Chen-Yu Tsai d54bb86b89 clk: mediatek: Warn if clk IDs are duplicated
The Mediatek clk driver library handles duplicate clock IDs in two
different ways: either ignoring the duplicate entry, or overwriting
the old clk. Either way may cause unexpected behavior, and the latter
also causes an orphan clk that cannot be cleaned up.

Align the behavior so that later duplicate entries are ignored, and
a warning printed. The warning will also aid in making the issue
noticeable.

Signed-off-by: Chen-Yu Tsai <wenst@chromium.org>
Reviewed-by: Miles Chen <miles.chen@mediatek.com>
Reviewed-by: AngeloGioacchino Del Regno <angelogioacchino.delregno@collabora.com>
Link: https://lore.kernel.org/r/20220208124034.414635-32-wenst@chromium.org
Signed-off-by: Stephen Boyd <sboyd@kernel.org>
2022-02-17 12:12:25 -08:00

470 lines
11 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright (c) 2014 MediaTek Inc.
* Author: James Liao <jamesjj.liao@mediatek.com>
*/
#include <linux/clk-provider.h>
#include <linux/container_of.h>
#include <linux/delay.h>
#include <linux/err.h>
#include <linux/io.h>
#include <linux/module.h>
#include <linux/of_address.h>
#include <linux/slab.h>
#include "clk-pll.h"
#define MHZ (1000 * 1000)
#define REG_CON0 0
#define REG_CON1 4
#define CON0_BASE_EN BIT(0)
#define CON0_PWR_ON BIT(0)
#define CON0_ISO_EN BIT(1)
#define PCW_CHG_MASK BIT(31)
#define AUDPLL_TUNER_EN BIT(31)
#define POSTDIV_MASK 0x7
/* default 7 bits integer, can be overridden with pcwibits. */
#define INTEGER_BITS 7
/*
* MediaTek PLLs are configured through their pcw value. The pcw value describes
* a divider in the PLL feedback loop which consists of 7 bits for the integer
* part and the remaining bits (if present) for the fractional part. Also they
* have a 3 bit power-of-two post divider.
*/
struct mtk_clk_pll {
struct clk_hw hw;
void __iomem *base_addr;
void __iomem *pd_addr;
void __iomem *pwr_addr;
void __iomem *tuner_addr;
void __iomem *tuner_en_addr;
void __iomem *pcw_addr;
void __iomem *pcw_chg_addr;
void __iomem *en_addr;
const struct mtk_pll_data *data;
};
static inline struct mtk_clk_pll *to_mtk_clk_pll(struct clk_hw *hw)
{
return container_of(hw, struct mtk_clk_pll, hw);
}
static int mtk_pll_is_prepared(struct clk_hw *hw)
{
struct mtk_clk_pll *pll = to_mtk_clk_pll(hw);
return (readl(pll->en_addr) & BIT(pll->data->pll_en_bit)) != 0;
}
static unsigned long __mtk_pll_recalc_rate(struct mtk_clk_pll *pll, u32 fin,
u32 pcw, int postdiv)
{
int pcwbits = pll->data->pcwbits;
int pcwfbits = 0;
int ibits;
u64 vco;
u8 c = 0;
/* The fractional part of the PLL divider. */
ibits = pll->data->pcwibits ? pll->data->pcwibits : INTEGER_BITS;
if (pcwbits > ibits)
pcwfbits = pcwbits - ibits;
vco = (u64)fin * pcw;
if (pcwfbits && (vco & GENMASK(pcwfbits - 1, 0)))
c = 1;
vco >>= pcwfbits;
if (c)
vco++;
return ((unsigned long)vco + postdiv - 1) / postdiv;
}
static void __mtk_pll_tuner_enable(struct mtk_clk_pll *pll)
{
u32 r;
if (pll->tuner_en_addr) {
r = readl(pll->tuner_en_addr) | BIT(pll->data->tuner_en_bit);
writel(r, pll->tuner_en_addr);
} else if (pll->tuner_addr) {
r = readl(pll->tuner_addr) | AUDPLL_TUNER_EN;
writel(r, pll->tuner_addr);
}
}
static void __mtk_pll_tuner_disable(struct mtk_clk_pll *pll)
{
u32 r;
if (pll->tuner_en_addr) {
r = readl(pll->tuner_en_addr) & ~BIT(pll->data->tuner_en_bit);
writel(r, pll->tuner_en_addr);
} else if (pll->tuner_addr) {
r = readl(pll->tuner_addr) & ~AUDPLL_TUNER_EN;
writel(r, pll->tuner_addr);
}
}
static void mtk_pll_set_rate_regs(struct mtk_clk_pll *pll, u32 pcw,
int postdiv)
{
u32 chg, val;
/* disable tuner */
__mtk_pll_tuner_disable(pll);
/* set postdiv */
val = readl(pll->pd_addr);
val &= ~(POSTDIV_MASK << pll->data->pd_shift);
val |= (ffs(postdiv) - 1) << pll->data->pd_shift;
/* postdiv and pcw need to set at the same time if on same register */
if (pll->pd_addr != pll->pcw_addr) {
writel(val, pll->pd_addr);
val = readl(pll->pcw_addr);
}
/* set pcw */
val &= ~GENMASK(pll->data->pcw_shift + pll->data->pcwbits - 1,
pll->data->pcw_shift);
val |= pcw << pll->data->pcw_shift;
writel(val, pll->pcw_addr);
chg = readl(pll->pcw_chg_addr) | PCW_CHG_MASK;
writel(chg, pll->pcw_chg_addr);
if (pll->tuner_addr)
writel(val + 1, pll->tuner_addr);
/* restore tuner_en */
__mtk_pll_tuner_enable(pll);
udelay(20);
}
/*
* mtk_pll_calc_values - calculate good values for a given input frequency.
* @pll: The pll
* @pcw: The pcw value (output)
* @postdiv: The post divider (output)
* @freq: The desired target frequency
* @fin: The input frequency
*
*/
static void mtk_pll_calc_values(struct mtk_clk_pll *pll, u32 *pcw, u32 *postdiv,
u32 freq, u32 fin)
{
unsigned long fmin = pll->data->fmin ? pll->data->fmin : (1000 * MHZ);
const struct mtk_pll_div_table *div_table = pll->data->div_table;
u64 _pcw;
int ibits;
u32 val;
if (freq > pll->data->fmax)
freq = pll->data->fmax;
if (div_table) {
if (freq > div_table[0].freq)
freq = div_table[0].freq;
for (val = 0; div_table[val + 1].freq != 0; val++) {
if (freq > div_table[val + 1].freq)
break;
}
*postdiv = 1 << val;
} else {
for (val = 0; val < 5; val++) {
*postdiv = 1 << val;
if ((u64)freq * *postdiv >= fmin)
break;
}
}
/* _pcw = freq * postdiv / fin * 2^pcwfbits */
ibits = pll->data->pcwibits ? pll->data->pcwibits : INTEGER_BITS;
_pcw = ((u64)freq << val) << (pll->data->pcwbits - ibits);
do_div(_pcw, fin);
*pcw = (u32)_pcw;
}
static int mtk_pll_set_rate(struct clk_hw *hw, unsigned long rate,
unsigned long parent_rate)
{
struct mtk_clk_pll *pll = to_mtk_clk_pll(hw);
u32 pcw = 0;
u32 postdiv;
mtk_pll_calc_values(pll, &pcw, &postdiv, rate, parent_rate);
mtk_pll_set_rate_regs(pll, pcw, postdiv);
return 0;
}
static unsigned long mtk_pll_recalc_rate(struct clk_hw *hw,
unsigned long parent_rate)
{
struct mtk_clk_pll *pll = to_mtk_clk_pll(hw);
u32 postdiv;
u32 pcw;
postdiv = (readl(pll->pd_addr) >> pll->data->pd_shift) & POSTDIV_MASK;
postdiv = 1 << postdiv;
pcw = readl(pll->pcw_addr) >> pll->data->pcw_shift;
pcw &= GENMASK(pll->data->pcwbits - 1, 0);
return __mtk_pll_recalc_rate(pll, parent_rate, pcw, postdiv);
}
static long mtk_pll_round_rate(struct clk_hw *hw, unsigned long rate,
unsigned long *prate)
{
struct mtk_clk_pll *pll = to_mtk_clk_pll(hw);
u32 pcw = 0;
int postdiv;
mtk_pll_calc_values(pll, &pcw, &postdiv, rate, *prate);
return __mtk_pll_recalc_rate(pll, *prate, pcw, postdiv);
}
static int mtk_pll_prepare(struct clk_hw *hw)
{
struct mtk_clk_pll *pll = to_mtk_clk_pll(hw);
u32 r;
u32 div_en_mask;
r = readl(pll->pwr_addr) | CON0_PWR_ON;
writel(r, pll->pwr_addr);
udelay(1);
r = readl(pll->pwr_addr) & ~CON0_ISO_EN;
writel(r, pll->pwr_addr);
udelay(1);
r = readl(pll->en_addr) | BIT(pll->data->pll_en_bit);
writel(r, pll->en_addr);
div_en_mask = pll->data->en_mask & ~CON0_BASE_EN;
if (div_en_mask) {
r = readl(pll->base_addr + REG_CON0) | div_en_mask;
writel(r, pll->base_addr + REG_CON0);
}
__mtk_pll_tuner_enable(pll);
udelay(20);
if (pll->data->flags & HAVE_RST_BAR) {
r = readl(pll->base_addr + REG_CON0);
r |= pll->data->rst_bar_mask;
writel(r, pll->base_addr + REG_CON0);
}
return 0;
}
static void mtk_pll_unprepare(struct clk_hw *hw)
{
struct mtk_clk_pll *pll = to_mtk_clk_pll(hw);
u32 r;
u32 div_en_mask;
if (pll->data->flags & HAVE_RST_BAR) {
r = readl(pll->base_addr + REG_CON0);
r &= ~pll->data->rst_bar_mask;
writel(r, pll->base_addr + REG_CON0);
}
__mtk_pll_tuner_disable(pll);
div_en_mask = pll->data->en_mask & ~CON0_BASE_EN;
if (div_en_mask) {
r = readl(pll->base_addr + REG_CON0) & ~div_en_mask;
writel(r, pll->base_addr + REG_CON0);
}
r = readl(pll->en_addr) & ~BIT(pll->data->pll_en_bit);
writel(r, pll->en_addr);
r = readl(pll->pwr_addr) | CON0_ISO_EN;
writel(r, pll->pwr_addr);
r = readl(pll->pwr_addr) & ~CON0_PWR_ON;
writel(r, pll->pwr_addr);
}
static const struct clk_ops mtk_pll_ops = {
.is_prepared = mtk_pll_is_prepared,
.prepare = mtk_pll_prepare,
.unprepare = mtk_pll_unprepare,
.recalc_rate = mtk_pll_recalc_rate,
.round_rate = mtk_pll_round_rate,
.set_rate = mtk_pll_set_rate,
};
static struct clk *mtk_clk_register_pll(const struct mtk_pll_data *data,
void __iomem *base)
{
struct mtk_clk_pll *pll;
struct clk_init_data init = {};
struct clk *clk;
const char *parent_name = "clk26m";
pll = kzalloc(sizeof(*pll), GFP_KERNEL);
if (!pll)
return ERR_PTR(-ENOMEM);
pll->base_addr = base + data->reg;
pll->pwr_addr = base + data->pwr_reg;
pll->pd_addr = base + data->pd_reg;
pll->pcw_addr = base + data->pcw_reg;
if (data->pcw_chg_reg)
pll->pcw_chg_addr = base + data->pcw_chg_reg;
else
pll->pcw_chg_addr = pll->base_addr + REG_CON1;
if (data->tuner_reg)
pll->tuner_addr = base + data->tuner_reg;
if (data->tuner_en_reg || data->tuner_en_bit)
pll->tuner_en_addr = base + data->tuner_en_reg;
if (data->en_reg)
pll->en_addr = base + data->en_reg;
else
pll->en_addr = pll->base_addr + REG_CON0;
pll->hw.init = &init;
pll->data = data;
init.name = data->name;
init.flags = (data->flags & PLL_AO) ? CLK_IS_CRITICAL : 0;
init.ops = &mtk_pll_ops;
if (data->parent_name)
init.parent_names = &data->parent_name;
else
init.parent_names = &parent_name;
init.num_parents = 1;
clk = clk_register(NULL, &pll->hw);
if (IS_ERR(clk))
kfree(pll);
return clk;
}
static void mtk_clk_unregister_pll(struct clk *clk)
{
struct clk_hw *hw;
struct mtk_clk_pll *pll;
hw = __clk_get_hw(clk);
if (!hw)
return;
pll = to_mtk_clk_pll(hw);
clk_unregister(clk);
kfree(pll);
}
int mtk_clk_register_plls(struct device_node *node,
const struct mtk_pll_data *plls, int num_plls,
struct clk_onecell_data *clk_data)
{
void __iomem *base;
int i;
struct clk *clk;
base = of_iomap(node, 0);
if (!base) {
pr_err("%s(): ioremap failed\n", __func__);
return -EINVAL;
}
for (i = 0; i < num_plls; i++) {
const struct mtk_pll_data *pll = &plls[i];
if (!IS_ERR_OR_NULL(clk_data->clks[pll->id])) {
pr_warn("%pOF: Trying to register duplicate clock ID: %d\n",
node, pll->id);
continue;
}
clk = mtk_clk_register_pll(pll, base);
if (IS_ERR(clk)) {
pr_err("Failed to register clk %s: %pe\n", pll->name, clk);
goto err;
}
clk_data->clks[pll->id] = clk;
}
return 0;
err:
while (--i >= 0) {
const struct mtk_pll_data *pll = &plls[i];
mtk_clk_unregister_pll(clk_data->clks[pll->id]);
clk_data->clks[pll->id] = ERR_PTR(-ENOENT);
}
iounmap(base);
return PTR_ERR(clk);
}
EXPORT_SYMBOL_GPL(mtk_clk_register_plls);
static __iomem void *mtk_clk_pll_get_base(struct clk *clk,
const struct mtk_pll_data *data)
{
struct clk_hw *hw = __clk_get_hw(clk);
struct mtk_clk_pll *pll = to_mtk_clk_pll(hw);
return pll->base_addr - data->reg;
}
void mtk_clk_unregister_plls(const struct mtk_pll_data *plls, int num_plls,
struct clk_onecell_data *clk_data)
{
__iomem void *base = NULL;
int i;
if (!clk_data)
return;
for (i = num_plls; i > 0; i--) {
const struct mtk_pll_data *pll = &plls[i - 1];
if (IS_ERR_OR_NULL(clk_data->clks[pll->id]))
continue;
/*
* This is quite ugly but unfortunately the clks don't have
* any device tied to them, so there's no place to store the
* pointer to the I/O region base address. We have to fetch
* it from one of the registered clks.
*/
base = mtk_clk_pll_get_base(clk_data->clks[pll->id], pll);
mtk_clk_unregister_pll(clk_data->clks[pll->id]);
clk_data->clks[pll->id] = ERR_PTR(-ENOENT);
}
iounmap(base);
}
EXPORT_SYMBOL_GPL(mtk_clk_unregister_plls);
MODULE_LICENSE("GPL");