_extent_matches_ptr(c, extent_i_to_s_c(e),
|
|
rbio->pick.ptr, data_offset) ||
|
|
bversion_cmp(e->k.version, rbio->version))
|
|
goto out;
|
|
|
|
/* Extent was merged? */
|
|
if (bkey_start_offset(&e->k) < data_offset ||
|
|
e->k.p.offset > data_offset + rbio->pick.crc.uncompressed_size)
|
|
goto out;
|
|
|
|
if (bch2_rechecksum_bio(c, &rbio->bio, rbio->version,
|
|
rbio->pick.crc, NULL, &new_crc,
|
|
bkey_start_offset(&e->k) - data_offset, e->k.size,
|
|
rbio->pick.crc.csum_type)) {
|
|
bch_err(c, "error verifying existing checksum while narrowing checksum (memory corruption?)");
|
|
goto out;
|
|
}
|
|
|
|
if (!bch2_extent_narrow_crcs(e, new_crc))
|
|
goto out;
|
|
|
|
bch2_trans_update(&trans, BTREE_INSERT_ENTRY(iter, &e->k_i));
|
|
ret = bch2_trans_commit(&trans, NULL, NULL,
|
|
BTREE_INSERT_ATOMIC|
|
|
BTREE_INSERT_NOFAIL|
|
|
BTREE_INSERT_NOWAIT);
|
|
if (ret == -EINTR)
|
|
goto retry;
|
|
out:
|
|
bch2_trans_exit(&trans);
|
|
}
|
|
|
|
static bool should_narrow_crcs(struct bkey_s_c k,
|
|
struct extent_ptr_decoded *pick,
|
|
unsigned flags)
|
|
{
|
|
return !(flags & BCH_READ_IN_RETRY) &&
|
|
bkey_extent_is_data(k.k) &&
|
|
bch2_can_narrow_extent_crcs(bkey_s_c_to_extent(k), pick->crc);
|
|
}
|
|
|
|
/* Inner part that may run in process context */
|
|
static void __bch2_read_endio(struct work_struct *work)
|
|
{
|
|
struct bch_read_bio *rbio =
|
|
container_of(work, struct bch_read_bio, work);
|
|
struct bch_fs *c = rbio->c;
|
|
struct bch_dev *ca = bch_dev_bkey_exists(c, rbio->pick.ptr.dev);
|
|
struct bio *src = &rbio->bio;
|
|
struct bio *dst = &bch2_rbio_parent(rbio)->bio;
|
|
struct bvec_iter dst_iter = rbio->bvec_iter;
|
|
struct bch_extent_crc_unpacked crc = rbio->pick.crc;
|
|
struct nonce nonce = extent_nonce(rbio->version, crc);
|
|
struct bch_csum csum;
|
|
|
|
/* Reset iterator for checksumming and copying bounced data: */
|
|
if (rbio->bounce) {
|
|
src->bi_iter.bi_size = crc.compressed_size << 9;
|
|
src->bi_iter.bi_idx = 0;
|
|
src->bi_iter.bi_bvec_done = 0;
|
|
} else {
|
|
src->bi_iter = rbio->bvec_iter;
|
|
}
|
|
|
|
csum = bch2_checksum_bio(c, crc.csum_type, nonce, src);
|
|
if (bch2_crc_cmp(csum, rbio->pick.crc.csum) && !c->opts.no_data_io)
|
|
goto csum_err;
|
|
|
|
if (unlikely(rbio->narrow_crcs))
|
|
bch2_rbio_narrow_crcs(rbio);
|
|
|
|
if (rbio->flags & BCH_READ_NODECODE)
|
|
goto nodecode;
|
|
|
|
/* Adjust crc to point to subset of data we want: */
|
|
crc.offset += rbio->bvec_iter.bi_sector - rbio->pos.offset;
|
|
crc.live_size = bvec_iter_sectors(rbio->bvec_iter);
|
|
|
|
if (crc.compression_type != BCH_COMPRESSION_NONE) {
|
|
bch2_encrypt_bio(c, crc.csum_type, nonce, src);
|
|
if (bch2_bio_uncompress(c, src, dst, dst_iter, crc))
|
|
goto decompression_err;
|
|
} else {
|
|
/* don't need to decrypt the entire bio: */
|
|
nonce = nonce_add(nonce, crc.offset << 9);
|
|
bio_advance(src, crc.offset << 9);
|
|
|
|
BUG_ON(src->bi_iter.bi_size < dst_iter.bi_size);
|
|
src->bi_iter.bi_size = dst_iter.bi_size;
|
|
|
|
bch2_encrypt_bio(c, crc.csum_type, nonce, src);
|
|
|
|
if (rbio->bounce) {
|
|
struct bvec_iter src_iter = src->bi_iter;
|
|
bio_copy_data_iter(dst, &dst_iter, src, &src_iter);
|
|
}
|
|
}
|
|
|
|
if (rbio->promote) {
|
|
/*
|
|
* Re encrypt data we decrypted, so it's consistent with
|
|
* rbio->crc:
|
|
*/
|
|
bch2_encrypt_bio(c, crc.csum_type, nonce, src);
|
|
promote_start(rbio->promote, rbio);
|
|
rbio->promote = NULL;
|
|
}
|
|
nodecode:
|
|
if (likely(!(rbio->flags & BCH_READ_IN_RETRY))) {
|
|
rbio = bch2_rbio_free(rbio);
|
|
bch2_rbio_done(rbio);
|
|
}
|
|
return;
|
|
csum_err:
|
|
/*
|
|
* Checksum error: if the bio wasn't bounced, we may have been
|
|
* reading into buffers owned by userspace (that userspace can
|
|
* scribble over) - retry the read, bouncing it this time:
|
|
*/
|
|
if (!rbio->bounce && (rbio->flags & BCH_READ_USER_MAPPED)) {
|
|
rbio->flags |= BCH_READ_MUST_BOUNCE;
|
|
bch2_rbio_error(rbio, READ_RETRY, BLK_STS_IOERR);
|
|
return;
|
|
}
|
|
|
|
bch2_dev_io_error(ca,
|
|
"data checksum error, inode %llu offset %llu: expected %0llx:%0llx got %0llx:%0llx (type %u)",
|
|
rbio->pos.inode, (u64) rbio->bvec_iter.bi_sector,
|
|
rbio->pick.crc.csum.hi, rbio->pick.crc.csum.lo,
|
|
csum.hi, csum.lo, crc.csum_type);
|
|
bch2_rbio_error(rbio, READ_RETRY_AVOID, BLK_STS_IOERR);
|
|
return;
|
|
decompression_err:
|
|
__bcache_io_error(c, "decompression error, inode %llu offset %llu",
|
|
rbio->pos.inode,
|
|
(u64) rbio->bvec_iter.bi_sector);
|
|
bch2_rbio_error(rbio, READ_ERR, BLK_STS_IOERR);
|
|
return;
|
|
}
|
|
|
|
static void bch2_read_endio(struct bio *bio)
|
|
{
|
|
struct bch_read_bio *rbio =
|
|
container_of(bio, struct bch_read_bio, bio);
|
|
struct bch_fs *c = rbio->c;
|
|
struct bch_dev *ca = bch_dev_bkey_exists(c, rbio->pick.ptr.dev);
|
|
struct workqueue_struct *wq = NULL;
|
|
enum rbio_context context = RBIO_CONTEXT_NULL;
|
|
|
|
if (rbio->have_ioref) {
|
|
bch2_latency_acct(ca, rbio->submit_time, READ);
|
|
percpu_ref_put(&ca->io_ref);
|
|
}
|
|
|
|
if (!rbio->split)
|
|
rbio->bio.bi_end_io = rbio->end_io;
|
|
|
|
if (bch2_dev_io_err_on(bio->bi_status, ca, "data read")) {
|
|
bch2_rbio_error(rbio, READ_RETRY_AVOID, bio->bi_status);
|
|
return;
|
|
}
|
|
|
|
if (rbio->pick.ptr.cached &&
|
|
(((rbio->flags & BCH_READ_RETRY_IF_STALE) && race_fault()) ||
|
|
ptr_stale(ca, &rbio->pick.ptr))) {
|
|
atomic_long_inc(&c->read_realloc_races);
|
|
|
|
if (rbio->flags & BCH_READ_RETRY_IF_STALE)
|
|
bch2_rbio_error(rbio, READ_RETRY, BLK_STS_AGAIN);
|
|
else
|
|
bch2_rbio_error(rbio, READ_ERR, BLK_STS_AGAIN);
|
|
return;
|
|
}
|
|
|
|
if (rbio->narrow_crcs ||
|
|
rbio->pick.crc.compression_type ||
|
|
bch2_csum_type_is_encryption(rbio->pick.crc.csum_type))
|
|
context = RBIO_CONTEXT_UNBOUND, wq = system_unbound_wq;
|
|
else if (rbio->pick.crc.csum_type)
|
|
context = RBIO_CONTEXT_HIGHPRI, wq = system_highpri_wq;
|
|
|
|
bch2_rbio_punt(rbio, __bch2_read_endio, context, wq);
|
|
}
|
|
|
|
int __bch2_read_extent(struct bch_fs *c, struct bch_read_bio *orig,
|
|
struct bvec_iter iter, struct bkey_s_c k,
|
|
struct bch_io_failures *failed, unsigned flags)
|
|
{
|
|
struct extent_ptr_decoded pick;
|
|
struct bch_read_bio *rbio = NULL;
|
|
struct bch_dev *ca;
|
|
struct promote_op *promote = NULL;
|
|
bool bounce = false, read_full = false, narrow_crcs = false;
|
|
struct bpos pos = bkey_start_pos(k.k);
|
|
int pick_ret;
|
|
|
|
pick_ret = bch2_bkey_pick_read_device(c, k, failed, &pick);
|
|
|
|
/* hole or reservation - just zero fill: */
|
|
if (!pick_ret)
|
|
goto hole;
|
|
|
|
if (pick_ret < 0) {
|
|
__bcache_io_error(c, "no device to read from");
|
|
goto err;
|
|
}
|
|
|
|
if (pick_ret > 0)
|
|
ca = bch_dev_bkey_exists(c, pick.ptr.dev);
|
|
|
|
if (flags & BCH_READ_NODECODE) {
|
|
/*
|
|
* can happen if we retry, and the extent we were going to read
|
|
* has been merged in the meantime:
|
|
*/
|
|
if (pick.crc.compressed_size > orig->bio.bi_vcnt * PAGE_SECTORS)
|
|
goto hole;
|
|
|
|
iter.bi_sector = pos.offset;
|
|
iter.bi_size = pick.crc.compressed_size << 9;
|
|
goto noclone;
|
|
}
|
|
|
|
if (!(flags & BCH_READ_LAST_FRAGMENT) ||
|
|
bio_flagged(&orig->bio, BIO_CHAIN))
|
|
flags |= BCH_READ_MUST_CLONE;
|
|
|
|
narrow_crcs = should_narrow_crcs(k, &pick, flags);
|
|
|
|
if (narrow_crcs && (flags & BCH_READ_USER_MAPPED))
|
|
flags |= BCH_READ_MUST_BOUNCE;
|
|
|
|
EBUG_ON(bkey_start_offset(k.k) > iter.bi_sector ||
|
|
k.k->p.offset < bvec_iter_end_sector(iter));
|
|
|
|
if (pick.crc.compression_type != BCH_COMPRESSION_NONE ||
|
|
(pick.crc.csum_type != BCH_CSUM_NONE &&
|
|
(bvec_iter_sectors(iter) != pick.crc.uncompressed_size ||
|
|
(bch2_csum_type_is_encryption(pick.crc.csum_type) &&
|
|
(flags & BCH_READ_USER_MAPPED)) ||
|
|
(flags & BCH_READ_MUST_BOUNCE)))) {
|
|
read_full = true;
|
|
bounce = true;
|
|
}
|
|
|
|
promote = promote_alloc(c, iter, k, &pick, orig->opts, flags,
|
|
&rbio, &bounce, &read_full);
|
|
|
|
if (!read_full) {
|
|
EBUG_ON(pick.crc.compression_type);
|
|
EBUG_ON(pick.crc.csum_type &&
|
|
(bvec_iter_sectors(iter) != pick.crc.uncompressed_size ||
|
|
bvec_iter_sectors(iter) != pick.crc.live_size ||
|
|
pick.crc.offset ||
|
|
iter.bi_sector != pos.offset));
|
|
|
|
pick.ptr.offset += pick.crc.offset +
|
|
(iter.bi_sector - pos.offset);
|
|
pick.crc.compressed_size = bvec_iter_sectors(iter);
|
|
pick.crc.uncompressed_size = bvec_iter_sectors(iter);
|
|
pick.crc.offset = 0;
|
|
pick.crc.live_size = bvec_iter_sectors(iter);
|
|
pos.offset = iter.bi_sector;
|
|
}
|
|
|
|
if (rbio) {
|
|
/* promote already allocated bounce rbio */
|
|
} else if (bounce) {
|
|
unsigned sectors = pick.crc.compressed_size;
|
|
|
|
rbio = rbio_init(bio_alloc_bioset(NULL,
|
|
DIV_ROUND_UP(sectors, PAGE_SECTORS),
|
|
0,
|
|
GFP_NOIO,
|
|
&c->bio_read_split),
|
|
orig->opts);
|
|
|
|
bch2_bio_alloc_pages_pool(c, &rbio->bio, sectors << 9);
|
|
rbio->bounce = true;
|
|
rbio->split = true;
|
|
} else if (flags & BCH_READ_MUST_CLONE) {
|
|
/*
|
|
* Have to clone if there were any splits, due to error
|
|
* reporting issues (if a split errored, and retrying didn't
|
|
* work, when it reports the error to its parent (us) we don't
|
|
* know if the error was from our bio, and we should retry, or
|
|
* from the whole bio, in which case we don't want to retry and
|
|
* lose the error)
|
|
*/
|
|
rbio = rbio_init(bio_alloc_clone(NULL, &orig->bio, GFP_NOIO,
|
|
&c->bio_read_split),
|
|
orig->opts);
|
|
rbio->bio.bi_iter = iter;
|
|
rbio->split = true;
|
|
} else {
|
|
noclone:
|
|
rbio = orig;
|
|
rbio->bio.bi_iter = iter;
|
|
BUG_ON(bio_flagged(&rbio->bio, BIO_CHAIN));
|
|
}
|
|
|
|
BUG_ON(bio_sectors(&rbio->bio) != pick.crc.compressed_size);
|
|
|
|
rbio->c = c;
|
|
rbio->submit_time = local_clock();
|
|
if (rbio->split)
|
|
rbio->parent = orig;
|
|
else
|
|
rbio->end_io = orig->bio.bi_end_io;
|
|
rbio->bvec_iter = iter;
|
|
rbio->flags = flags;
|
|
rbio->have_ioref = pick_ret > 0 && bch2_dev_get_ioref(ca, READ);
|
|
rbio->narrow_crcs = narrow_crcs;
|
|
rbio->hole = 0;
|
|
rbio->retry = 0;
|
|
rbio->context = 0;
|
|
rbio->devs_have = bch2_bkey_devs(k);
|
|
rbio->pick = pick;
|
|
rbio->pos = pos;
|
|
rbio->version = k.k->version;
|
|
rbio->promote = promote;
|
|
INIT_WORK(&rbio->work, NULL);
|
|
|
|
rbio->bio.bi_opf = orig->bio.bi_opf;
|
|
rbio->bio.bi_iter.bi_sector = pick.ptr.offset;
|
|
rbio->bio.bi_end_io = bch2_read_endio;
|
|
|
|
if (rbio->bounce)
|
|
trace_read_bounce(&rbio->bio);
|
|
|
|
bch2_increment_clock(c, bio_sectors(&rbio->bio), READ);
|
|
|
|
percpu_down_read(&c->mark_lock);
|
|
bucket_io_clock_reset(c, ca, PTR_BUCKET_NR(ca, &pick.ptr), READ);
|
|
percpu_up_read(&c->mark_lock);
|
|
|
|
if (likely(!(flags & (BCH_READ_IN_RETRY|BCH_READ_LAST_FRAGMENT)))) {
|
|
bio_inc_remaining(&orig->bio);
|
|
trace_read_split(&orig->bio);
|
|
}
|
|
|
|
if (!rbio->pick.idx) {
|
|
if (!rbio->have_ioref) {
|
|
__bcache_io_error(c, "no device to read from");
|
|
bch2_rbio_error(rbio, READ_RETRY_AVOID, BLK_STS_IOERR);
|
|
goto out;
|
|
}
|
|
|
|
this_cpu_add(ca->io_done->sectors[READ][BCH_DATA_USER],
|
|
bio_sectors(&rbio->bio));
|
|
bio_set_dev(&rbio->bio, ca->disk_sb.bdev);
|
|
|
|
if (unlikely(c->opts.no_data_io)) {
|
|
if (likely(!(flags & BCH_READ_IN_RETRY)))
|
|
bio_endio(&rbio->bio);
|
|
} else {
|
|
if (likely(!(flags & BCH_READ_IN_RETRY)))
|
|
submit_bio(&rbio->bio);
|
|
else
|
|
submit_bio_wait(&rbio->bio);
|
|
}
|
|
} else {
|
|
/* Attempting reconstruct read: */
|
|
if (bch2_ec_read_extent(c, rbio)) {
|
|
bch2_rbio_error(rbio, READ_RETRY_AVOID, BLK_STS_IOERR);
|
|
goto out;
|
|
}
|
|
|
|
if (likely(!(flags & BCH_READ_IN_RETRY)))
|
|
bio_endio(&rbio->bio);
|
|
}
|
|
out:
|
|
if (likely(!(flags & BCH_READ_IN_RETRY))) {
|
|
return 0;
|
|
} else {
|
|
int ret;
|
|
|
|
rbio->context = RBIO_CONTEXT_UNBOUND;
|
|
bch2_read_endio(&rbio->bio);
|
|
|
|
ret = rbio->retry;
|
|
rbio = bch2_rbio_free(rbio);
|
|
|
|
if (ret == READ_RETRY_AVOID) {
|
|
bch2_mark_io_failure(failed, &pick);
|
|
ret = READ_RETRY;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
err:
|
|
if (flags & BCH_READ_IN_RETRY)
|
|
return READ_ERR;
|
|
|
|
orig->bio.bi_status = BLK_STS_IOERR;
|
|
goto out_read_done;
|
|
|
|
hole:
|
|
/*
|
|
* won't normally happen in the BCH_READ_NODECODE
|
|
* (bch2_move_extent()) path, but if we retry and the extent we wanted
|
|
* to read no longer exists we have to signal that:
|
|
*/
|
|
if (flags & BCH_READ_NODECODE)
|
|
orig->hole = true;
|
|
|
|
zero_fill_bio_iter(&orig->bio, iter);
|
|
out_read_done:
|
|
if (flags & BCH_READ_LAST_FRAGMENT)
|
|
bch2_rbio_done(orig);
|
|
return 0;
|
|
}
|
|
|
|
void bch2_read(struct bch_fs *c, struct bch_read_bio *rbio, u64 inode)
|
|
{
|
|
struct btree_trans trans;
|
|
struct btree_iter *iter;
|
|
struct bkey_s_c k;
|
|
unsigned flags = BCH_READ_RETRY_IF_STALE|
|
|
BCH_READ_MAY_PROMOTE|
|
|
BCH_READ_USER_MAPPED;
|
|
int ret;
|
|
|
|
bch2_trans_init(&trans, c);
|
|
|
|
BUG_ON(rbio->_state);
|
|
BUG_ON(flags & BCH_READ_NODECODE);
|
|
BUG_ON(flags & BCH_READ_IN_RETRY);
|
|
|
|
rbio->c = c;
|
|
rbio->start_time = local_clock();
|
|
|
|
for_each_btree_key(&trans, iter, BTREE_ID_EXTENTS,
|
|
POS(inode, rbio->bio.bi_iter.bi_sector),
|
|
BTREE_ITER_SLOTS, k, ret) {
|
|
BKEY_PADDED(k) tmp;
|
|
unsigned bytes;
|
|
|
|
/*
|
|
* Unlock the iterator while the btree node's lock is still in
|
|
* cache, before doing the IO:
|
|
*/
|
|
bkey_reassemble(&tmp.k, k);
|
|
k = bkey_i_to_s_c(&tmp.k);
|
|
bch2_btree_trans_unlock(&trans);
|
|
|
|
bytes = min_t(unsigned, rbio->bio.bi_iter.bi_size,
|
|
(k.k->p.offset - rbio->bio.bi_iter.bi_sector) << 9);
|
|
swap(rbio->bio.bi_iter.bi_size, bytes);
|
|
|
|
if (rbio->bio.bi_iter.bi_size == bytes)
|
|
flags |= BCH_READ_LAST_FRAGMENT;
|
|
|
|
bch2_read_extent(c, rbio, k, flags);
|
|
|
|
if (flags & BCH_READ_LAST_FRAGMENT)
|
|
return;
|
|
|
|
swap(rbio->bio.bi_iter.bi_size, bytes);
|
|
bio_advance(&rbio->bio, bytes);
|
|
}
|
|
|
|
/*
|
|
* If we get here, it better have been because there was an error
|
|
* reading a btree node
|
|
*/
|
|
BUG_ON(!ret);
|
|
bcache_io_error(c, &rbio->bio, "btree IO error: %i", ret);
|
|
|
|
bch2_trans_exit(&trans);
|
|
bch2_rbio_done(rbio);
|
|
}
|
|
|
|
void bch2_fs_io_exit(struct bch_fs *c)
|
|
{
|
|
if (c->promote_table.tbl)
|
|
rhashtable_destroy(&c->promote_table);
|
|
mempool_exit(&c->bio_bounce_pages);
|
|
bioset_exit(&c->bio_write);
|
|
bioset_exit(&c->bio_read_split);
|
|
bioset_exit(&c->bio_read);
|
|
}
|
|
|
|
int bch2_fs_io_init(struct bch_fs *c)
|
|
{
|
|
if (bioset_init(&c->bio_read, 1, offsetof(struct bch_read_bio, bio),
|
|
BIOSET_NEED_BVECS) ||
|
|
bioset_init(&c->bio_read_split, 1, offsetof(struct bch_read_bio, bio),
|
|
BIOSET_NEED_BVECS) ||
|
|
bioset_init(&c->bio_write, 1, offsetof(struct bch_write_bio, bio),
|
|
BIOSET_NEED_BVECS) ||
|
|
mempool_init_page_pool(&c->bio_bounce_pages,
|
|
max_t(unsigned,
|
|
c->opts.btree_node_size,
|
|
c->sb.encoded_extent_max) /
|
|
PAGE_SECTORS, 0) ||
|
|
rhashtable_init(&c->promote_table, &bch_promote_params))
|
|
return -ENOMEM;
|
|
|
|
return 0;
|
|
}
|