David Howells 4722974d90 rxrpc: Implement service upgrade
Implement AuriStor's service upgrade facility.  There are three problems
that this is meant to deal with:

 (1) Various of the standard AFS RPC calls have IPv4 addresses in their
     requests and/or replies - but there's no room for including IPv6
     addresses.

 (2) Definition of IPv6-specific RPC operations in the standard operation
     sets has not yet been achieved.

 (3) One could envision the creation a new service on the same port that as
     the original service.  The new service could implement improved
     operations - and the client could try this first, falling back to the
     original service if it's not there.

     Unfortunately, certain servers ignore packets addressed to a service
     they don't implement and don't respond in any way - not even with an
     ABORT.  This means that the client must then wait for the call timeout
     to occur.

What service upgrade does is to see if the connection is marked as being
'upgradeable' and if so, change the service ID in the server and thus the
request and reply formats.  Note that the upgrade isn't mandatory - a
server that supports only the original call set will ignore the upgrade
request.

In the protocol, the procedure is then as follows:

 (1) To request an upgrade, the first DATA packet in a new connection must
     have the userStatus set to 1 (this is normally 0).  The userStatus
     value is normally ignored by the server.

 (2) If the server doesn't support upgrading, the reply packets will
     contain the same service ID as for the first request packet.

 (3) If the server does support upgrading, all future reply packets on that
     connection will contain the new service ID and the new service ID will
     be applied to *all* further calls on that connection as well.

 (4) The RPC op used to probe the upgrade must take the same request data
     as the shadow call in the upgrade set (but may return a different
     reply).  GetCapability RPC ops were added to all standard sets for
     just this purpose.  Ops where the request formats differ cannot be
     used for probing.

 (5) The client must wait for completion of the probe before sending any
     further RPC ops to the same destination.  It should then use the
     service ID that recvmsg() reported back in all future calls.

 (6) The shadow service must have call definitions for all the operation
     IDs defined by the original service.


To support service upgrading, a server should:

 (1) Call bind() twice on its AF_RXRPC socket before calling listen().
     Each bind() should supply a different service ID, but the transport
     addresses must be the same.  This allows the server to receive
     requests with either service ID.

 (2) Enable automatic upgrading by calling setsockopt(), specifying
     RXRPC_UPGRADEABLE_SERVICE and passing in a two-member array of
     unsigned shorts as the argument:

	unsigned short optval[2];

     This specifies a pair of service IDs.  They must be different and must
     match the service IDs bound to the socket.  Member 0 is the service ID
     to upgrade from and member 1 is the service ID to upgrade to.

Signed-off-by: David Howells <dhowells@redhat.com>
2017-06-05 14:30:49 +01:00

973 lines
37 KiB
Plaintext

======================
RxRPC NETWORK PROTOCOL
======================
The RxRPC protocol driver provides a reliable two-phase transport on top of UDP
that can be used to perform RxRPC remote operations. This is done over sockets
of AF_RXRPC family, using sendmsg() and recvmsg() with control data to send and
receive data, aborts and errors.
Contents of this document:
(*) Overview.
(*) RxRPC protocol summary.
(*) AF_RXRPC driver model.
(*) Control messages.
(*) Socket options.
(*) Security.
(*) Example client usage.
(*) Example server usage.
(*) AF_RXRPC kernel interface.
(*) Configurable parameters.
========
OVERVIEW
========
RxRPC is a two-layer protocol. There is a session layer which provides
reliable virtual connections using UDP over IPv4 (or IPv6) as the transport
layer, but implements a real network protocol; and there's the presentation
layer which renders structured data to binary blobs and back again using XDR
(as does SunRPC):
+-------------+
| Application |
+-------------+
| XDR | Presentation
+-------------+
| RxRPC | Session
+-------------+
| UDP | Transport
+-------------+
AF_RXRPC provides:
(1) Part of an RxRPC facility for both kernel and userspace applications by
making the session part of it a Linux network protocol (AF_RXRPC).
(2) A two-phase protocol. The client transmits a blob (the request) and then
receives a blob (the reply), and the server receives the request and then
transmits the reply.
(3) Retention of the reusable bits of the transport system set up for one call
to speed up subsequent calls.
(4) A secure protocol, using the Linux kernel's key retention facility to
manage security on the client end. The server end must of necessity be
more active in security negotiations.
AF_RXRPC does not provide XDR marshalling/presentation facilities. That is
left to the application. AF_RXRPC only deals in blobs. Even the operation ID
is just the first four bytes of the request blob, and as such is beyond the
kernel's interest.
Sockets of AF_RXRPC family are:
(1) created as type SOCK_DGRAM;
(2) provided with a protocol of the type of underlying transport they're going
to use - currently only PF_INET is supported.
The Andrew File System (AFS) is an example of an application that uses this and
that has both kernel (filesystem) and userspace (utility) components.
======================
RXRPC PROTOCOL SUMMARY
======================
An overview of the RxRPC protocol:
(*) RxRPC sits on top of another networking protocol (UDP is the only option
currently), and uses this to provide network transport. UDP ports, for
example, provide transport endpoints.
(*) RxRPC supports multiple virtual "connections" from any given transport
endpoint, thus allowing the endpoints to be shared, even to the same
remote endpoint.
(*) Each connection goes to a particular "service". A connection may not go
to multiple services. A service may be considered the RxRPC equivalent of
a port number. AF_RXRPC permits multiple services to share an endpoint.
(*) Client-originating packets are marked, thus a transport endpoint can be
shared between client and server connections (connections have a
direction).
(*) Up to a billion connections may be supported concurrently between one
local transport endpoint and one service on one remote endpoint. An RxRPC
connection is described by seven numbers:
Local address }
Local port } Transport (UDP) address
Remote address }
Remote port }
Direction
Connection ID
Service ID
(*) Each RxRPC operation is a "call". A connection may make up to four
billion calls, but only up to four calls may be in progress on a
connection at any one time.
(*) Calls are two-phase and asymmetric: the client sends its request data,
which the service receives; then the service transmits the reply data
which the client receives.
(*) The data blobs are of indefinite size, the end of a phase is marked with a
flag in the packet. The number of packets of data making up one blob may
not exceed 4 billion, however, as this would cause the sequence number to
wrap.
(*) The first four bytes of the request data are the service operation ID.
(*) Security is negotiated on a per-connection basis. The connection is
initiated by the first data packet on it arriving. If security is
requested, the server then issues a "challenge" and then the client
replies with a "response". If the response is successful, the security is
set for the lifetime of that connection, and all subsequent calls made
upon it use that same security. In the event that the server lets a
connection lapse before the client, the security will be renegotiated if
the client uses the connection again.
(*) Calls use ACK packets to handle reliability. Data packets are also
explicitly sequenced per call.
(*) There are two types of positive acknowledgment: hard-ACKs and soft-ACKs.
A hard-ACK indicates to the far side that all the data received to a point
has been received and processed; a soft-ACK indicates that the data has
been received but may yet be discarded and re-requested. The sender may
not discard any transmittable packets until they've been hard-ACK'd.
(*) Reception of a reply data packet implicitly hard-ACK's all the data
packets that make up the request.
(*) An call is complete when the request has been sent, the reply has been
received and the final hard-ACK on the last packet of the reply has
reached the server.
(*) An call may be aborted by either end at any time up to its completion.
=====================
AF_RXRPC DRIVER MODEL
=====================
About the AF_RXRPC driver:
(*) The AF_RXRPC protocol transparently uses internal sockets of the transport
protocol to represent transport endpoints.
(*) AF_RXRPC sockets map onto RxRPC connection bundles. Actual RxRPC
connections are handled transparently. One client socket may be used to
make multiple simultaneous calls to the same service. One server socket
may handle calls from many clients.
(*) Additional parallel client connections will be initiated to support extra
concurrent calls, up to a tunable limit.
(*) Each connection is retained for a certain amount of time [tunable] after
the last call currently using it has completed in case a new call is made
that could reuse it.
(*) Each internal UDP socket is retained [tunable] for a certain amount of
time [tunable] after the last connection using it discarded, in case a new
connection is made that could use it.
(*) A client-side connection is only shared between calls if they have have
the same key struct describing their security (and assuming the calls
would otherwise share the connection). Non-secured calls would also be
able to share connections with each other.
(*) A server-side connection is shared if the client says it is.
(*) ACK'ing is handled by the protocol driver automatically, including ping
replying.
(*) SO_KEEPALIVE automatically pings the other side to keep the connection
alive [TODO].
(*) If an ICMP error is received, all calls affected by that error will be
aborted with an appropriate network error passed through recvmsg().
Interaction with the user of the RxRPC socket:
(*) A socket is made into a server socket by binding an address with a
non-zero service ID.
(*) In the client, sending a request is achieved with one or more sendmsgs,
followed by the reply being received with one or more recvmsgs.
(*) The first sendmsg for a request to be sent from a client contains a tag to
be used in all other sendmsgs or recvmsgs associated with that call. The
tag is carried in the control data.
(*) connect() is used to supply a default destination address for a client
socket. This may be overridden by supplying an alternate address to the
first sendmsg() of a call (struct msghdr::msg_name).
(*) If connect() is called on an unbound client, a random local port will
bound before the operation takes place.
(*) A server socket may also be used to make client calls. To do this, the
first sendmsg() of the call must specify the target address. The server's
transport endpoint is used to send the packets.
(*) Once the application has received the last message associated with a call,
the tag is guaranteed not to be seen again, and so it can be used to pin
client resources. A new call can then be initiated with the same tag
without fear of interference.
(*) In the server, a request is received with one or more recvmsgs, then the
the reply is transmitted with one or more sendmsgs, and then the final ACK
is received with a last recvmsg.
(*) When sending data for a call, sendmsg is given MSG_MORE if there's more
data to come on that call.
(*) When receiving data for a call, recvmsg flags MSG_MORE if there's more
data to come for that call.
(*) When receiving data or messages for a call, MSG_EOR is flagged by recvmsg
to indicate the terminal message for that call.
(*) A call may be aborted by adding an abort control message to the control
data. Issuing an abort terminates the kernel's use of that call's tag.
Any messages waiting in the receive queue for that call will be discarded.
(*) Aborts, busy notifications and challenge packets are delivered by recvmsg,
and control data messages will be set to indicate the context. Receiving
an abort or a busy message terminates the kernel's use of that call's tag.
(*) The control data part of the msghdr struct is used for a number of things:
(*) The tag of the intended or affected call.
(*) Sending or receiving errors, aborts and busy notifications.
(*) Notifications of incoming calls.
(*) Sending debug requests and receiving debug replies [TODO].
(*) When the kernel has received and set up an incoming call, it sends a
message to server application to let it know there's a new call awaiting
its acceptance [recvmsg reports a special control message]. The server
application then uses sendmsg to assign a tag to the new call. Once that
is done, the first part of the request data will be delivered by recvmsg.
(*) The server application has to provide the server socket with a keyring of
secret keys corresponding to the security types it permits. When a secure
connection is being set up, the kernel looks up the appropriate secret key
in the keyring and then sends a challenge packet to the client and
receives a response packet. The kernel then checks the authorisation of
the packet and either aborts the connection or sets up the security.
(*) The name of the key a client will use to secure its communications is
nominated by a socket option.
Notes on recvmsg:
(*) If there's a sequence of data messages belonging to a particular call on
the receive queue, then recvmsg will keep working through them until:
(a) it meets the end of that call's received data,
(b) it meets a non-data message,
(c) it meets a message belonging to a different call, or
(d) it fills the user buffer.
If recvmsg is called in blocking mode, it will keep sleeping, awaiting the
reception of further data, until one of the above four conditions is met.
(2) MSG_PEEK operates similarly, but will return immediately if it has put any
data in the buffer rather than sleeping until it can fill the buffer.
(3) If a data message is only partially consumed in filling a user buffer,
then the remainder of that message will be left on the front of the queue
for the next taker. MSG_TRUNC will never be flagged.
(4) If there is more data to be had on a call (it hasn't copied the last byte
of the last data message in that phase yet), then MSG_MORE will be
flagged.
================
CONTROL MESSAGES
================
AF_RXRPC makes use of control messages in sendmsg() and recvmsg() to multiplex
calls, to invoke certain actions and to report certain conditions. These are:
MESSAGE ID SRT DATA MEANING
======================= === =========== ===============================
RXRPC_USER_CALL_ID sr- User ID App's call specifier
RXRPC_ABORT srt Abort code Abort code to issue/received
RXRPC_ACK -rt n/a Final ACK received
RXRPC_NET_ERROR -rt error num Network error on call
RXRPC_BUSY -rt n/a Call rejected (server busy)
RXRPC_LOCAL_ERROR -rt error num Local error encountered
RXRPC_NEW_CALL -r- n/a New call received
RXRPC_ACCEPT s-- n/a Accept new call
(SRT = usable in Sendmsg / delivered by Recvmsg / Terminal message)
(*) RXRPC_USER_CALL_ID
This is used to indicate the application's call ID. It's an unsigned long
that the app specifies in the client by attaching it to the first data
message or in the server by passing it in association with an RXRPC_ACCEPT
message. recvmsg() passes it in conjunction with all messages except
those of the RXRPC_NEW_CALL message.
(*) RXRPC_ABORT
This is can be used by an application to abort a call by passing it to
sendmsg, or it can be delivered by recvmsg to indicate a remote abort was
received. Either way, it must be associated with an RXRPC_USER_CALL_ID to
specify the call affected. If an abort is being sent, then error EBADSLT
will be returned if there is no call with that user ID.
(*) RXRPC_ACK
This is delivered to a server application to indicate that the final ACK
of a call was received from the client. It will be associated with an
RXRPC_USER_CALL_ID to indicate the call that's now complete.
(*) RXRPC_NET_ERROR
This is delivered to an application to indicate that an ICMP error message
was encountered in the process of trying to talk to the peer. An
errno-class integer value will be included in the control message data
indicating the problem, and an RXRPC_USER_CALL_ID will indicate the call
affected.
(*) RXRPC_BUSY
This is delivered to a client application to indicate that a call was
rejected by the server due to the server being busy. It will be
associated with an RXRPC_USER_CALL_ID to indicate the rejected call.
(*) RXRPC_LOCAL_ERROR
This is delivered to an application to indicate that a local error was
encountered and that a call has been aborted because of it. An
errno-class integer value will be included in the control message data
indicating the problem, and an RXRPC_USER_CALL_ID will indicate the call
affected.
(*) RXRPC_NEW_CALL
This is delivered to indicate to a server application that a new call has
arrived and is awaiting acceptance. No user ID is associated with this,
as a user ID must subsequently be assigned by doing an RXRPC_ACCEPT.
(*) RXRPC_ACCEPT
This is used by a server application to attempt to accept a call and
assign it a user ID. It should be associated with an RXRPC_USER_CALL_ID
to indicate the user ID to be assigned. If there is no call to be
accepted (it may have timed out, been aborted, etc.), then sendmsg will
return error ENODATA. If the user ID is already in use by another call,
then error EBADSLT will be returned.
==============
SOCKET OPTIONS
==============
AF_RXRPC sockets support a few socket options at the SOL_RXRPC level:
(*) RXRPC_SECURITY_KEY
This is used to specify the description of the key to be used. The key is
extracted from the calling process's keyrings with request_key() and
should be of "rxrpc" type.
The optval pointer points to the description string, and optlen indicates
how long the string is, without the NUL terminator.
(*) RXRPC_SECURITY_KEYRING
Similar to above but specifies a keyring of server secret keys to use (key
type "keyring"). See the "Security" section.
(*) RXRPC_EXCLUSIVE_CONNECTION
This is used to request that new connections should be used for each call
made subsequently on this socket. optval should be NULL and optlen 0.
(*) RXRPC_MIN_SECURITY_LEVEL
This is used to specify the minimum security level required for calls on
this socket. optval must point to an int containing one of the following
values:
(a) RXRPC_SECURITY_PLAIN
Encrypted checksum only.
(b) RXRPC_SECURITY_AUTH
Encrypted checksum plus packet padded and first eight bytes of packet
encrypted - which includes the actual packet length.
(c) RXRPC_SECURITY_ENCRYPTED
Encrypted checksum plus entire packet padded and encrypted, including
actual packet length.
(*) RXRPC_UPGRADEABLE_SERVICE
This is used to indicate that a service socket with two bindings may
upgrade one bound service to the other if requested by the client. optval
must point to an array of two unsigned short ints. The first is the
service ID to upgrade from and the second the service ID to upgrade to.
========
SECURITY
========
Currently, only the kerberos 4 equivalent protocol has been implemented
(security index 2 - rxkad). This requires the rxkad module to be loaded and,
on the client, tickets of the appropriate type to be obtained from the AFS
kaserver or the kerberos server and installed as "rxrpc" type keys. This is
normally done using the klog program. An example simple klog program can be
found at:
http://people.redhat.com/~dhowells/rxrpc/klog.c
The payload provided to add_key() on the client should be of the following
form:
struct rxrpc_key_sec2_v1 {
uint16_t security_index; /* 2 */
uint16_t ticket_length; /* length of ticket[] */
uint32_t expiry; /* time at which expires */
uint8_t kvno; /* key version number */
uint8_t __pad[3];
uint8_t session_key[8]; /* DES session key */
uint8_t ticket[0]; /* the encrypted ticket */
};
Where the ticket blob is just appended to the above structure.
For the server, keys of type "rxrpc_s" must be made available to the server.
They have a description of "<serviceID>:<securityIndex>" (eg: "52:2" for an
rxkad key for the AFS VL service). When such a key is created, it should be
given the server's secret key as the instantiation data (see the example
below).
add_key("rxrpc_s", "52:2", secret_key, 8, keyring);
A keyring is passed to the server socket by naming it in a sockopt. The server
socket then looks the server secret keys up in this keyring when secure
incoming connections are made. This can be seen in an example program that can
be found at:
http://people.redhat.com/~dhowells/rxrpc/listen.c
====================
EXAMPLE CLIENT USAGE
====================
A client would issue an operation by:
(1) An RxRPC socket is set up by:
client = socket(AF_RXRPC, SOCK_DGRAM, PF_INET);
Where the third parameter indicates the protocol family of the transport
socket used - usually IPv4 but it can also be IPv6 [TODO].
(2) A local address can optionally be bound:
struct sockaddr_rxrpc srx = {
.srx_family = AF_RXRPC,
.srx_service = 0, /* we're a client */
.transport_type = SOCK_DGRAM, /* type of transport socket */
.transport.sin_family = AF_INET,
.transport.sin_port = htons(7000), /* AFS callback */
.transport.sin_address = 0, /* all local interfaces */
};
bind(client, &srx, sizeof(srx));
This specifies the local UDP port to be used. If not given, a random
non-privileged port will be used. A UDP port may be shared between
several unrelated RxRPC sockets. Security is handled on a basis of
per-RxRPC virtual connection.
(3) The security is set:
const char *key = "AFS:cambridge.redhat.com";
setsockopt(client, SOL_RXRPC, RXRPC_SECURITY_KEY, key, strlen(key));
This issues a request_key() to get the key representing the security
context. The minimum security level can be set:
unsigned int sec = RXRPC_SECURITY_ENCRYPTED;
setsockopt(client, SOL_RXRPC, RXRPC_MIN_SECURITY_LEVEL,
&sec, sizeof(sec));
(4) The server to be contacted can then be specified (alternatively this can
be done through sendmsg):
struct sockaddr_rxrpc srx = {
.srx_family = AF_RXRPC,
.srx_service = VL_SERVICE_ID,
.transport_type = SOCK_DGRAM, /* type of transport socket */
.transport.sin_family = AF_INET,
.transport.sin_port = htons(7005), /* AFS volume manager */
.transport.sin_address = ...,
};
connect(client, &srx, sizeof(srx));
(5) The request data should then be posted to the server socket using a series
of sendmsg() calls, each with the following control message attached:
RXRPC_USER_CALL_ID - specifies the user ID for this call
MSG_MORE should be set in msghdr::msg_flags on all but the last part of
the request. Multiple requests may be made simultaneously.
If a call is intended to go to a destination other than the default
specified through connect(), then msghdr::msg_name should be set on the
first request message of that call.
(6) The reply data will then be posted to the server socket for recvmsg() to
pick up. MSG_MORE will be flagged by recvmsg() if there's more reply data
for a particular call to be read. MSG_EOR will be set on the terminal
read for a call.
All data will be delivered with the following control message attached:
RXRPC_USER_CALL_ID - specifies the user ID for this call
If an abort or error occurred, this will be returned in the control data
buffer instead, and MSG_EOR will be flagged to indicate the end of that
call.
====================
EXAMPLE SERVER USAGE
====================
A server would be set up to accept operations in the following manner:
(1) An RxRPC socket is created by:
server = socket(AF_RXRPC, SOCK_DGRAM, PF_INET);
Where the third parameter indicates the address type of the transport
socket used - usually IPv4.
(2) Security is set up if desired by giving the socket a keyring with server
secret keys in it:
keyring = add_key("keyring", "AFSkeys", NULL, 0,
KEY_SPEC_PROCESS_KEYRING);
const char secret_key[8] = {
0xa7, 0x83, 0x8a, 0xcb, 0xc7, 0x83, 0xec, 0x94 };
add_key("rxrpc_s", "52:2", secret_key, 8, keyring);
setsockopt(server, SOL_RXRPC, RXRPC_SECURITY_KEYRING, "AFSkeys", 7);
The keyring can be manipulated after it has been given to the socket. This
permits the server to add more keys, replace keys, etc. whilst it is live.
(3) A local address must then be bound:
struct sockaddr_rxrpc srx = {
.srx_family = AF_RXRPC,
.srx_service = VL_SERVICE_ID, /* RxRPC service ID */
.transport_type = SOCK_DGRAM, /* type of transport socket */
.transport.sin_family = AF_INET,
.transport.sin_port = htons(7000), /* AFS callback */
.transport.sin_address = 0, /* all local interfaces */
};
bind(server, &srx, sizeof(srx));
More than one service ID may be bound to a socket, provided the transport
parameters are the same. The limit is currently two. To do this, bind()
should be called twice.
(4) If service upgrading is required, first two service IDs must have been
bound and then the following option must be set:
unsigned short service_ids[2] = { from_ID, to_ID };
setsockopt(server, SOL_RXRPC, RXRPC_UPGRADEABLE_SERVICE,
service_ids, sizeof(service_ids));
This will automatically upgrade connections on service from_ID to service
to_ID if they request it. This will be reflected in msg_name obtained
through recvmsg() when the request data is delivered to userspace.
(5) The server is then set to listen out for incoming calls:
listen(server, 100);
(6) The kernel notifies the server of pending incoming connections by sending
it a message for each. This is received with recvmsg() on the server
socket. It has no data, and has a single dataless control message
attached:
RXRPC_NEW_CALL
The address that can be passed back by recvmsg() at this point should be
ignored since the call for which the message was posted may have gone by
the time it is accepted - in which case the first call still on the queue
will be accepted.
(7) The server then accepts the new call by issuing a sendmsg() with two
pieces of control data and no actual data:
RXRPC_ACCEPT - indicate connection acceptance
RXRPC_USER_CALL_ID - specify user ID for this call
(8) The first request data packet will then be posted to the server socket for
recvmsg() to pick up. At that point, the RxRPC address for the call can
be read from the address fields in the msghdr struct.
Subsequent request data will be posted to the server socket for recvmsg()
to collect as it arrives. All but the last piece of the request data will
be delivered with MSG_MORE flagged.
All data will be delivered with the following control message attached:
RXRPC_USER_CALL_ID - specifies the user ID for this call
(9) The reply data should then be posted to the server socket using a series
of sendmsg() calls, each with the following control messages attached:
RXRPC_USER_CALL_ID - specifies the user ID for this call
MSG_MORE should be set in msghdr::msg_flags on all but the last message
for a particular call.
(10) The final ACK from the client will be posted for retrieval by recvmsg()
when it is received. It will take the form of a dataless message with two
control messages attached:
RXRPC_USER_CALL_ID - specifies the user ID for this call
RXRPC_ACK - indicates final ACK (no data)
MSG_EOR will be flagged to indicate that this is the final message for
this call.
(11) Up to the point the final packet of reply data is sent, the call can be
aborted by calling sendmsg() with a dataless message with the following
control messages attached:
RXRPC_USER_CALL_ID - specifies the user ID for this call
RXRPC_ABORT - indicates abort code (4 byte data)
Any packets waiting in the socket's receive queue will be discarded if
this is issued.
Note that all the communications for a particular service take place through
the one server socket, using control messages on sendmsg() and recvmsg() to
determine the call affected.
=========================
AF_RXRPC KERNEL INTERFACE
=========================
The AF_RXRPC module also provides an interface for use by in-kernel utilities
such as the AFS filesystem. This permits such a utility to:
(1) Use different keys directly on individual client calls on one socket
rather than having to open a whole slew of sockets, one for each key it
might want to use.
(2) Avoid having RxRPC call request_key() at the point of issue of a call or
opening of a socket. Instead the utility is responsible for requesting a
key at the appropriate point. AFS, for instance, would do this during VFS
operations such as open() or unlink(). The key is then handed through
when the call is initiated.
(3) Request the use of something other than GFP_KERNEL to allocate memory.
(4) Avoid the overhead of using the recvmsg() call. RxRPC messages can be
intercepted before they get put into the socket Rx queue and the socket
buffers manipulated directly.
To use the RxRPC facility, a kernel utility must still open an AF_RXRPC socket,
bind an address as appropriate and listen if it's to be a server socket, but
then it passes this to the kernel interface functions.
The kernel interface functions are as follows:
(*) Begin a new client call.
struct rxrpc_call *
rxrpc_kernel_begin_call(struct socket *sock,
struct sockaddr_rxrpc *srx,
struct key *key,
unsigned long user_call_ID,
gfp_t gfp);
This allocates the infrastructure to make a new RxRPC call and assigns
call and connection numbers. The call will be made on the UDP port that
the socket is bound to. The call will go to the destination address of a
connected client socket unless an alternative is supplied (srx is
non-NULL).
If a key is supplied then this will be used to secure the call instead of
the key bound to the socket with the RXRPC_SECURITY_KEY sockopt. Calls
secured in this way will still share connections if at all possible.
The user_call_ID is equivalent to that supplied to sendmsg() in the
control data buffer. It is entirely feasible to use this to point to a
kernel data structure.
If this function is successful, an opaque reference to the RxRPC call is
returned. The caller now holds a reference on this and it must be
properly ended.
(*) End a client call.
void rxrpc_kernel_end_call(struct socket *sock,
struct rxrpc_call *call);
This is used to end a previously begun call. The user_call_ID is expunged
from AF_RXRPC's knowledge and will not be seen again in association with
the specified call.
(*) Send data through a call.
int rxrpc_kernel_send_data(struct socket *sock,
struct rxrpc_call *call,
struct msghdr *msg,
size_t len);
This is used to supply either the request part of a client call or the
reply part of a server call. msg.msg_iovlen and msg.msg_iov specify the
data buffers to be used. msg_iov may not be NULL and must point
exclusively to in-kernel virtual addresses. msg.msg_flags may be given
MSG_MORE if there will be subsequent data sends for this call.
The msg must not specify a destination address, control data or any flags
other than MSG_MORE. len is the total amount of data to transmit.
(*) Receive data from a call.
int rxrpc_kernel_recv_data(struct socket *sock,
struct rxrpc_call *call,
void *buf,
size_t size,
size_t *_offset,
bool want_more,
u32 *_abort)
This is used to receive data from either the reply part of a client call
or the request part of a service call. buf and size specify how much
data is desired and where to store it. *_offset is added on to buf and
subtracted from size internally; the amount copied into the buffer is
added to *_offset before returning.
want_more should be true if further data will be required after this is
satisfied and false if this is the last item of the receive phase.
There are three normal returns: 0 if the buffer was filled and want_more
was true; 1 if the buffer was filled, the last DATA packet has been
emptied and want_more was false; and -EAGAIN if the function needs to be
called again.
If the last DATA packet is processed but the buffer contains less than
the amount requested, EBADMSG is returned. If want_more wasn't set, but
more data was available, EMSGSIZE is returned.
If a remote ABORT is detected, the abort code received will be stored in
*_abort and ECONNABORTED will be returned.
(*) Abort a call.
void rxrpc_kernel_abort_call(struct socket *sock,
struct rxrpc_call *call,
u32 abort_code);
This is used to abort a call if it's still in an abortable state. The
abort code specified will be placed in the ABORT message sent.
(*) Intercept received RxRPC messages.
typedef void (*rxrpc_interceptor_t)(struct sock *sk,
unsigned long user_call_ID,
struct sk_buff *skb);
void
rxrpc_kernel_intercept_rx_messages(struct socket *sock,
rxrpc_interceptor_t interceptor);
This installs an interceptor function on the specified AF_RXRPC socket.
All messages that would otherwise wind up in the socket's Rx queue are
then diverted to this function. Note that care must be taken to process
the messages in the right order to maintain DATA message sequentiality.
The interceptor function itself is provided with the address of the socket
and handling the incoming message, the ID assigned by the kernel utility
to the call and the socket buffer containing the message.
The skb->mark field indicates the type of message:
MARK MEANING
=============================== =======================================
RXRPC_SKB_MARK_DATA Data message
RXRPC_SKB_MARK_FINAL_ACK Final ACK received for an incoming call
RXRPC_SKB_MARK_BUSY Client call rejected as server busy
RXRPC_SKB_MARK_REMOTE_ABORT Call aborted by peer
RXRPC_SKB_MARK_NET_ERROR Network error detected
RXRPC_SKB_MARK_LOCAL_ERROR Local error encountered
RXRPC_SKB_MARK_NEW_CALL New incoming call awaiting acceptance
The remote abort message can be probed with rxrpc_kernel_get_abort_code().
The two error messages can be probed with rxrpc_kernel_get_error_number().
A new call can be accepted with rxrpc_kernel_accept_call().
Data messages can have their contents extracted with the usual bunch of
socket buffer manipulation functions. A data message can be determined to
be the last one in a sequence with rxrpc_kernel_is_data_last(). When a
data message has been used up, rxrpc_kernel_data_consumed() should be
called on it.
Messages should be handled to rxrpc_kernel_free_skb() to dispose of. It
is possible to get extra refs on all types of message for later freeing,
but this may pin the state of a call until the message is finally freed.
(*) Accept an incoming call.
struct rxrpc_call *
rxrpc_kernel_accept_call(struct socket *sock,
unsigned long user_call_ID);
This is used to accept an incoming call and to assign it a call ID. This
function is similar to rxrpc_kernel_begin_call() and calls accepted must
be ended in the same way.
If this function is successful, an opaque reference to the RxRPC call is
returned. The caller now holds a reference on this and it must be
properly ended.
(*) Reject an incoming call.
int rxrpc_kernel_reject_call(struct socket *sock);
This is used to reject the first incoming call on the socket's queue with
a BUSY message. -ENODATA is returned if there were no incoming calls.
Other errors may be returned if the call had been aborted (-ECONNABORTED)
or had timed out (-ETIME).
(*) Allocate a null key for doing anonymous security.
struct key *rxrpc_get_null_key(const char *keyname);
This is used to allocate a null RxRPC key that can be used to indicate
anonymous security for a particular domain.
(*) Get the peer address of a call.
void rxrpc_kernel_get_peer(struct socket *sock, struct rxrpc_call *call,
struct sockaddr_rxrpc *_srx);
This is used to find the remote peer address of a call.
=======================
CONFIGURABLE PARAMETERS
=======================
The RxRPC protocol driver has a number of configurable parameters that can be
adjusted through sysctls in /proc/net/rxrpc/:
(*) req_ack_delay
The amount of time in milliseconds after receiving a packet with the
request-ack flag set before we honour the flag and actually send the
requested ack.
Usually the other side won't stop sending packets until the advertised
reception window is full (to a maximum of 255 packets), so delaying the
ACK permits several packets to be ACK'd in one go.
(*) soft_ack_delay
The amount of time in milliseconds after receiving a new packet before we
generate a soft-ACK to tell the sender that it doesn't need to resend.
(*) idle_ack_delay
The amount of time in milliseconds after all the packets currently in the
received queue have been consumed before we generate a hard-ACK to tell
the sender it can free its buffers, assuming no other reason occurs that
we would send an ACK.
(*) resend_timeout
The amount of time in milliseconds after transmitting a packet before we
transmit it again, assuming no ACK is received from the receiver telling
us they got it.
(*) max_call_lifetime
The maximum amount of time in seconds that a call may be in progress
before we preemptively kill it.
(*) dead_call_expiry
The amount of time in seconds before we remove a dead call from the call
list. Dead calls are kept around for a little while for the purpose of
repeating ACK and ABORT packets.
(*) connection_expiry
The amount of time in seconds after a connection was last used before we
remove it from the connection list. Whilst a connection is in existence,
it serves as a placeholder for negotiated security; when it is deleted,
the security must be renegotiated.
(*) transport_expiry
The amount of time in seconds after a transport was last used before we
remove it from the transport list. Whilst a transport is in existence, it
serves to anchor the peer data and keeps the connection ID counter.
(*) rxrpc_rx_window_size
The size of the receive window in packets. This is the maximum number of
unconsumed received packets we're willing to hold in memory for any
particular call.
(*) rxrpc_rx_mtu
The maximum packet MTU size that we're willing to receive in bytes. This
indicates to the peer whether we're willing to accept jumbo packets.
(*) rxrpc_rx_jumbo_max
The maximum number of packets that we're willing to accept in a jumbo
packet. Non-terminal packets in a jumbo packet must contain a four byte
header plus exactly 1412 bytes of data. The terminal packet must contain
a four byte header plus any amount of data. In any event, a jumbo packet
may not exceed rxrpc_rx_mtu in size.