linux/sound/soc/fsl/fsl_sai.c
Charles Keepax 00778276cf
ASoC: fsl: Rename set_fmt_new back to set_fmt
Now the core has been migrated across to the new direct clock
specification we can move the drivers back to the normal set_fmt
callback.

Signed-off-by: Charles Keepax <ckeepax@opensource.cirrus.com>
Link: https://lore.kernel.org/r/20220519154318.2153729-36-ckeepax@opensource.cirrus.com
Signed-off-by: Mark Brown <broonie@kernel.org>
2022-06-06 12:34:00 +01:00

1395 lines
36 KiB
C

// SPDX-License-Identifier: GPL-2.0+
//
// Freescale ALSA SoC Digital Audio Interface (SAI) driver.
//
// Copyright 2012-2015 Freescale Semiconductor, Inc.
#include <linux/clk.h>
#include <linux/delay.h>
#include <linux/dmaengine.h>
#include <linux/module.h>
#include <linux/of_address.h>
#include <linux/of_device.h>
#include <linux/pm_qos.h>
#include <linux/pm_runtime.h>
#include <linux/regmap.h>
#include <linux/slab.h>
#include <linux/time.h>
#include <sound/core.h>
#include <sound/dmaengine_pcm.h>
#include <sound/pcm_params.h>
#include <linux/mfd/syscon.h>
#include <linux/mfd/syscon/imx6q-iomuxc-gpr.h>
#include "fsl_sai.h"
#include "imx-pcm.h"
#define FSL_SAI_FLAGS (FSL_SAI_CSR_SEIE |\
FSL_SAI_CSR_FEIE)
static const unsigned int fsl_sai_rates[] = {
8000, 11025, 12000, 16000, 22050,
24000, 32000, 44100, 48000, 64000,
88200, 96000, 176400, 192000
};
static const struct snd_pcm_hw_constraint_list fsl_sai_rate_constraints = {
.count = ARRAY_SIZE(fsl_sai_rates),
.list = fsl_sai_rates,
};
/**
* fsl_sai_dir_is_synced - Check if stream is synced by the opposite stream
*
* SAI supports synchronous mode using bit/frame clocks of either Transmitter's
* or Receiver's for both streams. This function is used to check if clocks of
* the stream's are synced by the opposite stream.
*
* @sai: SAI context
* @dir: stream direction
*/
static inline bool fsl_sai_dir_is_synced(struct fsl_sai *sai, int dir)
{
int adir = (dir == TX) ? RX : TX;
/* current dir in async mode while opposite dir in sync mode */
return !sai->synchronous[dir] && sai->synchronous[adir];
}
static irqreturn_t fsl_sai_isr(int irq, void *devid)
{
struct fsl_sai *sai = (struct fsl_sai *)devid;
unsigned int ofs = sai->soc_data->reg_offset;
struct device *dev = &sai->pdev->dev;
u32 flags, xcsr, mask;
irqreturn_t iret = IRQ_NONE;
/*
* Both IRQ status bits and IRQ mask bits are in the xCSR but
* different shifts. And we here create a mask only for those
* IRQs that we activated.
*/
mask = (FSL_SAI_FLAGS >> FSL_SAI_CSR_xIE_SHIFT) << FSL_SAI_CSR_xF_SHIFT;
/* Tx IRQ */
regmap_read(sai->regmap, FSL_SAI_TCSR(ofs), &xcsr);
flags = xcsr & mask;
if (flags)
iret = IRQ_HANDLED;
else
goto irq_rx;
if (flags & FSL_SAI_CSR_WSF)
dev_dbg(dev, "isr: Start of Tx word detected\n");
if (flags & FSL_SAI_CSR_SEF)
dev_dbg(dev, "isr: Tx Frame sync error detected\n");
if (flags & FSL_SAI_CSR_FEF) {
dev_dbg(dev, "isr: Transmit underrun detected\n");
/* FIFO reset for safety */
xcsr |= FSL_SAI_CSR_FR;
}
if (flags & FSL_SAI_CSR_FWF)
dev_dbg(dev, "isr: Enabled transmit FIFO is empty\n");
if (flags & FSL_SAI_CSR_FRF)
dev_dbg(dev, "isr: Transmit FIFO watermark has been reached\n");
flags &= FSL_SAI_CSR_xF_W_MASK;
xcsr &= ~FSL_SAI_CSR_xF_MASK;
if (flags)
regmap_write(sai->regmap, FSL_SAI_TCSR(ofs), flags | xcsr);
irq_rx:
/* Rx IRQ */
regmap_read(sai->regmap, FSL_SAI_RCSR(ofs), &xcsr);
flags = xcsr & mask;
if (flags)
iret = IRQ_HANDLED;
else
goto out;
if (flags & FSL_SAI_CSR_WSF)
dev_dbg(dev, "isr: Start of Rx word detected\n");
if (flags & FSL_SAI_CSR_SEF)
dev_dbg(dev, "isr: Rx Frame sync error detected\n");
if (flags & FSL_SAI_CSR_FEF) {
dev_dbg(dev, "isr: Receive overflow detected\n");
/* FIFO reset for safety */
xcsr |= FSL_SAI_CSR_FR;
}
if (flags & FSL_SAI_CSR_FWF)
dev_dbg(dev, "isr: Enabled receive FIFO is full\n");
if (flags & FSL_SAI_CSR_FRF)
dev_dbg(dev, "isr: Receive FIFO watermark has been reached\n");
flags &= FSL_SAI_CSR_xF_W_MASK;
xcsr &= ~FSL_SAI_CSR_xF_MASK;
if (flags)
regmap_write(sai->regmap, FSL_SAI_RCSR(ofs), flags | xcsr);
out:
return iret;
}
static int fsl_sai_set_dai_tdm_slot(struct snd_soc_dai *cpu_dai, u32 tx_mask,
u32 rx_mask, int slots, int slot_width)
{
struct fsl_sai *sai = snd_soc_dai_get_drvdata(cpu_dai);
sai->slots = slots;
sai->slot_width = slot_width;
return 0;
}
static int fsl_sai_set_dai_bclk_ratio(struct snd_soc_dai *dai,
unsigned int ratio)
{
struct fsl_sai *sai = snd_soc_dai_get_drvdata(dai);
sai->bclk_ratio = ratio;
return 0;
}
static int fsl_sai_set_dai_sysclk_tr(struct snd_soc_dai *cpu_dai,
int clk_id, unsigned int freq, bool tx)
{
struct fsl_sai *sai = snd_soc_dai_get_drvdata(cpu_dai);
unsigned int ofs = sai->soc_data->reg_offset;
u32 val_cr2 = 0;
switch (clk_id) {
case FSL_SAI_CLK_BUS:
val_cr2 |= FSL_SAI_CR2_MSEL_BUS;
break;
case FSL_SAI_CLK_MAST1:
val_cr2 |= FSL_SAI_CR2_MSEL_MCLK1;
break;
case FSL_SAI_CLK_MAST2:
val_cr2 |= FSL_SAI_CR2_MSEL_MCLK2;
break;
case FSL_SAI_CLK_MAST3:
val_cr2 |= FSL_SAI_CR2_MSEL_MCLK3;
break;
default:
return -EINVAL;
}
regmap_update_bits(sai->regmap, FSL_SAI_xCR2(tx, ofs),
FSL_SAI_CR2_MSEL_MASK, val_cr2);
return 0;
}
static int fsl_sai_set_dai_sysclk(struct snd_soc_dai *cpu_dai,
int clk_id, unsigned int freq, int dir)
{
int ret;
if (dir == SND_SOC_CLOCK_IN)
return 0;
ret = fsl_sai_set_dai_sysclk_tr(cpu_dai, clk_id, freq, true);
if (ret) {
dev_err(cpu_dai->dev, "Cannot set tx sysclk: %d\n", ret);
return ret;
}
ret = fsl_sai_set_dai_sysclk_tr(cpu_dai, clk_id, freq, false);
if (ret)
dev_err(cpu_dai->dev, "Cannot set rx sysclk: %d\n", ret);
return ret;
}
static int fsl_sai_set_dai_fmt_tr(struct snd_soc_dai *cpu_dai,
unsigned int fmt, bool tx)
{
struct fsl_sai *sai = snd_soc_dai_get_drvdata(cpu_dai);
unsigned int ofs = sai->soc_data->reg_offset;
u32 val_cr2 = 0, val_cr4 = 0;
if (!sai->is_lsb_first)
val_cr4 |= FSL_SAI_CR4_MF;
/* DAI mode */
switch (fmt & SND_SOC_DAIFMT_FORMAT_MASK) {
case SND_SOC_DAIFMT_I2S:
/*
* Frame low, 1clk before data, one word length for frame sync,
* frame sync starts one serial clock cycle earlier,
* that is, together with the last bit of the previous
* data word.
*/
val_cr2 |= FSL_SAI_CR2_BCP;
val_cr4 |= FSL_SAI_CR4_FSE | FSL_SAI_CR4_FSP;
break;
case SND_SOC_DAIFMT_LEFT_J:
/*
* Frame high, one word length for frame sync,
* frame sync asserts with the first bit of the frame.
*/
val_cr2 |= FSL_SAI_CR2_BCP;
break;
case SND_SOC_DAIFMT_DSP_A:
/*
* Frame high, 1clk before data, one bit for frame sync,
* frame sync starts one serial clock cycle earlier,
* that is, together with the last bit of the previous
* data word.
*/
val_cr2 |= FSL_SAI_CR2_BCP;
val_cr4 |= FSL_SAI_CR4_FSE;
sai->is_dsp_mode = true;
break;
case SND_SOC_DAIFMT_DSP_B:
/*
* Frame high, one bit for frame sync,
* frame sync asserts with the first bit of the frame.
*/
val_cr2 |= FSL_SAI_CR2_BCP;
sai->is_dsp_mode = true;
break;
case SND_SOC_DAIFMT_RIGHT_J:
/* To be done */
default:
return -EINVAL;
}
/* DAI clock inversion */
switch (fmt & SND_SOC_DAIFMT_INV_MASK) {
case SND_SOC_DAIFMT_IB_IF:
/* Invert both clocks */
val_cr2 ^= FSL_SAI_CR2_BCP;
val_cr4 ^= FSL_SAI_CR4_FSP;
break;
case SND_SOC_DAIFMT_IB_NF:
/* Invert bit clock */
val_cr2 ^= FSL_SAI_CR2_BCP;
break;
case SND_SOC_DAIFMT_NB_IF:
/* Invert frame clock */
val_cr4 ^= FSL_SAI_CR4_FSP;
break;
case SND_SOC_DAIFMT_NB_NF:
/* Nothing to do for both normal cases */
break;
default:
return -EINVAL;
}
/* DAI clock provider masks */
switch (fmt & SND_SOC_DAIFMT_CLOCK_PROVIDER_MASK) {
case SND_SOC_DAIFMT_BP_FP:
val_cr2 |= FSL_SAI_CR2_BCD_MSTR;
val_cr4 |= FSL_SAI_CR4_FSD_MSTR;
sai->is_consumer_mode = false;
break;
case SND_SOC_DAIFMT_BC_FC:
sai->is_consumer_mode = true;
break;
case SND_SOC_DAIFMT_BP_FC:
val_cr2 |= FSL_SAI_CR2_BCD_MSTR;
sai->is_consumer_mode = false;
break;
case SND_SOC_DAIFMT_BC_FP:
val_cr4 |= FSL_SAI_CR4_FSD_MSTR;
sai->is_consumer_mode = true;
break;
default:
return -EINVAL;
}
regmap_update_bits(sai->regmap, FSL_SAI_xCR2(tx, ofs),
FSL_SAI_CR2_BCP | FSL_SAI_CR2_BCD_MSTR, val_cr2);
regmap_update_bits(sai->regmap, FSL_SAI_xCR4(tx, ofs),
FSL_SAI_CR4_MF | FSL_SAI_CR4_FSE |
FSL_SAI_CR4_FSP | FSL_SAI_CR4_FSD_MSTR, val_cr4);
return 0;
}
static int fsl_sai_set_dai_fmt(struct snd_soc_dai *cpu_dai, unsigned int fmt)
{
int ret;
ret = fsl_sai_set_dai_fmt_tr(cpu_dai, fmt, true);
if (ret) {
dev_err(cpu_dai->dev, "Cannot set tx format: %d\n", ret);
return ret;
}
ret = fsl_sai_set_dai_fmt_tr(cpu_dai, fmt, false);
if (ret)
dev_err(cpu_dai->dev, "Cannot set rx format: %d\n", ret);
return ret;
}
static int fsl_sai_set_bclk(struct snd_soc_dai *dai, bool tx, u32 freq)
{
struct fsl_sai *sai = snd_soc_dai_get_drvdata(dai);
unsigned int reg, ofs = sai->soc_data->reg_offset;
unsigned long clk_rate;
u32 savediv = 0, ratio, bestdiff = freq;
int adir = tx ? RX : TX;
int dir = tx ? TX : RX;
u32 id;
bool support_1_1_ratio = sai->verid.version >= 0x0301;
/* Don't apply to consumer mode */
if (sai->is_consumer_mode)
return 0;
/*
* There is no point in polling MCLK0 if it is identical to MCLK1.
* And given that MQS use case has to use MCLK1 though two clocks
* are the same, we simply skip MCLK0 and start to find from MCLK1.
*/
id = sai->soc_data->mclk0_is_mclk1 ? 1 : 0;
for (; id < FSL_SAI_MCLK_MAX; id++) {
int diff;
clk_rate = clk_get_rate(sai->mclk_clk[id]);
if (!clk_rate)
continue;
ratio = DIV_ROUND_CLOSEST(clk_rate, freq);
if (!ratio || ratio > 512)
continue;
if (ratio == 1 && !support_1_1_ratio)
continue;
if ((ratio & 1) && ratio > 1)
continue;
diff = abs((long)clk_rate - ratio * freq);
/*
* Drop the source that can not be
* divided into the required rate.
*/
if (diff != 0 && clk_rate / diff < 1000)
continue;
dev_dbg(dai->dev,
"ratio %d for freq %dHz based on clock %ldHz\n",
ratio, freq, clk_rate);
if (diff < bestdiff) {
savediv = ratio;
sai->mclk_id[tx] = id;
bestdiff = diff;
}
if (diff == 0)
break;
}
if (savediv == 0) {
dev_err(dai->dev, "failed to derive required %cx rate: %d\n",
tx ? 'T' : 'R', freq);
return -EINVAL;
}
dev_dbg(dai->dev, "best fit: clock id=%d, div=%d, deviation =%d\n",
sai->mclk_id[tx], savediv, bestdiff);
/*
* 1) For Asynchronous mode, we must set RCR2 register for capture, and
* set TCR2 register for playback.
* 2) For Tx sync with Rx clock, we must set RCR2 register for playback
* and capture.
* 3) For Rx sync with Tx clock, we must set TCR2 register for playback
* and capture.
* 4) For Tx and Rx are both Synchronous with another SAI, we just
* ignore it.
*/
if (fsl_sai_dir_is_synced(sai, adir))
reg = FSL_SAI_xCR2(!tx, ofs);
else if (!sai->synchronous[dir])
reg = FSL_SAI_xCR2(tx, ofs);
else
return 0;
regmap_update_bits(sai->regmap, reg, FSL_SAI_CR2_MSEL_MASK,
FSL_SAI_CR2_MSEL(sai->mclk_id[tx]));
if (savediv == 1)
regmap_update_bits(sai->regmap, reg,
FSL_SAI_CR2_DIV_MASK | FSL_SAI_CR2_BYP,
FSL_SAI_CR2_BYP);
else
regmap_update_bits(sai->regmap, reg,
FSL_SAI_CR2_DIV_MASK | FSL_SAI_CR2_BYP,
savediv / 2 - 1);
return 0;
}
static int fsl_sai_hw_params(struct snd_pcm_substream *substream,
struct snd_pcm_hw_params *params,
struct snd_soc_dai *cpu_dai)
{
struct fsl_sai *sai = snd_soc_dai_get_drvdata(cpu_dai);
unsigned int ofs = sai->soc_data->reg_offset;
bool tx = substream->stream == SNDRV_PCM_STREAM_PLAYBACK;
unsigned int channels = params_channels(params);
u32 word_width = params_width(params);
u32 val_cr4 = 0, val_cr5 = 0;
u32 slots = (channels == 1) ? 2 : channels;
u32 slot_width = word_width;
int adir = tx ? RX : TX;
u32 pins;
int ret;
if (sai->slots)
slots = sai->slots;
if (sai->slot_width)
slot_width = sai->slot_width;
pins = DIV_ROUND_UP(channels, slots);
if (!sai->is_consumer_mode) {
if (sai->bclk_ratio)
ret = fsl_sai_set_bclk(cpu_dai, tx,
sai->bclk_ratio *
params_rate(params));
else
ret = fsl_sai_set_bclk(cpu_dai, tx,
slots * slot_width *
params_rate(params));
if (ret)
return ret;
/* Do not enable the clock if it is already enabled */
if (!(sai->mclk_streams & BIT(substream->stream))) {
ret = clk_prepare_enable(sai->mclk_clk[sai->mclk_id[tx]]);
if (ret)
return ret;
sai->mclk_streams |= BIT(substream->stream);
}
}
if (!sai->is_dsp_mode)
val_cr4 |= FSL_SAI_CR4_SYWD(slot_width);
val_cr5 |= FSL_SAI_CR5_WNW(slot_width);
val_cr5 |= FSL_SAI_CR5_W0W(slot_width);
if (sai->is_lsb_first)
val_cr5 |= FSL_SAI_CR5_FBT(0);
else
val_cr5 |= FSL_SAI_CR5_FBT(word_width - 1);
val_cr4 |= FSL_SAI_CR4_FRSZ(slots);
/* Set to output mode to avoid tri-stated data pins */
if (tx)
val_cr4 |= FSL_SAI_CR4_CHMOD;
/*
* For SAI provider mode, when Tx(Rx) sync with Rx(Tx) clock, Rx(Tx) will
* generate bclk and frame clock for Tx(Rx), we should set RCR4(TCR4),
* RCR5(TCR5) for playback(capture), or there will be sync error.
*/
if (!sai->is_consumer_mode && fsl_sai_dir_is_synced(sai, adir)) {
regmap_update_bits(sai->regmap, FSL_SAI_xCR4(!tx, ofs),
FSL_SAI_CR4_SYWD_MASK | FSL_SAI_CR4_FRSZ_MASK |
FSL_SAI_CR4_CHMOD_MASK,
val_cr4);
regmap_update_bits(sai->regmap, FSL_SAI_xCR5(!tx, ofs),
FSL_SAI_CR5_WNW_MASK | FSL_SAI_CR5_W0W_MASK |
FSL_SAI_CR5_FBT_MASK, val_cr5);
}
if (sai->soc_data->pins > 1)
regmap_update_bits(sai->regmap, FSL_SAI_xCR4(tx, ofs),
FSL_SAI_CR4_FCOMB_MASK, FSL_SAI_CR4_FCOMB_SOFT);
regmap_update_bits(sai->regmap, FSL_SAI_xCR3(tx, ofs),
FSL_SAI_CR3_TRCE_MASK,
FSL_SAI_CR3_TRCE((1 << pins) - 1));
regmap_update_bits(sai->regmap, FSL_SAI_xCR4(tx, ofs),
FSL_SAI_CR4_SYWD_MASK | FSL_SAI_CR4_FRSZ_MASK |
FSL_SAI_CR4_CHMOD_MASK,
val_cr4);
regmap_update_bits(sai->regmap, FSL_SAI_xCR5(tx, ofs),
FSL_SAI_CR5_WNW_MASK | FSL_SAI_CR5_W0W_MASK |
FSL_SAI_CR5_FBT_MASK, val_cr5);
regmap_write(sai->regmap, FSL_SAI_xMR(tx),
~0UL - ((1 << min(channels, slots)) - 1));
return 0;
}
static int fsl_sai_hw_free(struct snd_pcm_substream *substream,
struct snd_soc_dai *cpu_dai)
{
struct fsl_sai *sai = snd_soc_dai_get_drvdata(cpu_dai);
bool tx = substream->stream == SNDRV_PCM_STREAM_PLAYBACK;
unsigned int ofs = sai->soc_data->reg_offset;
regmap_update_bits(sai->regmap, FSL_SAI_xCR3(tx, ofs),
FSL_SAI_CR3_TRCE_MASK, 0);
if (!sai->is_consumer_mode &&
sai->mclk_streams & BIT(substream->stream)) {
clk_disable_unprepare(sai->mclk_clk[sai->mclk_id[tx]]);
sai->mclk_streams &= ~BIT(substream->stream);
}
return 0;
}
static void fsl_sai_config_disable(struct fsl_sai *sai, int dir)
{
unsigned int ofs = sai->soc_data->reg_offset;
bool tx = dir == TX;
u32 xcsr, count = 100;
regmap_update_bits(sai->regmap, FSL_SAI_xCSR(tx, ofs),
FSL_SAI_CSR_TERE, 0);
/* TERE will remain set till the end of current frame */
do {
udelay(10);
regmap_read(sai->regmap, FSL_SAI_xCSR(tx, ofs), &xcsr);
} while (--count && xcsr & FSL_SAI_CSR_TERE);
regmap_update_bits(sai->regmap, FSL_SAI_xCSR(tx, ofs),
FSL_SAI_CSR_FR, FSL_SAI_CSR_FR);
/*
* For sai master mode, after several open/close sai,
* there will be no frame clock, and can't recover
* anymore. Add software reset to fix this issue.
* This is a hardware bug, and will be fix in the
* next sai version.
*/
if (!sai->is_consumer_mode) {
/* Software Reset */
regmap_write(sai->regmap, FSL_SAI_xCSR(tx, ofs), FSL_SAI_CSR_SR);
/* Clear SR bit to finish the reset */
regmap_write(sai->regmap, FSL_SAI_xCSR(tx, ofs), 0);
}
}
static int fsl_sai_trigger(struct snd_pcm_substream *substream, int cmd,
struct snd_soc_dai *cpu_dai)
{
struct fsl_sai *sai = snd_soc_dai_get_drvdata(cpu_dai);
unsigned int ofs = sai->soc_data->reg_offset;
bool tx = substream->stream == SNDRV_PCM_STREAM_PLAYBACK;
int adir = tx ? RX : TX;
int dir = tx ? TX : RX;
u32 xcsr;
/*
* Asynchronous mode: Clear SYNC for both Tx and Rx.
* Rx sync with Tx clocks: Clear SYNC for Tx, set it for Rx.
* Tx sync with Rx clocks: Clear SYNC for Rx, set it for Tx.
*/
regmap_update_bits(sai->regmap, FSL_SAI_TCR2(ofs), FSL_SAI_CR2_SYNC,
sai->synchronous[TX] ? FSL_SAI_CR2_SYNC : 0);
regmap_update_bits(sai->regmap, FSL_SAI_RCR2(ofs), FSL_SAI_CR2_SYNC,
sai->synchronous[RX] ? FSL_SAI_CR2_SYNC : 0);
/*
* It is recommended that the transmitter is the last enabled
* and the first disabled.
*/
switch (cmd) {
case SNDRV_PCM_TRIGGER_START:
case SNDRV_PCM_TRIGGER_RESUME:
case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
regmap_update_bits(sai->regmap, FSL_SAI_xCSR(tx, ofs),
FSL_SAI_CSR_FRDE, FSL_SAI_CSR_FRDE);
regmap_update_bits(sai->regmap, FSL_SAI_xCSR(tx, ofs),
FSL_SAI_CSR_TERE, FSL_SAI_CSR_TERE);
/*
* Enable the opposite direction for synchronous mode
* 1. Tx sync with Rx: only set RE for Rx; set TE & RE for Tx
* 2. Rx sync with Tx: only set TE for Tx; set RE & TE for Rx
*
* RM recommends to enable RE after TE for case 1 and to enable
* TE after RE for case 2, but we here may not always guarantee
* that happens: "arecord 1.wav; aplay 2.wav" in case 1 enables
* TE after RE, which is against what RM recommends but should
* be safe to do, judging by years of testing results.
*/
if (fsl_sai_dir_is_synced(sai, adir))
regmap_update_bits(sai->regmap, FSL_SAI_xCSR((!tx), ofs),
FSL_SAI_CSR_TERE, FSL_SAI_CSR_TERE);
regmap_update_bits(sai->regmap, FSL_SAI_xCSR(tx, ofs),
FSL_SAI_CSR_xIE_MASK, FSL_SAI_FLAGS);
break;
case SNDRV_PCM_TRIGGER_STOP:
case SNDRV_PCM_TRIGGER_SUSPEND:
case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
regmap_update_bits(sai->regmap, FSL_SAI_xCSR(tx, ofs),
FSL_SAI_CSR_FRDE, 0);
regmap_update_bits(sai->regmap, FSL_SAI_xCSR(tx, ofs),
FSL_SAI_CSR_xIE_MASK, 0);
/* Check if the opposite FRDE is also disabled */
regmap_read(sai->regmap, FSL_SAI_xCSR(!tx, ofs), &xcsr);
/*
* If opposite stream provides clocks for synchronous mode and
* it is inactive, disable it before disabling the current one
*/
if (fsl_sai_dir_is_synced(sai, adir) && !(xcsr & FSL_SAI_CSR_FRDE))
fsl_sai_config_disable(sai, adir);
/*
* Disable current stream if either of:
* 1. current stream doesn't provide clocks for synchronous mode
* 2. current stream provides clocks for synchronous mode but no
* more stream is active.
*/
if (!fsl_sai_dir_is_synced(sai, dir) || !(xcsr & FSL_SAI_CSR_FRDE))
fsl_sai_config_disable(sai, dir);
break;
default:
return -EINVAL;
}
return 0;
}
static int fsl_sai_startup(struct snd_pcm_substream *substream,
struct snd_soc_dai *cpu_dai)
{
struct fsl_sai *sai = snd_soc_dai_get_drvdata(cpu_dai);
bool tx = substream->stream == SNDRV_PCM_STREAM_PLAYBACK;
int ret;
/*
* EDMA controller needs period size to be a multiple of
* tx/rx maxburst
*/
if (sai->soc_data->use_edma)
snd_pcm_hw_constraint_step(substream->runtime, 0,
SNDRV_PCM_HW_PARAM_PERIOD_SIZE,
tx ? sai->dma_params_tx.maxburst :
sai->dma_params_rx.maxburst);
ret = snd_pcm_hw_constraint_list(substream->runtime, 0,
SNDRV_PCM_HW_PARAM_RATE, &fsl_sai_rate_constraints);
return ret;
}
static const struct snd_soc_dai_ops fsl_sai_pcm_dai_ops = {
.set_bclk_ratio = fsl_sai_set_dai_bclk_ratio,
.set_sysclk = fsl_sai_set_dai_sysclk,
.set_fmt = fsl_sai_set_dai_fmt,
.set_tdm_slot = fsl_sai_set_dai_tdm_slot,
.hw_params = fsl_sai_hw_params,
.hw_free = fsl_sai_hw_free,
.trigger = fsl_sai_trigger,
.startup = fsl_sai_startup,
};
static int fsl_sai_dai_probe(struct snd_soc_dai *cpu_dai)
{
struct fsl_sai *sai = dev_get_drvdata(cpu_dai->dev);
unsigned int ofs = sai->soc_data->reg_offset;
/* Software Reset for both Tx and Rx */
regmap_write(sai->regmap, FSL_SAI_TCSR(ofs), FSL_SAI_CSR_SR);
regmap_write(sai->regmap, FSL_SAI_RCSR(ofs), FSL_SAI_CSR_SR);
/* Clear SR bit to finish the reset */
regmap_write(sai->regmap, FSL_SAI_TCSR(ofs), 0);
regmap_write(sai->regmap, FSL_SAI_RCSR(ofs), 0);
regmap_update_bits(sai->regmap, FSL_SAI_TCR1(ofs),
FSL_SAI_CR1_RFW_MASK(sai->soc_data->fifo_depth),
sai->soc_data->fifo_depth - FSL_SAI_MAXBURST_TX);
regmap_update_bits(sai->regmap, FSL_SAI_RCR1(ofs),
FSL_SAI_CR1_RFW_MASK(sai->soc_data->fifo_depth),
FSL_SAI_MAXBURST_RX - 1);
snd_soc_dai_init_dma_data(cpu_dai, &sai->dma_params_tx,
&sai->dma_params_rx);
return 0;
}
static struct snd_soc_dai_driver fsl_sai_dai_template = {
.probe = fsl_sai_dai_probe,
.playback = {
.stream_name = "CPU-Playback",
.channels_min = 1,
.channels_max = 32,
.rate_min = 8000,
.rate_max = 192000,
.rates = SNDRV_PCM_RATE_KNOT,
.formats = FSL_SAI_FORMATS,
},
.capture = {
.stream_name = "CPU-Capture",
.channels_min = 1,
.channels_max = 32,
.rate_min = 8000,
.rate_max = 192000,
.rates = SNDRV_PCM_RATE_KNOT,
.formats = FSL_SAI_FORMATS,
},
.ops = &fsl_sai_pcm_dai_ops,
};
static const struct snd_soc_component_driver fsl_component = {
.name = "fsl-sai",
};
static struct reg_default fsl_sai_reg_defaults_ofs0[] = {
{FSL_SAI_TCR1(0), 0},
{FSL_SAI_TCR2(0), 0},
{FSL_SAI_TCR3(0), 0},
{FSL_SAI_TCR4(0), 0},
{FSL_SAI_TCR5(0), 0},
{FSL_SAI_TDR0, 0},
{FSL_SAI_TDR1, 0},
{FSL_SAI_TDR2, 0},
{FSL_SAI_TDR3, 0},
{FSL_SAI_TDR4, 0},
{FSL_SAI_TDR5, 0},
{FSL_SAI_TDR6, 0},
{FSL_SAI_TDR7, 0},
{FSL_SAI_TMR, 0},
{FSL_SAI_RCR1(0), 0},
{FSL_SAI_RCR2(0), 0},
{FSL_SAI_RCR3(0), 0},
{FSL_SAI_RCR4(0), 0},
{FSL_SAI_RCR5(0), 0},
{FSL_SAI_RMR, 0},
};
static struct reg_default fsl_sai_reg_defaults_ofs8[] = {
{FSL_SAI_TCR1(8), 0},
{FSL_SAI_TCR2(8), 0},
{FSL_SAI_TCR3(8), 0},
{FSL_SAI_TCR4(8), 0},
{FSL_SAI_TCR5(8), 0},
{FSL_SAI_TDR0, 0},
{FSL_SAI_TDR1, 0},
{FSL_SAI_TDR2, 0},
{FSL_SAI_TDR3, 0},
{FSL_SAI_TDR4, 0},
{FSL_SAI_TDR5, 0},
{FSL_SAI_TDR6, 0},
{FSL_SAI_TDR7, 0},
{FSL_SAI_TMR, 0},
{FSL_SAI_RCR1(8), 0},
{FSL_SAI_RCR2(8), 0},
{FSL_SAI_RCR3(8), 0},
{FSL_SAI_RCR4(8), 0},
{FSL_SAI_RCR5(8), 0},
{FSL_SAI_RMR, 0},
{FSL_SAI_MCTL, 0},
{FSL_SAI_MDIV, 0},
};
static bool fsl_sai_readable_reg(struct device *dev, unsigned int reg)
{
struct fsl_sai *sai = dev_get_drvdata(dev);
unsigned int ofs = sai->soc_data->reg_offset;
if (reg >= FSL_SAI_TCSR(ofs) && reg <= FSL_SAI_TCR5(ofs))
return true;
if (reg >= FSL_SAI_RCSR(ofs) && reg <= FSL_SAI_RCR5(ofs))
return true;
switch (reg) {
case FSL_SAI_TFR0:
case FSL_SAI_TFR1:
case FSL_SAI_TFR2:
case FSL_SAI_TFR3:
case FSL_SAI_TFR4:
case FSL_SAI_TFR5:
case FSL_SAI_TFR6:
case FSL_SAI_TFR7:
case FSL_SAI_TMR:
case FSL_SAI_RDR0:
case FSL_SAI_RDR1:
case FSL_SAI_RDR2:
case FSL_SAI_RDR3:
case FSL_SAI_RDR4:
case FSL_SAI_RDR5:
case FSL_SAI_RDR6:
case FSL_SAI_RDR7:
case FSL_SAI_RFR0:
case FSL_SAI_RFR1:
case FSL_SAI_RFR2:
case FSL_SAI_RFR3:
case FSL_SAI_RFR4:
case FSL_SAI_RFR5:
case FSL_SAI_RFR6:
case FSL_SAI_RFR7:
case FSL_SAI_RMR:
case FSL_SAI_MCTL:
case FSL_SAI_MDIV:
case FSL_SAI_VERID:
case FSL_SAI_PARAM:
case FSL_SAI_TTCTN:
case FSL_SAI_RTCTN:
case FSL_SAI_TTCTL:
case FSL_SAI_TBCTN:
case FSL_SAI_TTCAP:
case FSL_SAI_RTCTL:
case FSL_SAI_RBCTN:
case FSL_SAI_RTCAP:
return true;
default:
return false;
}
}
static bool fsl_sai_volatile_reg(struct device *dev, unsigned int reg)
{
struct fsl_sai *sai = dev_get_drvdata(dev);
unsigned int ofs = sai->soc_data->reg_offset;
if (reg == FSL_SAI_TCSR(ofs) || reg == FSL_SAI_RCSR(ofs))
return true;
/* Set VERID and PARAM be volatile for reading value in probe */
if (ofs == 8 && (reg == FSL_SAI_VERID || reg == FSL_SAI_PARAM))
return true;
switch (reg) {
case FSL_SAI_TFR0:
case FSL_SAI_TFR1:
case FSL_SAI_TFR2:
case FSL_SAI_TFR3:
case FSL_SAI_TFR4:
case FSL_SAI_TFR5:
case FSL_SAI_TFR6:
case FSL_SAI_TFR7:
case FSL_SAI_RFR0:
case FSL_SAI_RFR1:
case FSL_SAI_RFR2:
case FSL_SAI_RFR3:
case FSL_SAI_RFR4:
case FSL_SAI_RFR5:
case FSL_SAI_RFR6:
case FSL_SAI_RFR7:
case FSL_SAI_RDR0:
case FSL_SAI_RDR1:
case FSL_SAI_RDR2:
case FSL_SAI_RDR3:
case FSL_SAI_RDR4:
case FSL_SAI_RDR5:
case FSL_SAI_RDR6:
case FSL_SAI_RDR7:
return true;
default:
return false;
}
}
static bool fsl_sai_writeable_reg(struct device *dev, unsigned int reg)
{
struct fsl_sai *sai = dev_get_drvdata(dev);
unsigned int ofs = sai->soc_data->reg_offset;
if (reg >= FSL_SAI_TCSR(ofs) && reg <= FSL_SAI_TCR5(ofs))
return true;
if (reg >= FSL_SAI_RCSR(ofs) && reg <= FSL_SAI_RCR5(ofs))
return true;
switch (reg) {
case FSL_SAI_TDR0:
case FSL_SAI_TDR1:
case FSL_SAI_TDR2:
case FSL_SAI_TDR3:
case FSL_SAI_TDR4:
case FSL_SAI_TDR5:
case FSL_SAI_TDR6:
case FSL_SAI_TDR7:
case FSL_SAI_TMR:
case FSL_SAI_RMR:
case FSL_SAI_MCTL:
case FSL_SAI_MDIV:
case FSL_SAI_TTCTL:
case FSL_SAI_RTCTL:
return true;
default:
return false;
}
}
static struct regmap_config fsl_sai_regmap_config = {
.reg_bits = 32,
.reg_stride = 4,
.val_bits = 32,
.fast_io = true,
.max_register = FSL_SAI_RMR,
.reg_defaults = fsl_sai_reg_defaults_ofs0,
.num_reg_defaults = ARRAY_SIZE(fsl_sai_reg_defaults_ofs0),
.readable_reg = fsl_sai_readable_reg,
.volatile_reg = fsl_sai_volatile_reg,
.writeable_reg = fsl_sai_writeable_reg,
.cache_type = REGCACHE_FLAT,
};
static int fsl_sai_check_version(struct device *dev)
{
struct fsl_sai *sai = dev_get_drvdata(dev);
unsigned char ofs = sai->soc_data->reg_offset;
unsigned int val;
int ret;
if (FSL_SAI_TCSR(ofs) == FSL_SAI_VERID)
return 0;
ret = regmap_read(sai->regmap, FSL_SAI_VERID, &val);
if (ret < 0)
return ret;
dev_dbg(dev, "VERID: 0x%016X\n", val);
sai->verid.version = val &
(FSL_SAI_VERID_MAJOR_MASK | FSL_SAI_VERID_MINOR_MASK);
sai->verid.feature = val & FSL_SAI_VERID_FEATURE_MASK;
ret = regmap_read(sai->regmap, FSL_SAI_PARAM, &val);
if (ret < 0)
return ret;
dev_dbg(dev, "PARAM: 0x%016X\n", val);
/* Max slots per frame, power of 2 */
sai->param.slot_num = 1 <<
((val & FSL_SAI_PARAM_SPF_MASK) >> FSL_SAI_PARAM_SPF_SHIFT);
/* Words per fifo, power of 2 */
sai->param.fifo_depth = 1 <<
((val & FSL_SAI_PARAM_WPF_MASK) >> FSL_SAI_PARAM_WPF_SHIFT);
/* Number of datalines implemented */
sai->param.dataline = val & FSL_SAI_PARAM_DLN_MASK;
return 0;
}
static int fsl_sai_runtime_suspend(struct device *dev);
static int fsl_sai_runtime_resume(struct device *dev);
static int fsl_sai_probe(struct platform_device *pdev)
{
struct device_node *np = pdev->dev.of_node;
struct fsl_sai *sai;
struct regmap *gpr;
struct resource *res;
void __iomem *base;
char tmp[8];
int irq, ret, i;
int index;
sai = devm_kzalloc(&pdev->dev, sizeof(*sai), GFP_KERNEL);
if (!sai)
return -ENOMEM;
sai->pdev = pdev;
sai->soc_data = of_device_get_match_data(&pdev->dev);
sai->is_lsb_first = of_property_read_bool(np, "lsb-first");
base = devm_platform_get_and_ioremap_resource(pdev, 0, &res);
if (IS_ERR(base))
return PTR_ERR(base);
if (sai->soc_data->reg_offset == 8) {
fsl_sai_regmap_config.reg_defaults = fsl_sai_reg_defaults_ofs8;
fsl_sai_regmap_config.max_register = FSL_SAI_MDIV;
fsl_sai_regmap_config.num_reg_defaults =
ARRAY_SIZE(fsl_sai_reg_defaults_ofs8);
}
sai->regmap = devm_regmap_init_mmio(&pdev->dev, base, &fsl_sai_regmap_config);
if (IS_ERR(sai->regmap)) {
dev_err(&pdev->dev, "regmap init failed\n");
return PTR_ERR(sai->regmap);
}
sai->bus_clk = devm_clk_get(&pdev->dev, "bus");
/* Compatible with old DTB cases */
if (IS_ERR(sai->bus_clk) && PTR_ERR(sai->bus_clk) != -EPROBE_DEFER)
sai->bus_clk = devm_clk_get(&pdev->dev, "sai");
if (IS_ERR(sai->bus_clk)) {
dev_err(&pdev->dev, "failed to get bus clock: %ld\n",
PTR_ERR(sai->bus_clk));
/* -EPROBE_DEFER */
return PTR_ERR(sai->bus_clk);
}
for (i = 1; i < FSL_SAI_MCLK_MAX; i++) {
sprintf(tmp, "mclk%d", i);
sai->mclk_clk[i] = devm_clk_get(&pdev->dev, tmp);
if (IS_ERR(sai->mclk_clk[i])) {
dev_err(&pdev->dev, "failed to get mclk%d clock: %ld\n",
i + 1, PTR_ERR(sai->mclk_clk[i]));
sai->mclk_clk[i] = NULL;
}
}
if (sai->soc_data->mclk0_is_mclk1)
sai->mclk_clk[0] = sai->mclk_clk[1];
else
sai->mclk_clk[0] = sai->bus_clk;
irq = platform_get_irq(pdev, 0);
if (irq < 0)
return irq;
ret = devm_request_irq(&pdev->dev, irq, fsl_sai_isr, IRQF_SHARED,
np->name, sai);
if (ret) {
dev_err(&pdev->dev, "failed to claim irq %u\n", irq);
return ret;
}
memcpy(&sai->cpu_dai_drv, &fsl_sai_dai_template,
sizeof(fsl_sai_dai_template));
/* Sync Tx with Rx as default by following old DT binding */
sai->synchronous[RX] = true;
sai->synchronous[TX] = false;
sai->cpu_dai_drv.symmetric_rate = 1;
sai->cpu_dai_drv.symmetric_channels = 1;
sai->cpu_dai_drv.symmetric_sample_bits = 1;
if (of_find_property(np, "fsl,sai-synchronous-rx", NULL) &&
of_find_property(np, "fsl,sai-asynchronous", NULL)) {
/* error out if both synchronous and asynchronous are present */
dev_err(&pdev->dev, "invalid binding for synchronous mode\n");
return -EINVAL;
}
if (of_find_property(np, "fsl,sai-synchronous-rx", NULL)) {
/* Sync Rx with Tx */
sai->synchronous[RX] = false;
sai->synchronous[TX] = true;
} else if (of_find_property(np, "fsl,sai-asynchronous", NULL)) {
/* Discard all settings for asynchronous mode */
sai->synchronous[RX] = false;
sai->synchronous[TX] = false;
sai->cpu_dai_drv.symmetric_rate = 0;
sai->cpu_dai_drv.symmetric_channels = 0;
sai->cpu_dai_drv.symmetric_sample_bits = 0;
}
if (of_find_property(np, "fsl,sai-mclk-direction-output", NULL) &&
of_device_is_compatible(np, "fsl,imx6ul-sai")) {
gpr = syscon_regmap_lookup_by_compatible("fsl,imx6ul-iomuxc-gpr");
if (IS_ERR(gpr)) {
dev_err(&pdev->dev, "cannot find iomuxc registers\n");
return PTR_ERR(gpr);
}
index = of_alias_get_id(np, "sai");
if (index < 0)
return index;
regmap_update_bits(gpr, IOMUXC_GPR1, MCLK_DIR(index),
MCLK_DIR(index));
}
sai->dma_params_rx.addr = res->start + FSL_SAI_RDR0;
sai->dma_params_tx.addr = res->start + FSL_SAI_TDR0;
sai->dma_params_rx.maxburst = FSL_SAI_MAXBURST_RX;
sai->dma_params_tx.maxburst = FSL_SAI_MAXBURST_TX;
platform_set_drvdata(pdev, sai);
pm_runtime_enable(&pdev->dev);
if (!pm_runtime_enabled(&pdev->dev)) {
ret = fsl_sai_runtime_resume(&pdev->dev);
if (ret)
goto err_pm_disable;
}
ret = pm_runtime_get_sync(&pdev->dev);
if (ret < 0) {
pm_runtime_put_noidle(&pdev->dev);
goto err_pm_get_sync;
}
/* Get sai version */
ret = fsl_sai_check_version(&pdev->dev);
if (ret < 0)
dev_warn(&pdev->dev, "Error reading SAI version: %d\n", ret);
/* Select MCLK direction */
if (of_find_property(np, "fsl,sai-mclk-direction-output", NULL) &&
sai->soc_data->max_register >= FSL_SAI_MCTL) {
regmap_update_bits(sai->regmap, FSL_SAI_MCTL,
FSL_SAI_MCTL_MCLK_EN, FSL_SAI_MCTL_MCLK_EN);
}
ret = pm_runtime_put_sync(&pdev->dev);
if (ret < 0)
goto err_pm_get_sync;
/*
* Register platform component before registering cpu dai for there
* is not defer probe for platform component in snd_soc_add_pcm_runtime().
*/
if (sai->soc_data->use_imx_pcm) {
ret = imx_pcm_dma_init(pdev);
if (ret)
goto err_pm_get_sync;
} else {
ret = devm_snd_dmaengine_pcm_register(&pdev->dev, NULL, 0);
if (ret)
goto err_pm_get_sync;
}
ret = devm_snd_soc_register_component(&pdev->dev, &fsl_component,
&sai->cpu_dai_drv, 1);
if (ret)
goto err_pm_get_sync;
return ret;
err_pm_get_sync:
if (!pm_runtime_status_suspended(&pdev->dev))
fsl_sai_runtime_suspend(&pdev->dev);
err_pm_disable:
pm_runtime_disable(&pdev->dev);
return ret;
}
static int fsl_sai_remove(struct platform_device *pdev)
{
pm_runtime_disable(&pdev->dev);
if (!pm_runtime_status_suspended(&pdev->dev))
fsl_sai_runtime_suspend(&pdev->dev);
return 0;
}
static const struct fsl_sai_soc_data fsl_sai_vf610_data = {
.use_imx_pcm = false,
.use_edma = false,
.fifo_depth = 32,
.pins = 1,
.reg_offset = 0,
.mclk0_is_mclk1 = false,
.flags = 0,
.max_register = FSL_SAI_RMR,
};
static const struct fsl_sai_soc_data fsl_sai_imx6sx_data = {
.use_imx_pcm = true,
.use_edma = false,
.fifo_depth = 32,
.pins = 1,
.reg_offset = 0,
.mclk0_is_mclk1 = true,
.flags = 0,
.max_register = FSL_SAI_RMR,
};
static const struct fsl_sai_soc_data fsl_sai_imx7ulp_data = {
.use_imx_pcm = true,
.use_edma = false,
.fifo_depth = 16,
.pins = 2,
.reg_offset = 8,
.mclk0_is_mclk1 = false,
.flags = PMQOS_CPU_LATENCY,
.max_register = FSL_SAI_RMR,
};
static const struct fsl_sai_soc_data fsl_sai_imx8mq_data = {
.use_imx_pcm = true,
.use_edma = false,
.fifo_depth = 128,
.pins = 8,
.reg_offset = 8,
.mclk0_is_mclk1 = false,
.flags = 0,
.max_register = FSL_SAI_RMR,
};
static const struct fsl_sai_soc_data fsl_sai_imx8qm_data = {
.use_imx_pcm = true,
.use_edma = true,
.fifo_depth = 64,
.pins = 1,
.reg_offset = 0,
.mclk0_is_mclk1 = false,
.flags = 0,
.max_register = FSL_SAI_RMR,
};
static const struct fsl_sai_soc_data fsl_sai_imx8mm_data = {
.use_imx_pcm = true,
.use_edma = false,
.fifo_depth = 128,
.reg_offset = 8,
.mclk0_is_mclk1 = false,
.pins = 8,
.flags = 0,
.max_register = FSL_SAI_MCTL,
};
static const struct fsl_sai_soc_data fsl_sai_imx8mp_data = {
.use_imx_pcm = true,
.use_edma = false,
.fifo_depth = 128,
.reg_offset = 8,
.mclk0_is_mclk1 = false,
.pins = 8,
.flags = 0,
.max_register = FSL_SAI_MDIV,
};
static const struct fsl_sai_soc_data fsl_sai_imx8ulp_data = {
.use_imx_pcm = true,
.use_edma = true,
.fifo_depth = 16,
.reg_offset = 8,
.mclk0_is_mclk1 = false,
.pins = 4,
.flags = PMQOS_CPU_LATENCY,
.max_register = FSL_SAI_RTCAP,
};
static const struct of_device_id fsl_sai_ids[] = {
{ .compatible = "fsl,vf610-sai", .data = &fsl_sai_vf610_data },
{ .compatible = "fsl,imx6sx-sai", .data = &fsl_sai_imx6sx_data },
{ .compatible = "fsl,imx6ul-sai", .data = &fsl_sai_imx6sx_data },
{ .compatible = "fsl,imx7ulp-sai", .data = &fsl_sai_imx7ulp_data },
{ .compatible = "fsl,imx8mq-sai", .data = &fsl_sai_imx8mq_data },
{ .compatible = "fsl,imx8qm-sai", .data = &fsl_sai_imx8qm_data },
{ .compatible = "fsl,imx8mm-sai", .data = &fsl_sai_imx8mm_data },
{ .compatible = "fsl,imx8mp-sai", .data = &fsl_sai_imx8mp_data },
{ .compatible = "fsl,imx8ulp-sai", .data = &fsl_sai_imx8ulp_data },
{ /* sentinel */ }
};
MODULE_DEVICE_TABLE(of, fsl_sai_ids);
static int fsl_sai_runtime_suspend(struct device *dev)
{
struct fsl_sai *sai = dev_get_drvdata(dev);
if (sai->mclk_streams & BIT(SNDRV_PCM_STREAM_CAPTURE))
clk_disable_unprepare(sai->mclk_clk[sai->mclk_id[0]]);
if (sai->mclk_streams & BIT(SNDRV_PCM_STREAM_PLAYBACK))
clk_disable_unprepare(sai->mclk_clk[sai->mclk_id[1]]);
clk_disable_unprepare(sai->bus_clk);
if (sai->soc_data->flags & PMQOS_CPU_LATENCY)
cpu_latency_qos_remove_request(&sai->pm_qos_req);
regcache_cache_only(sai->regmap, true);
return 0;
}
static int fsl_sai_runtime_resume(struct device *dev)
{
struct fsl_sai *sai = dev_get_drvdata(dev);
unsigned int ofs = sai->soc_data->reg_offset;
int ret;
ret = clk_prepare_enable(sai->bus_clk);
if (ret) {
dev_err(dev, "failed to enable bus clock: %d\n", ret);
return ret;
}
if (sai->mclk_streams & BIT(SNDRV_PCM_STREAM_PLAYBACK)) {
ret = clk_prepare_enable(sai->mclk_clk[sai->mclk_id[1]]);
if (ret)
goto disable_bus_clk;
}
if (sai->mclk_streams & BIT(SNDRV_PCM_STREAM_CAPTURE)) {
ret = clk_prepare_enable(sai->mclk_clk[sai->mclk_id[0]]);
if (ret)
goto disable_tx_clk;
}
if (sai->soc_data->flags & PMQOS_CPU_LATENCY)
cpu_latency_qos_add_request(&sai->pm_qos_req, 0);
regcache_cache_only(sai->regmap, false);
regcache_mark_dirty(sai->regmap);
regmap_write(sai->regmap, FSL_SAI_TCSR(ofs), FSL_SAI_CSR_SR);
regmap_write(sai->regmap, FSL_SAI_RCSR(ofs), FSL_SAI_CSR_SR);
usleep_range(1000, 2000);
regmap_write(sai->regmap, FSL_SAI_TCSR(ofs), 0);
regmap_write(sai->regmap, FSL_SAI_RCSR(ofs), 0);
ret = regcache_sync(sai->regmap);
if (ret)
goto disable_rx_clk;
return 0;
disable_rx_clk:
if (sai->mclk_streams & BIT(SNDRV_PCM_STREAM_CAPTURE))
clk_disable_unprepare(sai->mclk_clk[sai->mclk_id[0]]);
disable_tx_clk:
if (sai->mclk_streams & BIT(SNDRV_PCM_STREAM_PLAYBACK))
clk_disable_unprepare(sai->mclk_clk[sai->mclk_id[1]]);
disable_bus_clk:
clk_disable_unprepare(sai->bus_clk);
return ret;
}
static const struct dev_pm_ops fsl_sai_pm_ops = {
SET_RUNTIME_PM_OPS(fsl_sai_runtime_suspend,
fsl_sai_runtime_resume, NULL)
SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
pm_runtime_force_resume)
};
static struct platform_driver fsl_sai_driver = {
.probe = fsl_sai_probe,
.remove = fsl_sai_remove,
.driver = {
.name = "fsl-sai",
.pm = &fsl_sai_pm_ops,
.of_match_table = fsl_sai_ids,
},
};
module_platform_driver(fsl_sai_driver);
MODULE_DESCRIPTION("Freescale Soc SAI Interface");
MODULE_AUTHOR("Xiubo Li, <Li.Xiubo@freescale.com>");
MODULE_ALIAS("platform:fsl-sai");
MODULE_LICENSE("GPL");