linux/drivers/net/dsa/microchip/lan937x_main.c
Arun Ramadoss 46f80fa898 net: dsa: microchip: add common gigabit set and get function
This patch add helper function for setting and getting the gigabit
enable for the ksz series switch. KSZ8795 switch has different register
address compared to all other ksz switches. KSZ8795 series uses the Port
5 Interface control 6 Bit 6 for configuring the 1Gbps or 100/10Mbps
speed selection. All other switches uses the xMII control 1 0xN301
register Bit6 for gigabit.
Further, for KSZ8795 & KSZ9893 switches if bit 1 then 1Gbps is chosen
and if bit 0 then 100/10Mbps is chosen. It is other way around for
other switches bit 0 is for 1Gbps. So, this patch implements the common
function for configuring the gigabit set and get capability.

Signed-off-by: Arun Ramadoss <arun.ramadoss@microchip.com>
Reviewed-by: Vladimir Oltean <olteanv@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2022-07-27 09:39:16 +01:00

477 lines
11 KiB
C

// SPDX-License-Identifier: GPL-2.0
/* Microchip LAN937X switch driver main logic
* Copyright (C) 2019-2022 Microchip Technology Inc.
*/
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/iopoll.h>
#include <linux/phy.h>
#include <linux/of_net.h>
#include <linux/of_mdio.h>
#include <linux/if_bridge.h>
#include <linux/if_vlan.h>
#include <linux/math.h>
#include <net/dsa.h>
#include <net/switchdev.h>
#include "lan937x_reg.h"
#include "ksz_common.h"
#include "lan937x.h"
static int lan937x_cfg(struct ksz_device *dev, u32 addr, u8 bits, bool set)
{
return regmap_update_bits(dev->regmap[0], addr, bits, set ? bits : 0);
}
static int lan937x_port_cfg(struct ksz_device *dev, int port, int offset,
u8 bits, bool set)
{
return regmap_update_bits(dev->regmap[0], PORT_CTRL_ADDR(port, offset),
bits, set ? bits : 0);
}
static int lan937x_enable_spi_indirect_access(struct ksz_device *dev)
{
u16 data16;
int ret;
/* Enable Phy access through SPI */
ret = lan937x_cfg(dev, REG_GLOBAL_CTRL_0, SW_PHY_REG_BLOCK, false);
if (ret < 0)
return ret;
ret = ksz_read16(dev, REG_VPHY_SPECIAL_CTRL__2, &data16);
if (ret < 0)
return ret;
/* Allow SPI access */
data16 |= VPHY_SPI_INDIRECT_ENABLE;
return ksz_write16(dev, REG_VPHY_SPECIAL_CTRL__2, data16);
}
static int lan937x_vphy_ind_addr_wr(struct ksz_device *dev, int addr, int reg)
{
u16 addr_base = REG_PORT_T1_PHY_CTRL_BASE;
u16 temp;
/* get register address based on the logical port */
temp = PORT_CTRL_ADDR(addr, (addr_base + (reg << 2)));
return ksz_write16(dev, REG_VPHY_IND_ADDR__2, temp);
}
static int lan937x_internal_phy_write(struct ksz_device *dev, int addr, int reg,
u16 val)
{
unsigned int value;
int ret;
/* Check for internal phy port */
if (!dev->info->internal_phy[addr])
return -EOPNOTSUPP;
ret = lan937x_vphy_ind_addr_wr(dev, addr, reg);
if (ret < 0)
return ret;
/* Write the data to be written to the VPHY reg */
ret = ksz_write16(dev, REG_VPHY_IND_DATA__2, val);
if (ret < 0)
return ret;
/* Write the Write En and Busy bit */
ret = ksz_write16(dev, REG_VPHY_IND_CTRL__2,
(VPHY_IND_WRITE | VPHY_IND_BUSY));
if (ret < 0)
return ret;
ret = regmap_read_poll_timeout(dev->regmap[1], REG_VPHY_IND_CTRL__2,
value, !(value & VPHY_IND_BUSY), 10,
1000);
if (ret < 0) {
dev_err(dev->dev, "Failed to write phy register\n");
return ret;
}
return 0;
}
static int lan937x_internal_phy_read(struct ksz_device *dev, int addr, int reg,
u16 *val)
{
unsigned int value;
int ret;
/* Check for internal phy port, return 0xffff for non-existent phy */
if (!dev->info->internal_phy[addr])
return 0xffff;
ret = lan937x_vphy_ind_addr_wr(dev, addr, reg);
if (ret < 0)
return ret;
/* Write Read and Busy bit to start the transaction */
ret = ksz_write16(dev, REG_VPHY_IND_CTRL__2, VPHY_IND_BUSY);
if (ret < 0)
return ret;
ret = regmap_read_poll_timeout(dev->regmap[1], REG_VPHY_IND_CTRL__2,
value, !(value & VPHY_IND_BUSY), 10,
1000);
if (ret < 0) {
dev_err(dev->dev, "Failed to read phy register\n");
return ret;
}
/* Read the VPHY register which has the PHY data */
return ksz_read16(dev, REG_VPHY_IND_DATA__2, val);
}
void lan937x_r_phy(struct ksz_device *dev, u16 addr, u16 reg, u16 *data)
{
lan937x_internal_phy_read(dev, addr, reg, data);
}
void lan937x_w_phy(struct ksz_device *dev, u16 addr, u16 reg, u16 val)
{
lan937x_internal_phy_write(dev, addr, reg, val);
}
static int lan937x_sw_mdio_read(struct mii_bus *bus, int addr, int regnum)
{
struct ksz_device *dev = bus->priv;
u16 val;
int ret;
if (regnum & MII_ADDR_C45)
return -EOPNOTSUPP;
ret = lan937x_internal_phy_read(dev, addr, regnum, &val);
if (ret < 0)
return ret;
return val;
}
static int lan937x_sw_mdio_write(struct mii_bus *bus, int addr, int regnum,
u16 val)
{
struct ksz_device *dev = bus->priv;
if (regnum & MII_ADDR_C45)
return -EOPNOTSUPP;
return lan937x_internal_phy_write(dev, addr, regnum, val);
}
static int lan937x_mdio_register(struct ksz_device *dev)
{
struct dsa_switch *ds = dev->ds;
struct device_node *mdio_np;
struct mii_bus *bus;
int ret;
mdio_np = of_get_child_by_name(dev->dev->of_node, "mdio");
if (!mdio_np) {
dev_err(ds->dev, "no MDIO bus node\n");
return -ENODEV;
}
bus = devm_mdiobus_alloc(ds->dev);
if (!bus) {
of_node_put(mdio_np);
return -ENOMEM;
}
bus->priv = dev;
bus->read = lan937x_sw_mdio_read;
bus->write = lan937x_sw_mdio_write;
bus->name = "lan937x slave smi";
snprintf(bus->id, MII_BUS_ID_SIZE, "SMI-%d", ds->index);
bus->parent = ds->dev;
bus->phy_mask = ~ds->phys_mii_mask;
ds->slave_mii_bus = bus;
ret = devm_of_mdiobus_register(ds->dev, bus, mdio_np);
if (ret) {
dev_err(ds->dev, "unable to register MDIO bus %s\n",
bus->id);
}
of_node_put(mdio_np);
return ret;
}
int lan937x_reset_switch(struct ksz_device *dev)
{
u32 data32;
int ret;
/* reset switch */
ret = lan937x_cfg(dev, REG_SW_OPERATION, SW_RESET, true);
if (ret < 0)
return ret;
/* Enable Auto Aging */
ret = lan937x_cfg(dev, REG_SW_LUE_CTRL_1, SW_LINK_AUTO_AGING, true);
if (ret < 0)
return ret;
/* disable interrupts */
ret = ksz_write32(dev, REG_SW_INT_MASK__4, SWITCH_INT_MASK);
if (ret < 0)
return ret;
ret = ksz_write32(dev, REG_SW_PORT_INT_MASK__4, 0xFF);
if (ret < 0)
return ret;
return ksz_read32(dev, REG_SW_PORT_INT_STATUS__4, &data32);
}
void lan937x_port_setup(struct ksz_device *dev, int port, bool cpu_port)
{
struct dsa_switch *ds = dev->ds;
u8 member;
/* enable tag tail for host port */
if (cpu_port)
lan937x_port_cfg(dev, port, REG_PORT_CTRL_0,
PORT_TAIL_TAG_ENABLE, true);
/* disable frame check length field */
lan937x_port_cfg(dev, port, REG_PORT_MAC_CTRL_0, PORT_CHECK_LENGTH,
false);
/* set back pressure for half duplex */
lan937x_port_cfg(dev, port, REG_PORT_MAC_CTRL_1, PORT_BACK_PRESSURE,
true);
/* enable 802.1p priority */
lan937x_port_cfg(dev, port, P_PRIO_CTRL, PORT_802_1P_PRIO_ENABLE, true);
if (!dev->info->internal_phy[port])
lan937x_port_cfg(dev, port, REG_PORT_XMII_CTRL_0,
PORT_MII_TX_FLOW_CTRL | PORT_MII_RX_FLOW_CTRL,
true);
if (cpu_port)
member = dsa_user_ports(ds);
else
member = BIT(dsa_upstream_port(ds, port));
dev->dev_ops->cfg_port_member(dev, port, member);
}
void lan937x_config_cpu_port(struct dsa_switch *ds)
{
struct ksz_device *dev = ds->priv;
struct dsa_port *dp;
dsa_switch_for_each_cpu_port(dp, ds) {
if (dev->info->cpu_ports & (1 << dp->index)) {
dev->cpu_port = dp->index;
/* enable cpu port */
lan937x_port_setup(dev, dp->index, true);
}
}
dsa_switch_for_each_user_port(dp, ds) {
ksz_port_stp_state_set(ds, dp->index, BR_STATE_DISABLED);
}
}
int lan937x_change_mtu(struct ksz_device *dev, int port, int new_mtu)
{
struct dsa_switch *ds = dev->ds;
int ret;
new_mtu += VLAN_ETH_HLEN + ETH_FCS_LEN;
if (dsa_is_cpu_port(ds, port))
new_mtu += LAN937X_TAG_LEN;
if (new_mtu >= FR_MIN_SIZE)
ret = lan937x_port_cfg(dev, port, REG_PORT_MAC_CTRL_0,
PORT_JUMBO_PACKET, true);
else
ret = lan937x_port_cfg(dev, port, REG_PORT_MAC_CTRL_0,
PORT_JUMBO_PACKET, false);
if (ret < 0) {
dev_err(ds->dev, "failed to enable jumbo\n");
return ret;
}
/* Write the frame size in PORT_MAX_FR_SIZE register */
ksz_pwrite16(dev, port, PORT_MAX_FR_SIZE, new_mtu);
return 0;
}
static void lan937x_mac_config(struct ksz_device *dev, int port,
phy_interface_t interface)
{
u8 data8;
ksz_pread8(dev, port, REG_PORT_XMII_CTRL_1, &data8);
/* clear MII selection & set it based on interface later */
data8 &= ~PORT_MII_SEL_M;
/* configure MAC based on interface */
switch (interface) {
case PHY_INTERFACE_MODE_MII:
ksz_set_gbit(dev, port, false);
data8 |= PORT_MII_SEL;
break;
case PHY_INTERFACE_MODE_RMII:
ksz_set_gbit(dev, port, false);
data8 |= PORT_RMII_SEL;
break;
default:
dev_err(dev->dev, "Unsupported interface '%s' for port %d\n",
phy_modes(interface), port);
return;
}
/* Write the updated value */
ksz_pwrite8(dev, port, REG_PORT_XMII_CTRL_1, data8);
}
static void lan937x_config_interface(struct ksz_device *dev, int port,
int speed, int duplex,
bool tx_pause, bool rx_pause)
{
u8 xmii_ctrl0, xmii_ctrl1;
ksz_pread8(dev, port, REG_PORT_XMII_CTRL_0, &xmii_ctrl0);
ksz_pread8(dev, port, REG_PORT_XMII_CTRL_1, &xmii_ctrl1);
xmii_ctrl0 &= ~(PORT_MII_100MBIT | PORT_MII_FULL_DUPLEX |
PORT_MII_TX_FLOW_CTRL | PORT_MII_RX_FLOW_CTRL);
if (speed == SPEED_1000)
ksz_set_gbit(dev, port, true);
else
ksz_set_gbit(dev, port, false);
if (speed == SPEED_100)
xmii_ctrl0 |= PORT_MII_100MBIT;
if (duplex)
xmii_ctrl0 |= PORT_MII_FULL_DUPLEX;
if (tx_pause)
xmii_ctrl0 |= PORT_MII_TX_FLOW_CTRL;
if (rx_pause)
xmii_ctrl0 |= PORT_MII_RX_FLOW_CTRL;
ksz_pwrite8(dev, port, REG_PORT_XMII_CTRL_0, xmii_ctrl0);
ksz_pwrite8(dev, port, REG_PORT_XMII_CTRL_1, xmii_ctrl1);
}
void lan937x_phylink_get_caps(struct ksz_device *dev, int port,
struct phylink_config *config)
{
config->mac_capabilities = MAC_100FD;
if (dev->info->supports_rgmii[port]) {
/* MII/RMII/RGMII ports */
config->mac_capabilities |= MAC_ASYM_PAUSE | MAC_SYM_PAUSE |
MAC_100HD | MAC_10 | MAC_1000FD;
}
}
void lan937x_phylink_mac_link_up(struct ksz_device *dev, int port,
unsigned int mode, phy_interface_t interface,
struct phy_device *phydev, int speed,
int duplex, bool tx_pause, bool rx_pause)
{
/* Internal PHYs */
if (dev->info->internal_phy[port])
return;
lan937x_config_interface(dev, port, speed, duplex,
tx_pause, rx_pause);
}
void lan937x_phylink_mac_config(struct ksz_device *dev, int port,
unsigned int mode,
const struct phylink_link_state *state)
{
/* Internal PHYs */
if (dev->info->internal_phy[port])
return;
if (phylink_autoneg_inband(mode)) {
dev_err(dev->dev, "In-band AN not supported!\n");
return;
}
lan937x_mac_config(dev, port, state->interface);
}
int lan937x_setup(struct dsa_switch *ds)
{
struct ksz_device *dev = ds->priv;
int ret;
/* enable Indirect Access from SPI to the VPHY registers */
ret = lan937x_enable_spi_indirect_access(dev);
if (ret < 0) {
dev_err(dev->dev, "failed to enable spi indirect access");
return ret;
}
ret = lan937x_mdio_register(dev);
if (ret < 0) {
dev_err(dev->dev, "failed to register the mdio");
return ret;
}
/* The VLAN aware is a global setting. Mixed vlan
* filterings are not supported.
*/
ds->vlan_filtering_is_global = true;
/* Enable aggressive back off for half duplex & UNH mode */
lan937x_cfg(dev, REG_SW_MAC_CTRL_0,
(SW_PAUSE_UNH_MODE | SW_NEW_BACKOFF | SW_AGGR_BACKOFF),
true);
/* If NO_EXC_COLLISION_DROP bit is set, the switch will not drop
* packets when 16 or more collisions occur
*/
lan937x_cfg(dev, REG_SW_MAC_CTRL_1, NO_EXC_COLLISION_DROP, true);
/* enable global MIB counter freeze function */
lan937x_cfg(dev, REG_SW_MAC_CTRL_6, SW_MIB_COUNTER_FREEZE, true);
/* disable CLK125 & CLK25, 1: disable, 0: enable */
lan937x_cfg(dev, REG_SW_GLOBAL_OUTPUT_CTRL__1,
(SW_CLK125_ENB | SW_CLK25_ENB), true);
return 0;
}
int lan937x_switch_init(struct ksz_device *dev)
{
dev->port_mask = (1 << dev->info->port_cnt) - 1;
return 0;
}
void lan937x_switch_exit(struct ksz_device *dev)
{
lan937x_reset_switch(dev);
}
MODULE_AUTHOR("Arun Ramadoss <arun.ramadoss@microchip.com>");
MODULE_DESCRIPTION("Microchip LAN937x Series Switch DSA Driver");
MODULE_LICENSE("GPL");