c84b3925c7
Both occurrences of div64_u64() just have a u8 or u32 divisor. Use div_u64() instead. Many 32 bit architectures can optimize this variant better than a full 64 bit divide. Reported-by: Dan Carpenter <dan.carpenter@linaro.org> Link: https://lore.kernel.org/r/9ba7f4e6-2b8b-44a3-9cac-9ed6e50f1700@moroto.mountain/ Signed-off-by: Michael Walle <mwalle@kernel.org> Reviewed-by: Pratyush Yadav <pratyush@kernel.org> [pratyush@kernel.org: touched up commit message] Signed-off-by: Pratyush Yadav <pratyush@kernel.org> Link: https://lore.kernel.org/r/20240429121113.803703-1-mwalle@kernel.org
3811 lines
97 KiB
C
3811 lines
97 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
||
/*
|
||
* Based on m25p80.c, by Mike Lavender (mike@steroidmicros.com), with
|
||
* influence from lart.c (Abraham Van Der Merwe) and mtd_dataflash.c
|
||
*
|
||
* Copyright (C) 2005, Intec Automation Inc.
|
||
* Copyright (C) 2014, Freescale Semiconductor, Inc.
|
||
*/
|
||
|
||
#include <linux/err.h>
|
||
#include <linux/errno.h>
|
||
#include <linux/delay.h>
|
||
#include <linux/device.h>
|
||
#include <linux/math64.h>
|
||
#include <linux/module.h>
|
||
#include <linux/mtd/mtd.h>
|
||
#include <linux/mtd/spi-nor.h>
|
||
#include <linux/mutex.h>
|
||
#include <linux/of_platform.h>
|
||
#include <linux/sched/task_stack.h>
|
||
#include <linux/sizes.h>
|
||
#include <linux/slab.h>
|
||
#include <linux/spi/flash.h>
|
||
|
||
#include "core.h"
|
||
|
||
/* Define max times to check status register before we give up. */
|
||
|
||
/*
|
||
* For everything but full-chip erase; probably could be much smaller, but kept
|
||
* around for safety for now
|
||
*/
|
||
#define DEFAULT_READY_WAIT_JIFFIES (40UL * HZ)
|
||
|
||
/*
|
||
* For full-chip erase, calibrated to a 2MB flash (M25P16); should be scaled up
|
||
* for larger flash
|
||
*/
|
||
#define CHIP_ERASE_2MB_READY_WAIT_JIFFIES (40UL * HZ)
|
||
|
||
#define SPI_NOR_MAX_ADDR_NBYTES 4
|
||
|
||
#define SPI_NOR_SRST_SLEEP_MIN 200
|
||
#define SPI_NOR_SRST_SLEEP_MAX 400
|
||
|
||
/**
|
||
* spi_nor_get_cmd_ext() - Get the command opcode extension based on the
|
||
* extension type.
|
||
* @nor: pointer to a 'struct spi_nor'
|
||
* @op: pointer to the 'struct spi_mem_op' whose properties
|
||
* need to be initialized.
|
||
*
|
||
* Right now, only "repeat" and "invert" are supported.
|
||
*
|
||
* Return: The opcode extension.
|
||
*/
|
||
static u8 spi_nor_get_cmd_ext(const struct spi_nor *nor,
|
||
const struct spi_mem_op *op)
|
||
{
|
||
switch (nor->cmd_ext_type) {
|
||
case SPI_NOR_EXT_INVERT:
|
||
return ~op->cmd.opcode;
|
||
|
||
case SPI_NOR_EXT_REPEAT:
|
||
return op->cmd.opcode;
|
||
|
||
default:
|
||
dev_err(nor->dev, "Unknown command extension type\n");
|
||
return 0;
|
||
}
|
||
}
|
||
|
||
/**
|
||
* spi_nor_spimem_setup_op() - Set up common properties of a spi-mem op.
|
||
* @nor: pointer to a 'struct spi_nor'
|
||
* @op: pointer to the 'struct spi_mem_op' whose properties
|
||
* need to be initialized.
|
||
* @proto: the protocol from which the properties need to be set.
|
||
*/
|
||
void spi_nor_spimem_setup_op(const struct spi_nor *nor,
|
||
struct spi_mem_op *op,
|
||
const enum spi_nor_protocol proto)
|
||
{
|
||
u8 ext;
|
||
|
||
op->cmd.buswidth = spi_nor_get_protocol_inst_nbits(proto);
|
||
|
||
if (op->addr.nbytes)
|
||
op->addr.buswidth = spi_nor_get_protocol_addr_nbits(proto);
|
||
|
||
if (op->dummy.nbytes)
|
||
op->dummy.buswidth = spi_nor_get_protocol_addr_nbits(proto);
|
||
|
||
if (op->data.nbytes)
|
||
op->data.buswidth = spi_nor_get_protocol_data_nbits(proto);
|
||
|
||
if (spi_nor_protocol_is_dtr(proto)) {
|
||
/*
|
||
* SPIMEM supports mixed DTR modes, but right now we can only
|
||
* have all phases either DTR or STR. IOW, SPIMEM can have
|
||
* something like 4S-4D-4D, but SPI NOR can't. So, set all 4
|
||
* phases to either DTR or STR.
|
||
*/
|
||
op->cmd.dtr = true;
|
||
op->addr.dtr = true;
|
||
op->dummy.dtr = true;
|
||
op->data.dtr = true;
|
||
|
||
/* 2 bytes per clock cycle in DTR mode. */
|
||
op->dummy.nbytes *= 2;
|
||
|
||
ext = spi_nor_get_cmd_ext(nor, op);
|
||
op->cmd.opcode = (op->cmd.opcode << 8) | ext;
|
||
op->cmd.nbytes = 2;
|
||
}
|
||
}
|
||
|
||
/**
|
||
* spi_nor_spimem_bounce() - check if a bounce buffer is needed for the data
|
||
* transfer
|
||
* @nor: pointer to 'struct spi_nor'
|
||
* @op: pointer to 'struct spi_mem_op' template for transfer
|
||
*
|
||
* If we have to use the bounce buffer, the data field in @op will be updated.
|
||
*
|
||
* Return: true if the bounce buffer is needed, false if not
|
||
*/
|
||
static bool spi_nor_spimem_bounce(struct spi_nor *nor, struct spi_mem_op *op)
|
||
{
|
||
/* op->data.buf.in occupies the same memory as op->data.buf.out */
|
||
if (object_is_on_stack(op->data.buf.in) ||
|
||
!virt_addr_valid(op->data.buf.in)) {
|
||
if (op->data.nbytes > nor->bouncebuf_size)
|
||
op->data.nbytes = nor->bouncebuf_size;
|
||
op->data.buf.in = nor->bouncebuf;
|
||
return true;
|
||
}
|
||
|
||
return false;
|
||
}
|
||
|
||
/**
|
||
* spi_nor_spimem_exec_op() - execute a memory operation
|
||
* @nor: pointer to 'struct spi_nor'
|
||
* @op: pointer to 'struct spi_mem_op' template for transfer
|
||
*
|
||
* Return: 0 on success, -error otherwise.
|
||
*/
|
||
static int spi_nor_spimem_exec_op(struct spi_nor *nor, struct spi_mem_op *op)
|
||
{
|
||
int error;
|
||
|
||
error = spi_mem_adjust_op_size(nor->spimem, op);
|
||
if (error)
|
||
return error;
|
||
|
||
return spi_mem_exec_op(nor->spimem, op);
|
||
}
|
||
|
||
int spi_nor_controller_ops_read_reg(struct spi_nor *nor, u8 opcode,
|
||
u8 *buf, size_t len)
|
||
{
|
||
if (spi_nor_protocol_is_dtr(nor->reg_proto))
|
||
return -EOPNOTSUPP;
|
||
|
||
return nor->controller_ops->read_reg(nor, opcode, buf, len);
|
||
}
|
||
|
||
int spi_nor_controller_ops_write_reg(struct spi_nor *nor, u8 opcode,
|
||
const u8 *buf, size_t len)
|
||
{
|
||
if (spi_nor_protocol_is_dtr(nor->reg_proto))
|
||
return -EOPNOTSUPP;
|
||
|
||
return nor->controller_ops->write_reg(nor, opcode, buf, len);
|
||
}
|
||
|
||
static int spi_nor_controller_ops_erase(struct spi_nor *nor, loff_t offs)
|
||
{
|
||
if (spi_nor_protocol_is_dtr(nor->reg_proto))
|
||
return -EOPNOTSUPP;
|
||
|
||
return nor->controller_ops->erase(nor, offs);
|
||
}
|
||
|
||
/**
|
||
* spi_nor_spimem_read_data() - read data from flash's memory region via
|
||
* spi-mem
|
||
* @nor: pointer to 'struct spi_nor'
|
||
* @from: offset to read from
|
||
* @len: number of bytes to read
|
||
* @buf: pointer to dst buffer
|
||
*
|
||
* Return: number of bytes read successfully, -errno otherwise
|
||
*/
|
||
static ssize_t spi_nor_spimem_read_data(struct spi_nor *nor, loff_t from,
|
||
size_t len, u8 *buf)
|
||
{
|
||
struct spi_mem_op op =
|
||
SPI_MEM_OP(SPI_MEM_OP_CMD(nor->read_opcode, 0),
|
||
SPI_MEM_OP_ADDR(nor->addr_nbytes, from, 0),
|
||
SPI_MEM_OP_DUMMY(nor->read_dummy, 0),
|
||
SPI_MEM_OP_DATA_IN(len, buf, 0));
|
||
bool usebouncebuf;
|
||
ssize_t nbytes;
|
||
int error;
|
||
|
||
spi_nor_spimem_setup_op(nor, &op, nor->read_proto);
|
||
|
||
/* convert the dummy cycles to the number of bytes */
|
||
op.dummy.nbytes = (nor->read_dummy * op.dummy.buswidth) / 8;
|
||
if (spi_nor_protocol_is_dtr(nor->read_proto))
|
||
op.dummy.nbytes *= 2;
|
||
|
||
usebouncebuf = spi_nor_spimem_bounce(nor, &op);
|
||
|
||
if (nor->dirmap.rdesc) {
|
||
nbytes = spi_mem_dirmap_read(nor->dirmap.rdesc, op.addr.val,
|
||
op.data.nbytes, op.data.buf.in);
|
||
} else {
|
||
error = spi_nor_spimem_exec_op(nor, &op);
|
||
if (error)
|
||
return error;
|
||
nbytes = op.data.nbytes;
|
||
}
|
||
|
||
if (usebouncebuf && nbytes > 0)
|
||
memcpy(buf, op.data.buf.in, nbytes);
|
||
|
||
return nbytes;
|
||
}
|
||
|
||
/**
|
||
* spi_nor_read_data() - read data from flash memory
|
||
* @nor: pointer to 'struct spi_nor'
|
||
* @from: offset to read from
|
||
* @len: number of bytes to read
|
||
* @buf: pointer to dst buffer
|
||
*
|
||
* Return: number of bytes read successfully, -errno otherwise
|
||
*/
|
||
ssize_t spi_nor_read_data(struct spi_nor *nor, loff_t from, size_t len, u8 *buf)
|
||
{
|
||
if (nor->spimem)
|
||
return spi_nor_spimem_read_data(nor, from, len, buf);
|
||
|
||
return nor->controller_ops->read(nor, from, len, buf);
|
||
}
|
||
|
||
/**
|
||
* spi_nor_spimem_write_data() - write data to flash memory via
|
||
* spi-mem
|
||
* @nor: pointer to 'struct spi_nor'
|
||
* @to: offset to write to
|
||
* @len: number of bytes to write
|
||
* @buf: pointer to src buffer
|
||
*
|
||
* Return: number of bytes written successfully, -errno otherwise
|
||
*/
|
||
static ssize_t spi_nor_spimem_write_data(struct spi_nor *nor, loff_t to,
|
||
size_t len, const u8 *buf)
|
||
{
|
||
struct spi_mem_op op =
|
||
SPI_MEM_OP(SPI_MEM_OP_CMD(nor->program_opcode, 0),
|
||
SPI_MEM_OP_ADDR(nor->addr_nbytes, to, 0),
|
||
SPI_MEM_OP_NO_DUMMY,
|
||
SPI_MEM_OP_DATA_OUT(len, buf, 0));
|
||
ssize_t nbytes;
|
||
int error;
|
||
|
||
if (nor->program_opcode == SPINOR_OP_AAI_WP && nor->sst_write_second)
|
||
op.addr.nbytes = 0;
|
||
|
||
spi_nor_spimem_setup_op(nor, &op, nor->write_proto);
|
||
|
||
if (spi_nor_spimem_bounce(nor, &op))
|
||
memcpy(nor->bouncebuf, buf, op.data.nbytes);
|
||
|
||
if (nor->dirmap.wdesc) {
|
||
nbytes = spi_mem_dirmap_write(nor->dirmap.wdesc, op.addr.val,
|
||
op.data.nbytes, op.data.buf.out);
|
||
} else {
|
||
error = spi_nor_spimem_exec_op(nor, &op);
|
||
if (error)
|
||
return error;
|
||
nbytes = op.data.nbytes;
|
||
}
|
||
|
||
return nbytes;
|
||
}
|
||
|
||
/**
|
||
* spi_nor_write_data() - write data to flash memory
|
||
* @nor: pointer to 'struct spi_nor'
|
||
* @to: offset to write to
|
||
* @len: number of bytes to write
|
||
* @buf: pointer to src buffer
|
||
*
|
||
* Return: number of bytes written successfully, -errno otherwise
|
||
*/
|
||
ssize_t spi_nor_write_data(struct spi_nor *nor, loff_t to, size_t len,
|
||
const u8 *buf)
|
||
{
|
||
if (nor->spimem)
|
||
return spi_nor_spimem_write_data(nor, to, len, buf);
|
||
|
||
return nor->controller_ops->write(nor, to, len, buf);
|
||
}
|
||
|
||
/**
|
||
* spi_nor_read_any_reg() - read any register from flash memory, nonvolatile or
|
||
* volatile.
|
||
* @nor: pointer to 'struct spi_nor'.
|
||
* @op: SPI memory operation. op->data.buf must be DMA-able.
|
||
* @proto: SPI protocol to use for the register operation.
|
||
*
|
||
* Return: zero on success, -errno otherwise
|
||
*/
|
||
int spi_nor_read_any_reg(struct spi_nor *nor, struct spi_mem_op *op,
|
||
enum spi_nor_protocol proto)
|
||
{
|
||
if (!nor->spimem)
|
||
return -EOPNOTSUPP;
|
||
|
||
spi_nor_spimem_setup_op(nor, op, proto);
|
||
return spi_nor_spimem_exec_op(nor, op);
|
||
}
|
||
|
||
/**
|
||
* spi_nor_write_any_volatile_reg() - write any volatile register to flash
|
||
* memory.
|
||
* @nor: pointer to 'struct spi_nor'
|
||
* @op: SPI memory operation. op->data.buf must be DMA-able.
|
||
* @proto: SPI protocol to use for the register operation.
|
||
*
|
||
* Writing volatile registers are instant according to some manufacturers
|
||
* (Cypress, Micron) and do not need any status polling.
|
||
*
|
||
* Return: zero on success, -errno otherwise
|
||
*/
|
||
int spi_nor_write_any_volatile_reg(struct spi_nor *nor, struct spi_mem_op *op,
|
||
enum spi_nor_protocol proto)
|
||
{
|
||
int ret;
|
||
|
||
if (!nor->spimem)
|
||
return -EOPNOTSUPP;
|
||
|
||
ret = spi_nor_write_enable(nor);
|
||
if (ret)
|
||
return ret;
|
||
spi_nor_spimem_setup_op(nor, op, proto);
|
||
return spi_nor_spimem_exec_op(nor, op);
|
||
}
|
||
|
||
/**
|
||
* spi_nor_write_enable() - Set write enable latch with Write Enable command.
|
||
* @nor: pointer to 'struct spi_nor'.
|
||
*
|
||
* Return: 0 on success, -errno otherwise.
|
||
*/
|
||
int spi_nor_write_enable(struct spi_nor *nor)
|
||
{
|
||
int ret;
|
||
|
||
if (nor->spimem) {
|
||
struct spi_mem_op op = SPI_NOR_WREN_OP;
|
||
|
||
spi_nor_spimem_setup_op(nor, &op, nor->reg_proto);
|
||
|
||
ret = spi_mem_exec_op(nor->spimem, &op);
|
||
} else {
|
||
ret = spi_nor_controller_ops_write_reg(nor, SPINOR_OP_WREN,
|
||
NULL, 0);
|
||
}
|
||
|
||
if (ret)
|
||
dev_dbg(nor->dev, "error %d on Write Enable\n", ret);
|
||
|
||
return ret;
|
||
}
|
||
|
||
/**
|
||
* spi_nor_write_disable() - Send Write Disable instruction to the chip.
|
||
* @nor: pointer to 'struct spi_nor'.
|
||
*
|
||
* Return: 0 on success, -errno otherwise.
|
||
*/
|
||
int spi_nor_write_disable(struct spi_nor *nor)
|
||
{
|
||
int ret;
|
||
|
||
if (nor->spimem) {
|
||
struct spi_mem_op op = SPI_NOR_WRDI_OP;
|
||
|
||
spi_nor_spimem_setup_op(nor, &op, nor->reg_proto);
|
||
|
||
ret = spi_mem_exec_op(nor->spimem, &op);
|
||
} else {
|
||
ret = spi_nor_controller_ops_write_reg(nor, SPINOR_OP_WRDI,
|
||
NULL, 0);
|
||
}
|
||
|
||
if (ret)
|
||
dev_dbg(nor->dev, "error %d on Write Disable\n", ret);
|
||
|
||
return ret;
|
||
}
|
||
|
||
/**
|
||
* spi_nor_read_id() - Read the JEDEC ID.
|
||
* @nor: pointer to 'struct spi_nor'.
|
||
* @naddr: number of address bytes to send. Can be zero if the operation
|
||
* does not need to send an address.
|
||
* @ndummy: number of dummy bytes to send after an opcode or address. Can
|
||
* be zero if the operation does not require dummy bytes.
|
||
* @id: pointer to a DMA-able buffer where the value of the JEDEC ID
|
||
* will be written.
|
||
* @proto: the SPI protocol for register operation.
|
||
*
|
||
* Return: 0 on success, -errno otherwise.
|
||
*/
|
||
int spi_nor_read_id(struct spi_nor *nor, u8 naddr, u8 ndummy, u8 *id,
|
||
enum spi_nor_protocol proto)
|
||
{
|
||
int ret;
|
||
|
||
if (nor->spimem) {
|
||
struct spi_mem_op op =
|
||
SPI_NOR_READID_OP(naddr, ndummy, id, SPI_NOR_MAX_ID_LEN);
|
||
|
||
spi_nor_spimem_setup_op(nor, &op, proto);
|
||
ret = spi_mem_exec_op(nor->spimem, &op);
|
||
} else {
|
||
ret = nor->controller_ops->read_reg(nor, SPINOR_OP_RDID, id,
|
||
SPI_NOR_MAX_ID_LEN);
|
||
}
|
||
return ret;
|
||
}
|
||
|
||
/**
|
||
* spi_nor_read_sr() - Read the Status Register.
|
||
* @nor: pointer to 'struct spi_nor'.
|
||
* @sr: pointer to a DMA-able buffer where the value of the
|
||
* Status Register will be written. Should be at least 2 bytes.
|
||
*
|
||
* Return: 0 on success, -errno otherwise.
|
||
*/
|
||
int spi_nor_read_sr(struct spi_nor *nor, u8 *sr)
|
||
{
|
||
int ret;
|
||
|
||
if (nor->spimem) {
|
||
struct spi_mem_op op = SPI_NOR_RDSR_OP(sr);
|
||
|
||
if (nor->reg_proto == SNOR_PROTO_8_8_8_DTR) {
|
||
op.addr.nbytes = nor->params->rdsr_addr_nbytes;
|
||
op.dummy.nbytes = nor->params->rdsr_dummy;
|
||
/*
|
||
* We don't want to read only one byte in DTR mode. So,
|
||
* read 2 and then discard the second byte.
|
||
*/
|
||
op.data.nbytes = 2;
|
||
}
|
||
|
||
spi_nor_spimem_setup_op(nor, &op, nor->reg_proto);
|
||
|
||
ret = spi_mem_exec_op(nor->spimem, &op);
|
||
} else {
|
||
ret = spi_nor_controller_ops_read_reg(nor, SPINOR_OP_RDSR, sr,
|
||
1);
|
||
}
|
||
|
||
if (ret)
|
||
dev_dbg(nor->dev, "error %d reading SR\n", ret);
|
||
|
||
return ret;
|
||
}
|
||
|
||
/**
|
||
* spi_nor_read_cr() - Read the Configuration Register using the
|
||
* SPINOR_OP_RDCR (35h) command.
|
||
* @nor: pointer to 'struct spi_nor'
|
||
* @cr: pointer to a DMA-able buffer where the value of the
|
||
* Configuration Register will be written.
|
||
*
|
||
* Return: 0 on success, -errno otherwise.
|
||
*/
|
||
int spi_nor_read_cr(struct spi_nor *nor, u8 *cr)
|
||
{
|
||
int ret;
|
||
|
||
if (nor->spimem) {
|
||
struct spi_mem_op op = SPI_NOR_RDCR_OP(cr);
|
||
|
||
spi_nor_spimem_setup_op(nor, &op, nor->reg_proto);
|
||
|
||
ret = spi_mem_exec_op(nor->spimem, &op);
|
||
} else {
|
||
ret = spi_nor_controller_ops_read_reg(nor, SPINOR_OP_RDCR, cr,
|
||
1);
|
||
}
|
||
|
||
if (ret)
|
||
dev_dbg(nor->dev, "error %d reading CR\n", ret);
|
||
|
||
return ret;
|
||
}
|
||
|
||
/**
|
||
* spi_nor_set_4byte_addr_mode_en4b_ex4b() - Enter/Exit 4-byte address mode
|
||
* using SPINOR_OP_EN4B/SPINOR_OP_EX4B. Typically used by
|
||
* Winbond and Macronix.
|
||
* @nor: pointer to 'struct spi_nor'.
|
||
* @enable: true to enter the 4-byte address mode, false to exit the 4-byte
|
||
* address mode.
|
||
*
|
||
* Return: 0 on success, -errno otherwise.
|
||
*/
|
||
int spi_nor_set_4byte_addr_mode_en4b_ex4b(struct spi_nor *nor, bool enable)
|
||
{
|
||
int ret;
|
||
|
||
if (nor->spimem) {
|
||
struct spi_mem_op op = SPI_NOR_EN4B_EX4B_OP(enable);
|
||
|
||
spi_nor_spimem_setup_op(nor, &op, nor->reg_proto);
|
||
|
||
ret = spi_mem_exec_op(nor->spimem, &op);
|
||
} else {
|
||
ret = spi_nor_controller_ops_write_reg(nor,
|
||
enable ? SPINOR_OP_EN4B :
|
||
SPINOR_OP_EX4B,
|
||
NULL, 0);
|
||
}
|
||
|
||
if (ret)
|
||
dev_dbg(nor->dev, "error %d setting 4-byte mode\n", ret);
|
||
|
||
return ret;
|
||
}
|
||
|
||
/**
|
||
* spi_nor_set_4byte_addr_mode_wren_en4b_ex4b() - Set 4-byte address mode using
|
||
* SPINOR_OP_WREN followed by SPINOR_OP_EN4B or SPINOR_OP_EX4B. Typically used
|
||
* by ST and Micron flashes.
|
||
* @nor: pointer to 'struct spi_nor'.
|
||
* @enable: true to enter the 4-byte address mode, false to exit the 4-byte
|
||
* address mode.
|
||
*
|
||
* Return: 0 on success, -errno otherwise.
|
||
*/
|
||
int spi_nor_set_4byte_addr_mode_wren_en4b_ex4b(struct spi_nor *nor, bool enable)
|
||
{
|
||
int ret;
|
||
|
||
ret = spi_nor_write_enable(nor);
|
||
if (ret)
|
||
return ret;
|
||
|
||
ret = spi_nor_set_4byte_addr_mode_en4b_ex4b(nor, enable);
|
||
if (ret)
|
||
return ret;
|
||
|
||
return spi_nor_write_disable(nor);
|
||
}
|
||
|
||
/**
|
||
* spi_nor_set_4byte_addr_mode_brwr() - Set 4-byte address mode using
|
||
* SPINOR_OP_BRWR. Typically used by Spansion flashes.
|
||
* @nor: pointer to 'struct spi_nor'.
|
||
* @enable: true to enter the 4-byte address mode, false to exit the 4-byte
|
||
* address mode.
|
||
*
|
||
* 8-bit volatile bank register used to define A[30:A24] bits. MSB (bit[7]) is
|
||
* used to enable/disable 4-byte address mode. When MSB is set to ‘1’, 4-byte
|
||
* address mode is active and A[30:24] bits are don’t care. Write instruction is
|
||
* SPINOR_OP_BRWR(17h) with 1 byte of data.
|
||
*
|
||
* Return: 0 on success, -errno otherwise.
|
||
*/
|
||
int spi_nor_set_4byte_addr_mode_brwr(struct spi_nor *nor, bool enable)
|
||
{
|
||
int ret;
|
||
|
||
nor->bouncebuf[0] = enable << 7;
|
||
|
||
if (nor->spimem) {
|
||
struct spi_mem_op op = SPI_NOR_BRWR_OP(nor->bouncebuf);
|
||
|
||
spi_nor_spimem_setup_op(nor, &op, nor->reg_proto);
|
||
|
||
ret = spi_mem_exec_op(nor->spimem, &op);
|
||
} else {
|
||
ret = spi_nor_controller_ops_write_reg(nor, SPINOR_OP_BRWR,
|
||
nor->bouncebuf, 1);
|
||
}
|
||
|
||
if (ret)
|
||
dev_dbg(nor->dev, "error %d setting 4-byte mode\n", ret);
|
||
|
||
return ret;
|
||
}
|
||
|
||
/**
|
||
* spi_nor_sr_ready() - Query the Status Register to see if the flash is ready
|
||
* for new commands.
|
||
* @nor: pointer to 'struct spi_nor'.
|
||
*
|
||
* Return: 1 if ready, 0 if not ready, -errno on errors.
|
||
*/
|
||
int spi_nor_sr_ready(struct spi_nor *nor)
|
||
{
|
||
int ret;
|
||
|
||
ret = spi_nor_read_sr(nor, nor->bouncebuf);
|
||
if (ret)
|
||
return ret;
|
||
|
||
return !(nor->bouncebuf[0] & SR_WIP);
|
||
}
|
||
|
||
/**
|
||
* spi_nor_use_parallel_locking() - Checks if RWW locking scheme shall be used
|
||
* @nor: pointer to 'struct spi_nor'.
|
||
*
|
||
* Return: true if parallel locking is enabled, false otherwise.
|
||
*/
|
||
static bool spi_nor_use_parallel_locking(struct spi_nor *nor)
|
||
{
|
||
return nor->flags & SNOR_F_RWW;
|
||
}
|
||
|
||
/* Locking helpers for status read operations */
|
||
static int spi_nor_rww_start_rdst(struct spi_nor *nor)
|
||
{
|
||
struct spi_nor_rww *rww = &nor->rww;
|
||
int ret = -EAGAIN;
|
||
|
||
mutex_lock(&nor->lock);
|
||
|
||
if (rww->ongoing_io || rww->ongoing_rd)
|
||
goto busy;
|
||
|
||
rww->ongoing_io = true;
|
||
rww->ongoing_rd = true;
|
||
ret = 0;
|
||
|
||
busy:
|
||
mutex_unlock(&nor->lock);
|
||
return ret;
|
||
}
|
||
|
||
static void spi_nor_rww_end_rdst(struct spi_nor *nor)
|
||
{
|
||
struct spi_nor_rww *rww = &nor->rww;
|
||
|
||
mutex_lock(&nor->lock);
|
||
|
||
rww->ongoing_io = false;
|
||
rww->ongoing_rd = false;
|
||
|
||
mutex_unlock(&nor->lock);
|
||
}
|
||
|
||
static int spi_nor_lock_rdst(struct spi_nor *nor)
|
||
{
|
||
if (spi_nor_use_parallel_locking(nor))
|
||
return spi_nor_rww_start_rdst(nor);
|
||
|
||
return 0;
|
||
}
|
||
|
||
static void spi_nor_unlock_rdst(struct spi_nor *nor)
|
||
{
|
||
if (spi_nor_use_parallel_locking(nor)) {
|
||
spi_nor_rww_end_rdst(nor);
|
||
wake_up(&nor->rww.wait);
|
||
}
|
||
}
|
||
|
||
/**
|
||
* spi_nor_ready() - Query the flash to see if it is ready for new commands.
|
||
* @nor: pointer to 'struct spi_nor'.
|
||
*
|
||
* Return: 1 if ready, 0 if not ready, -errno on errors.
|
||
*/
|
||
static int spi_nor_ready(struct spi_nor *nor)
|
||
{
|
||
int ret;
|
||
|
||
ret = spi_nor_lock_rdst(nor);
|
||
if (ret)
|
||
return 0;
|
||
|
||
/* Flashes might override the standard routine. */
|
||
if (nor->params->ready)
|
||
ret = nor->params->ready(nor);
|
||
else
|
||
ret = spi_nor_sr_ready(nor);
|
||
|
||
spi_nor_unlock_rdst(nor);
|
||
|
||
return ret;
|
||
}
|
||
|
||
/**
|
||
* spi_nor_wait_till_ready_with_timeout() - Service routine to read the
|
||
* Status Register until ready, or timeout occurs.
|
||
* @nor: pointer to "struct spi_nor".
|
||
* @timeout_jiffies: jiffies to wait until timeout.
|
||
*
|
||
* Return: 0 on success, -errno otherwise.
|
||
*/
|
||
static int spi_nor_wait_till_ready_with_timeout(struct spi_nor *nor,
|
||
unsigned long timeout_jiffies)
|
||
{
|
||
unsigned long deadline;
|
||
int timeout = 0, ret;
|
||
|
||
deadline = jiffies + timeout_jiffies;
|
||
|
||
while (!timeout) {
|
||
if (time_after_eq(jiffies, deadline))
|
||
timeout = 1;
|
||
|
||
ret = spi_nor_ready(nor);
|
||
if (ret < 0)
|
||
return ret;
|
||
if (ret)
|
||
return 0;
|
||
|
||
cond_resched();
|
||
}
|
||
|
||
dev_dbg(nor->dev, "flash operation timed out\n");
|
||
|
||
return -ETIMEDOUT;
|
||
}
|
||
|
||
/**
|
||
* spi_nor_wait_till_ready() - Wait for a predefined amount of time for the
|
||
* flash to be ready, or timeout occurs.
|
||
* @nor: pointer to "struct spi_nor".
|
||
*
|
||
* Return: 0 on success, -errno otherwise.
|
||
*/
|
||
int spi_nor_wait_till_ready(struct spi_nor *nor)
|
||
{
|
||
return spi_nor_wait_till_ready_with_timeout(nor,
|
||
DEFAULT_READY_WAIT_JIFFIES);
|
||
}
|
||
|
||
/**
|
||
* spi_nor_global_block_unlock() - Unlock Global Block Protection.
|
||
* @nor: pointer to 'struct spi_nor'.
|
||
*
|
||
* Return: 0 on success, -errno otherwise.
|
||
*/
|
||
int spi_nor_global_block_unlock(struct spi_nor *nor)
|
||
{
|
||
int ret;
|
||
|
||
ret = spi_nor_write_enable(nor);
|
||
if (ret)
|
||
return ret;
|
||
|
||
if (nor->spimem) {
|
||
struct spi_mem_op op = SPI_NOR_GBULK_OP;
|
||
|
||
spi_nor_spimem_setup_op(nor, &op, nor->reg_proto);
|
||
|
||
ret = spi_mem_exec_op(nor->spimem, &op);
|
||
} else {
|
||
ret = spi_nor_controller_ops_write_reg(nor, SPINOR_OP_GBULK,
|
||
NULL, 0);
|
||
}
|
||
|
||
if (ret) {
|
||
dev_dbg(nor->dev, "error %d on Global Block Unlock\n", ret);
|
||
return ret;
|
||
}
|
||
|
||
return spi_nor_wait_till_ready(nor);
|
||
}
|
||
|
||
/**
|
||
* spi_nor_write_sr() - Write the Status Register.
|
||
* @nor: pointer to 'struct spi_nor'.
|
||
* @sr: pointer to DMA-able buffer to write to the Status Register.
|
||
* @len: number of bytes to write to the Status Register.
|
||
*
|
||
* Return: 0 on success, -errno otherwise.
|
||
*/
|
||
int spi_nor_write_sr(struct spi_nor *nor, const u8 *sr, size_t len)
|
||
{
|
||
int ret;
|
||
|
||
ret = spi_nor_write_enable(nor);
|
||
if (ret)
|
||
return ret;
|
||
|
||
if (nor->spimem) {
|
||
struct spi_mem_op op = SPI_NOR_WRSR_OP(sr, len);
|
||
|
||
spi_nor_spimem_setup_op(nor, &op, nor->reg_proto);
|
||
|
||
ret = spi_mem_exec_op(nor->spimem, &op);
|
||
} else {
|
||
ret = spi_nor_controller_ops_write_reg(nor, SPINOR_OP_WRSR, sr,
|
||
len);
|
||
}
|
||
|
||
if (ret) {
|
||
dev_dbg(nor->dev, "error %d writing SR\n", ret);
|
||
return ret;
|
||
}
|
||
|
||
return spi_nor_wait_till_ready(nor);
|
||
}
|
||
|
||
/**
|
||
* spi_nor_write_sr1_and_check() - Write one byte to the Status Register 1 and
|
||
* ensure that the byte written match the received value.
|
||
* @nor: pointer to a 'struct spi_nor'.
|
||
* @sr1: byte value to be written to the Status Register.
|
||
*
|
||
* Return: 0 on success, -errno otherwise.
|
||
*/
|
||
static int spi_nor_write_sr1_and_check(struct spi_nor *nor, u8 sr1)
|
||
{
|
||
int ret;
|
||
|
||
nor->bouncebuf[0] = sr1;
|
||
|
||
ret = spi_nor_write_sr(nor, nor->bouncebuf, 1);
|
||
if (ret)
|
||
return ret;
|
||
|
||
ret = spi_nor_read_sr(nor, nor->bouncebuf);
|
||
if (ret)
|
||
return ret;
|
||
|
||
if (nor->bouncebuf[0] != sr1) {
|
||
dev_dbg(nor->dev, "SR1: read back test failed\n");
|
||
return -EIO;
|
||
}
|
||
|
||
return 0;
|
||
}
|
||
|
||
/**
|
||
* spi_nor_write_16bit_sr_and_check() - Write the Status Register 1 and the
|
||
* Status Register 2 in one shot. Ensure that the byte written in the Status
|
||
* Register 1 match the received value, and that the 16-bit Write did not
|
||
* affect what was already in the Status Register 2.
|
||
* @nor: pointer to a 'struct spi_nor'.
|
||
* @sr1: byte value to be written to the Status Register 1.
|
||
*
|
||
* Return: 0 on success, -errno otherwise.
|
||
*/
|
||
static int spi_nor_write_16bit_sr_and_check(struct spi_nor *nor, u8 sr1)
|
||
{
|
||
int ret;
|
||
u8 *sr_cr = nor->bouncebuf;
|
||
u8 cr_written;
|
||
|
||
/* Make sure we don't overwrite the contents of Status Register 2. */
|
||
if (!(nor->flags & SNOR_F_NO_READ_CR)) {
|
||
ret = spi_nor_read_cr(nor, &sr_cr[1]);
|
||
if (ret)
|
||
return ret;
|
||
} else if (spi_nor_get_protocol_width(nor->read_proto) == 4 &&
|
||
spi_nor_get_protocol_width(nor->write_proto) == 4 &&
|
||
nor->params->quad_enable) {
|
||
/*
|
||
* If the Status Register 2 Read command (35h) is not
|
||
* supported, we should at least be sure we don't
|
||
* change the value of the SR2 Quad Enable bit.
|
||
*
|
||
* When the Quad Enable method is set and the buswidth is 4, we
|
||
* can safely assume that the value of the QE bit is one, as a
|
||
* consequence of the nor->params->quad_enable() call.
|
||
*
|
||
* According to the JESD216 revB standard, BFPT DWORDS[15],
|
||
* bits 22:20, the 16-bit Write Status (01h) command is
|
||
* available just for the cases in which the QE bit is
|
||
* described in SR2 at BIT(1).
|
||
*/
|
||
sr_cr[1] = SR2_QUAD_EN_BIT1;
|
||
} else {
|
||
sr_cr[1] = 0;
|
||
}
|
||
|
||
sr_cr[0] = sr1;
|
||
|
||
ret = spi_nor_write_sr(nor, sr_cr, 2);
|
||
if (ret)
|
||
return ret;
|
||
|
||
ret = spi_nor_read_sr(nor, sr_cr);
|
||
if (ret)
|
||
return ret;
|
||
|
||
if (sr1 != sr_cr[0]) {
|
||
dev_dbg(nor->dev, "SR: Read back test failed\n");
|
||
return -EIO;
|
||
}
|
||
|
||
if (nor->flags & SNOR_F_NO_READ_CR)
|
||
return 0;
|
||
|
||
cr_written = sr_cr[1];
|
||
|
||
ret = spi_nor_read_cr(nor, &sr_cr[1]);
|
||
if (ret)
|
||
return ret;
|
||
|
||
if (cr_written != sr_cr[1]) {
|
||
dev_dbg(nor->dev, "CR: read back test failed\n");
|
||
return -EIO;
|
||
}
|
||
|
||
return 0;
|
||
}
|
||
|
||
/**
|
||
* spi_nor_write_16bit_cr_and_check() - Write the Status Register 1 and the
|
||
* Configuration Register in one shot. Ensure that the byte written in the
|
||
* Configuration Register match the received value, and that the 16-bit Write
|
||
* did not affect what was already in the Status Register 1.
|
||
* @nor: pointer to a 'struct spi_nor'.
|
||
* @cr: byte value to be written to the Configuration Register.
|
||
*
|
||
* Return: 0 on success, -errno otherwise.
|
||
*/
|
||
int spi_nor_write_16bit_cr_and_check(struct spi_nor *nor, u8 cr)
|
||
{
|
||
int ret;
|
||
u8 *sr_cr = nor->bouncebuf;
|
||
u8 sr_written;
|
||
|
||
/* Keep the current value of the Status Register 1. */
|
||
ret = spi_nor_read_sr(nor, sr_cr);
|
||
if (ret)
|
||
return ret;
|
||
|
||
sr_cr[1] = cr;
|
||
|
||
ret = spi_nor_write_sr(nor, sr_cr, 2);
|
||
if (ret)
|
||
return ret;
|
||
|
||
sr_written = sr_cr[0];
|
||
|
||
ret = spi_nor_read_sr(nor, sr_cr);
|
||
if (ret)
|
||
return ret;
|
||
|
||
if (sr_written != sr_cr[0]) {
|
||
dev_dbg(nor->dev, "SR: Read back test failed\n");
|
||
return -EIO;
|
||
}
|
||
|
||
if (nor->flags & SNOR_F_NO_READ_CR)
|
||
return 0;
|
||
|
||
ret = spi_nor_read_cr(nor, &sr_cr[1]);
|
||
if (ret)
|
||
return ret;
|
||
|
||
if (cr != sr_cr[1]) {
|
||
dev_dbg(nor->dev, "CR: read back test failed\n");
|
||
return -EIO;
|
||
}
|
||
|
||
return 0;
|
||
}
|
||
|
||
/**
|
||
* spi_nor_write_sr_and_check() - Write the Status Register 1 and ensure that
|
||
* the byte written match the received value without affecting other bits in the
|
||
* Status Register 1 and 2.
|
||
* @nor: pointer to a 'struct spi_nor'.
|
||
* @sr1: byte value to be written to the Status Register.
|
||
*
|
||
* Return: 0 on success, -errno otherwise.
|
||
*/
|
||
int spi_nor_write_sr_and_check(struct spi_nor *nor, u8 sr1)
|
||
{
|
||
if (nor->flags & SNOR_F_HAS_16BIT_SR)
|
||
return spi_nor_write_16bit_sr_and_check(nor, sr1);
|
||
|
||
return spi_nor_write_sr1_and_check(nor, sr1);
|
||
}
|
||
|
||
/**
|
||
* spi_nor_write_sr2() - Write the Status Register 2 using the
|
||
* SPINOR_OP_WRSR2 (3eh) command.
|
||
* @nor: pointer to 'struct spi_nor'.
|
||
* @sr2: pointer to DMA-able buffer to write to the Status Register 2.
|
||
*
|
||
* Return: 0 on success, -errno otherwise.
|
||
*/
|
||
static int spi_nor_write_sr2(struct spi_nor *nor, const u8 *sr2)
|
||
{
|
||
int ret;
|
||
|
||
ret = spi_nor_write_enable(nor);
|
||
if (ret)
|
||
return ret;
|
||
|
||
if (nor->spimem) {
|
||
struct spi_mem_op op = SPI_NOR_WRSR2_OP(sr2);
|
||
|
||
spi_nor_spimem_setup_op(nor, &op, nor->reg_proto);
|
||
|
||
ret = spi_mem_exec_op(nor->spimem, &op);
|
||
} else {
|
||
ret = spi_nor_controller_ops_write_reg(nor, SPINOR_OP_WRSR2,
|
||
sr2, 1);
|
||
}
|
||
|
||
if (ret) {
|
||
dev_dbg(nor->dev, "error %d writing SR2\n", ret);
|
||
return ret;
|
||
}
|
||
|
||
return spi_nor_wait_till_ready(nor);
|
||
}
|
||
|
||
/**
|
||
* spi_nor_read_sr2() - Read the Status Register 2 using the
|
||
* SPINOR_OP_RDSR2 (3fh) command.
|
||
* @nor: pointer to 'struct spi_nor'.
|
||
* @sr2: pointer to DMA-able buffer where the value of the
|
||
* Status Register 2 will be written.
|
||
*
|
||
* Return: 0 on success, -errno otherwise.
|
||
*/
|
||
static int spi_nor_read_sr2(struct spi_nor *nor, u8 *sr2)
|
||
{
|
||
int ret;
|
||
|
||
if (nor->spimem) {
|
||
struct spi_mem_op op = SPI_NOR_RDSR2_OP(sr2);
|
||
|
||
spi_nor_spimem_setup_op(nor, &op, nor->reg_proto);
|
||
|
||
ret = spi_mem_exec_op(nor->spimem, &op);
|
||
} else {
|
||
ret = spi_nor_controller_ops_read_reg(nor, SPINOR_OP_RDSR2, sr2,
|
||
1);
|
||
}
|
||
|
||
if (ret)
|
||
dev_dbg(nor->dev, "error %d reading SR2\n", ret);
|
||
|
||
return ret;
|
||
}
|
||
|
||
/**
|
||
* spi_nor_erase_die() - Erase the entire die.
|
||
* @nor: pointer to 'struct spi_nor'.
|
||
* @addr: address of the die.
|
||
* @die_size: size of the die.
|
||
*
|
||
* Return: 0 on success, -errno otherwise.
|
||
*/
|
||
static int spi_nor_erase_die(struct spi_nor *nor, loff_t addr, size_t die_size)
|
||
{
|
||
bool multi_die = nor->mtd.size != die_size;
|
||
int ret;
|
||
|
||
dev_dbg(nor->dev, " %lldKiB\n", (long long)(die_size >> 10));
|
||
|
||
if (nor->spimem) {
|
||
struct spi_mem_op op =
|
||
SPI_NOR_DIE_ERASE_OP(nor->params->die_erase_opcode,
|
||
nor->addr_nbytes, addr, multi_die);
|
||
|
||
spi_nor_spimem_setup_op(nor, &op, nor->reg_proto);
|
||
|
||
ret = spi_mem_exec_op(nor->spimem, &op);
|
||
} else {
|
||
if (multi_die)
|
||
return -EOPNOTSUPP;
|
||
|
||
ret = spi_nor_controller_ops_write_reg(nor,
|
||
SPINOR_OP_CHIP_ERASE,
|
||
NULL, 0);
|
||
}
|
||
|
||
if (ret)
|
||
dev_dbg(nor->dev, "error %d erasing chip\n", ret);
|
||
|
||
return ret;
|
||
}
|
||
|
||
static u8 spi_nor_convert_opcode(u8 opcode, const u8 table[][2], size_t size)
|
||
{
|
||
size_t i;
|
||
|
||
for (i = 0; i < size; i++)
|
||
if (table[i][0] == opcode)
|
||
return table[i][1];
|
||
|
||
/* No conversion found, keep input op code. */
|
||
return opcode;
|
||
}
|
||
|
||
u8 spi_nor_convert_3to4_read(u8 opcode)
|
||
{
|
||
static const u8 spi_nor_3to4_read[][2] = {
|
||
{ SPINOR_OP_READ, SPINOR_OP_READ_4B },
|
||
{ SPINOR_OP_READ_FAST, SPINOR_OP_READ_FAST_4B },
|
||
{ SPINOR_OP_READ_1_1_2, SPINOR_OP_READ_1_1_2_4B },
|
||
{ SPINOR_OP_READ_1_2_2, SPINOR_OP_READ_1_2_2_4B },
|
||
{ SPINOR_OP_READ_1_1_4, SPINOR_OP_READ_1_1_4_4B },
|
||
{ SPINOR_OP_READ_1_4_4, SPINOR_OP_READ_1_4_4_4B },
|
||
{ SPINOR_OP_READ_1_1_8, SPINOR_OP_READ_1_1_8_4B },
|
||
{ SPINOR_OP_READ_1_8_8, SPINOR_OP_READ_1_8_8_4B },
|
||
|
||
{ SPINOR_OP_READ_1_1_1_DTR, SPINOR_OP_READ_1_1_1_DTR_4B },
|
||
{ SPINOR_OP_READ_1_2_2_DTR, SPINOR_OP_READ_1_2_2_DTR_4B },
|
||
{ SPINOR_OP_READ_1_4_4_DTR, SPINOR_OP_READ_1_4_4_DTR_4B },
|
||
};
|
||
|
||
return spi_nor_convert_opcode(opcode, spi_nor_3to4_read,
|
||
ARRAY_SIZE(spi_nor_3to4_read));
|
||
}
|
||
|
||
static u8 spi_nor_convert_3to4_program(u8 opcode)
|
||
{
|
||
static const u8 spi_nor_3to4_program[][2] = {
|
||
{ SPINOR_OP_PP, SPINOR_OP_PP_4B },
|
||
{ SPINOR_OP_PP_1_1_4, SPINOR_OP_PP_1_1_4_4B },
|
||
{ SPINOR_OP_PP_1_4_4, SPINOR_OP_PP_1_4_4_4B },
|
||
{ SPINOR_OP_PP_1_1_8, SPINOR_OP_PP_1_1_8_4B },
|
||
{ SPINOR_OP_PP_1_8_8, SPINOR_OP_PP_1_8_8_4B },
|
||
};
|
||
|
||
return spi_nor_convert_opcode(opcode, spi_nor_3to4_program,
|
||
ARRAY_SIZE(spi_nor_3to4_program));
|
||
}
|
||
|
||
static u8 spi_nor_convert_3to4_erase(u8 opcode)
|
||
{
|
||
static const u8 spi_nor_3to4_erase[][2] = {
|
||
{ SPINOR_OP_BE_4K, SPINOR_OP_BE_4K_4B },
|
||
{ SPINOR_OP_BE_32K, SPINOR_OP_BE_32K_4B },
|
||
{ SPINOR_OP_SE, SPINOR_OP_SE_4B },
|
||
};
|
||
|
||
return spi_nor_convert_opcode(opcode, spi_nor_3to4_erase,
|
||
ARRAY_SIZE(spi_nor_3to4_erase));
|
||
}
|
||
|
||
static bool spi_nor_has_uniform_erase(const struct spi_nor *nor)
|
||
{
|
||
return !!nor->params->erase_map.uniform_region.erase_mask;
|
||
}
|
||
|
||
static void spi_nor_set_4byte_opcodes(struct spi_nor *nor)
|
||
{
|
||
nor->read_opcode = spi_nor_convert_3to4_read(nor->read_opcode);
|
||
nor->program_opcode = spi_nor_convert_3to4_program(nor->program_opcode);
|
||
nor->erase_opcode = spi_nor_convert_3to4_erase(nor->erase_opcode);
|
||
|
||
if (!spi_nor_has_uniform_erase(nor)) {
|
||
struct spi_nor_erase_map *map = &nor->params->erase_map;
|
||
struct spi_nor_erase_type *erase;
|
||
int i;
|
||
|
||
for (i = 0; i < SNOR_ERASE_TYPE_MAX; i++) {
|
||
erase = &map->erase_type[i];
|
||
erase->opcode =
|
||
spi_nor_convert_3to4_erase(erase->opcode);
|
||
}
|
||
}
|
||
}
|
||
|
||
static int spi_nor_prep(struct spi_nor *nor)
|
||
{
|
||
int ret = 0;
|
||
|
||
if (nor->controller_ops && nor->controller_ops->prepare)
|
||
ret = nor->controller_ops->prepare(nor);
|
||
|
||
return ret;
|
||
}
|
||
|
||
static void spi_nor_unprep(struct spi_nor *nor)
|
||
{
|
||
if (nor->controller_ops && nor->controller_ops->unprepare)
|
||
nor->controller_ops->unprepare(nor);
|
||
}
|
||
|
||
static void spi_nor_offset_to_banks(u64 bank_size, loff_t start, size_t len,
|
||
u8 *first, u8 *last)
|
||
{
|
||
/* This is currently safe, the number of banks being very small */
|
||
*first = DIV_ROUND_DOWN_ULL(start, bank_size);
|
||
*last = DIV_ROUND_DOWN_ULL(start + len - 1, bank_size);
|
||
}
|
||
|
||
/* Generic helpers for internal locking and serialization */
|
||
static bool spi_nor_rww_start_io(struct spi_nor *nor)
|
||
{
|
||
struct spi_nor_rww *rww = &nor->rww;
|
||
bool start = false;
|
||
|
||
mutex_lock(&nor->lock);
|
||
|
||
if (rww->ongoing_io)
|
||
goto busy;
|
||
|
||
rww->ongoing_io = true;
|
||
start = true;
|
||
|
||
busy:
|
||
mutex_unlock(&nor->lock);
|
||
return start;
|
||
}
|
||
|
||
static void spi_nor_rww_end_io(struct spi_nor *nor)
|
||
{
|
||
mutex_lock(&nor->lock);
|
||
nor->rww.ongoing_io = false;
|
||
mutex_unlock(&nor->lock);
|
||
}
|
||
|
||
static int spi_nor_lock_device(struct spi_nor *nor)
|
||
{
|
||
if (!spi_nor_use_parallel_locking(nor))
|
||
return 0;
|
||
|
||
return wait_event_killable(nor->rww.wait, spi_nor_rww_start_io(nor));
|
||
}
|
||
|
||
static void spi_nor_unlock_device(struct spi_nor *nor)
|
||
{
|
||
if (spi_nor_use_parallel_locking(nor)) {
|
||
spi_nor_rww_end_io(nor);
|
||
wake_up(&nor->rww.wait);
|
||
}
|
||
}
|
||
|
||
/* Generic helpers for internal locking and serialization */
|
||
static bool spi_nor_rww_start_exclusive(struct spi_nor *nor)
|
||
{
|
||
struct spi_nor_rww *rww = &nor->rww;
|
||
bool start = false;
|
||
|
||
mutex_lock(&nor->lock);
|
||
|
||
if (rww->ongoing_io || rww->ongoing_rd || rww->ongoing_pe)
|
||
goto busy;
|
||
|
||
rww->ongoing_io = true;
|
||
rww->ongoing_rd = true;
|
||
rww->ongoing_pe = true;
|
||
start = true;
|
||
|
||
busy:
|
||
mutex_unlock(&nor->lock);
|
||
return start;
|
||
}
|
||
|
||
static void spi_nor_rww_end_exclusive(struct spi_nor *nor)
|
||
{
|
||
struct spi_nor_rww *rww = &nor->rww;
|
||
|
||
mutex_lock(&nor->lock);
|
||
rww->ongoing_io = false;
|
||
rww->ongoing_rd = false;
|
||
rww->ongoing_pe = false;
|
||
mutex_unlock(&nor->lock);
|
||
}
|
||
|
||
int spi_nor_prep_and_lock(struct spi_nor *nor)
|
||
{
|
||
int ret;
|
||
|
||
ret = spi_nor_prep(nor);
|
||
if (ret)
|
||
return ret;
|
||
|
||
if (!spi_nor_use_parallel_locking(nor))
|
||
mutex_lock(&nor->lock);
|
||
else
|
||
ret = wait_event_killable(nor->rww.wait,
|
||
spi_nor_rww_start_exclusive(nor));
|
||
|
||
return ret;
|
||
}
|
||
|
||
void spi_nor_unlock_and_unprep(struct spi_nor *nor)
|
||
{
|
||
if (!spi_nor_use_parallel_locking(nor)) {
|
||
mutex_unlock(&nor->lock);
|
||
} else {
|
||
spi_nor_rww_end_exclusive(nor);
|
||
wake_up(&nor->rww.wait);
|
||
}
|
||
|
||
spi_nor_unprep(nor);
|
||
}
|
||
|
||
/* Internal locking helpers for program and erase operations */
|
||
static bool spi_nor_rww_start_pe(struct spi_nor *nor, loff_t start, size_t len)
|
||
{
|
||
struct spi_nor_rww *rww = &nor->rww;
|
||
unsigned int used_banks = 0;
|
||
bool started = false;
|
||
u8 first, last;
|
||
int bank;
|
||
|
||
mutex_lock(&nor->lock);
|
||
|
||
if (rww->ongoing_io || rww->ongoing_rd || rww->ongoing_pe)
|
||
goto busy;
|
||
|
||
spi_nor_offset_to_banks(nor->params->bank_size, start, len, &first, &last);
|
||
for (bank = first; bank <= last; bank++) {
|
||
if (rww->used_banks & BIT(bank))
|
||
goto busy;
|
||
|
||
used_banks |= BIT(bank);
|
||
}
|
||
|
||
rww->used_banks |= used_banks;
|
||
rww->ongoing_pe = true;
|
||
started = true;
|
||
|
||
busy:
|
||
mutex_unlock(&nor->lock);
|
||
return started;
|
||
}
|
||
|
||
static void spi_nor_rww_end_pe(struct spi_nor *nor, loff_t start, size_t len)
|
||
{
|
||
struct spi_nor_rww *rww = &nor->rww;
|
||
u8 first, last;
|
||
int bank;
|
||
|
||
mutex_lock(&nor->lock);
|
||
|
||
spi_nor_offset_to_banks(nor->params->bank_size, start, len, &first, &last);
|
||
for (bank = first; bank <= last; bank++)
|
||
rww->used_banks &= ~BIT(bank);
|
||
|
||
rww->ongoing_pe = false;
|
||
|
||
mutex_unlock(&nor->lock);
|
||
}
|
||
|
||
static int spi_nor_prep_and_lock_pe(struct spi_nor *nor, loff_t start, size_t len)
|
||
{
|
||
int ret;
|
||
|
||
ret = spi_nor_prep(nor);
|
||
if (ret)
|
||
return ret;
|
||
|
||
if (!spi_nor_use_parallel_locking(nor))
|
||
mutex_lock(&nor->lock);
|
||
else
|
||
ret = wait_event_killable(nor->rww.wait,
|
||
spi_nor_rww_start_pe(nor, start, len));
|
||
|
||
return ret;
|
||
}
|
||
|
||
static void spi_nor_unlock_and_unprep_pe(struct spi_nor *nor, loff_t start, size_t len)
|
||
{
|
||
if (!spi_nor_use_parallel_locking(nor)) {
|
||
mutex_unlock(&nor->lock);
|
||
} else {
|
||
spi_nor_rww_end_pe(nor, start, len);
|
||
wake_up(&nor->rww.wait);
|
||
}
|
||
|
||
spi_nor_unprep(nor);
|
||
}
|
||
|
||
/* Internal locking helpers for read operations */
|
||
static bool spi_nor_rww_start_rd(struct spi_nor *nor, loff_t start, size_t len)
|
||
{
|
||
struct spi_nor_rww *rww = &nor->rww;
|
||
unsigned int used_banks = 0;
|
||
bool started = false;
|
||
u8 first, last;
|
||
int bank;
|
||
|
||
mutex_lock(&nor->lock);
|
||
|
||
if (rww->ongoing_io || rww->ongoing_rd)
|
||
goto busy;
|
||
|
||
spi_nor_offset_to_banks(nor->params->bank_size, start, len, &first, &last);
|
||
for (bank = first; bank <= last; bank++) {
|
||
if (rww->used_banks & BIT(bank))
|
||
goto busy;
|
||
|
||
used_banks |= BIT(bank);
|
||
}
|
||
|
||
rww->used_banks |= used_banks;
|
||
rww->ongoing_io = true;
|
||
rww->ongoing_rd = true;
|
||
started = true;
|
||
|
||
busy:
|
||
mutex_unlock(&nor->lock);
|
||
return started;
|
||
}
|
||
|
||
static void spi_nor_rww_end_rd(struct spi_nor *nor, loff_t start, size_t len)
|
||
{
|
||
struct spi_nor_rww *rww = &nor->rww;
|
||
u8 first, last;
|
||
int bank;
|
||
|
||
mutex_lock(&nor->lock);
|
||
|
||
spi_nor_offset_to_banks(nor->params->bank_size, start, len, &first, &last);
|
||
for (bank = first; bank <= last; bank++)
|
||
nor->rww.used_banks &= ~BIT(bank);
|
||
|
||
rww->ongoing_io = false;
|
||
rww->ongoing_rd = false;
|
||
|
||
mutex_unlock(&nor->lock);
|
||
}
|
||
|
||
static int spi_nor_prep_and_lock_rd(struct spi_nor *nor, loff_t start, size_t len)
|
||
{
|
||
int ret;
|
||
|
||
ret = spi_nor_prep(nor);
|
||
if (ret)
|
||
return ret;
|
||
|
||
if (!spi_nor_use_parallel_locking(nor))
|
||
mutex_lock(&nor->lock);
|
||
else
|
||
ret = wait_event_killable(nor->rww.wait,
|
||
spi_nor_rww_start_rd(nor, start, len));
|
||
|
||
return ret;
|
||
}
|
||
|
||
static void spi_nor_unlock_and_unprep_rd(struct spi_nor *nor, loff_t start, size_t len)
|
||
{
|
||
if (!spi_nor_use_parallel_locking(nor)) {
|
||
mutex_unlock(&nor->lock);
|
||
} else {
|
||
spi_nor_rww_end_rd(nor, start, len);
|
||
wake_up(&nor->rww.wait);
|
||
}
|
||
|
||
spi_nor_unprep(nor);
|
||
}
|
||
|
||
static u32 spi_nor_convert_addr(struct spi_nor *nor, loff_t addr)
|
||
{
|
||
if (!nor->params->convert_addr)
|
||
return addr;
|
||
|
||
return nor->params->convert_addr(nor, addr);
|
||
}
|
||
|
||
/*
|
||
* Initiate the erasure of a single sector
|
||
*/
|
||
int spi_nor_erase_sector(struct spi_nor *nor, u32 addr)
|
||
{
|
||
int i;
|
||
|
||
addr = spi_nor_convert_addr(nor, addr);
|
||
|
||
if (nor->spimem) {
|
||
struct spi_mem_op op =
|
||
SPI_NOR_SECTOR_ERASE_OP(nor->erase_opcode,
|
||
nor->addr_nbytes, addr);
|
||
|
||
spi_nor_spimem_setup_op(nor, &op, nor->reg_proto);
|
||
|
||
return spi_mem_exec_op(nor->spimem, &op);
|
||
} else if (nor->controller_ops->erase) {
|
||
return spi_nor_controller_ops_erase(nor, addr);
|
||
}
|
||
|
||
/*
|
||
* Default implementation, if driver doesn't have a specialized HW
|
||
* control
|
||
*/
|
||
for (i = nor->addr_nbytes - 1; i >= 0; i--) {
|
||
nor->bouncebuf[i] = addr & 0xff;
|
||
addr >>= 8;
|
||
}
|
||
|
||
return spi_nor_controller_ops_write_reg(nor, nor->erase_opcode,
|
||
nor->bouncebuf, nor->addr_nbytes);
|
||
}
|
||
|
||
/**
|
||
* spi_nor_div_by_erase_size() - calculate remainder and update new dividend
|
||
* @erase: pointer to a structure that describes a SPI NOR erase type
|
||
* @dividend: dividend value
|
||
* @remainder: pointer to u32 remainder (will be updated)
|
||
*
|
||
* Return: the result of the division
|
||
*/
|
||
static u64 spi_nor_div_by_erase_size(const struct spi_nor_erase_type *erase,
|
||
u64 dividend, u32 *remainder)
|
||
{
|
||
/* JEDEC JESD216B Standard imposes erase sizes to be power of 2. */
|
||
*remainder = (u32)dividend & erase->size_mask;
|
||
return dividend >> erase->size_shift;
|
||
}
|
||
|
||
/**
|
||
* spi_nor_find_best_erase_type() - find the best erase type for the given
|
||
* offset in the serial flash memory and the
|
||
* number of bytes to erase. The region in
|
||
* which the address fits is expected to be
|
||
* provided.
|
||
* @map: the erase map of the SPI NOR
|
||
* @region: pointer to a structure that describes a SPI NOR erase region
|
||
* @addr: offset in the serial flash memory
|
||
* @len: number of bytes to erase
|
||
*
|
||
* Return: a pointer to the best fitted erase type, NULL otherwise.
|
||
*/
|
||
static const struct spi_nor_erase_type *
|
||
spi_nor_find_best_erase_type(const struct spi_nor_erase_map *map,
|
||
const struct spi_nor_erase_region *region,
|
||
u64 addr, u32 len)
|
||
{
|
||
const struct spi_nor_erase_type *erase;
|
||
u32 rem;
|
||
int i;
|
||
|
||
/*
|
||
* Erase types are ordered by size, with the smallest erase type at
|
||
* index 0.
|
||
*/
|
||
for (i = SNOR_ERASE_TYPE_MAX - 1; i >= 0; i--) {
|
||
/* Does the erase region support the tested erase type? */
|
||
if (!(region->erase_mask & BIT(i)))
|
||
continue;
|
||
|
||
erase = &map->erase_type[i];
|
||
if (!erase->size)
|
||
continue;
|
||
|
||
/* Alignment is not mandatory for overlaid regions */
|
||
if (region->overlaid && region->size <= len)
|
||
return erase;
|
||
|
||
/* Don't erase more than what the user has asked for. */
|
||
if (erase->size > len)
|
||
continue;
|
||
|
||
spi_nor_div_by_erase_size(erase, addr, &rem);
|
||
if (!rem)
|
||
return erase;
|
||
}
|
||
|
||
return NULL;
|
||
}
|
||
|
||
/**
|
||
* spi_nor_init_erase_cmd() - initialize an erase command
|
||
* @region: pointer to a structure that describes a SPI NOR erase region
|
||
* @erase: pointer to a structure that describes a SPI NOR erase type
|
||
*
|
||
* Return: the pointer to the allocated erase command, ERR_PTR(-errno)
|
||
* otherwise.
|
||
*/
|
||
static struct spi_nor_erase_command *
|
||
spi_nor_init_erase_cmd(const struct spi_nor_erase_region *region,
|
||
const struct spi_nor_erase_type *erase)
|
||
{
|
||
struct spi_nor_erase_command *cmd;
|
||
|
||
cmd = kmalloc(sizeof(*cmd), GFP_KERNEL);
|
||
if (!cmd)
|
||
return ERR_PTR(-ENOMEM);
|
||
|
||
INIT_LIST_HEAD(&cmd->list);
|
||
cmd->opcode = erase->opcode;
|
||
cmd->count = 1;
|
||
|
||
if (region->overlaid)
|
||
cmd->size = region->size;
|
||
else
|
||
cmd->size = erase->size;
|
||
|
||
return cmd;
|
||
}
|
||
|
||
/**
|
||
* spi_nor_destroy_erase_cmd_list() - destroy erase command list
|
||
* @erase_list: list of erase commands
|
||
*/
|
||
static void spi_nor_destroy_erase_cmd_list(struct list_head *erase_list)
|
||
{
|
||
struct spi_nor_erase_command *cmd, *next;
|
||
|
||
list_for_each_entry_safe(cmd, next, erase_list, list) {
|
||
list_del(&cmd->list);
|
||
kfree(cmd);
|
||
}
|
||
}
|
||
|
||
/**
|
||
* spi_nor_init_erase_cmd_list() - initialize erase command list
|
||
* @nor: pointer to a 'struct spi_nor'
|
||
* @erase_list: list of erase commands to be executed once we validate that the
|
||
* erase can be performed
|
||
* @addr: offset in the serial flash memory
|
||
* @len: number of bytes to erase
|
||
*
|
||
* Builds the list of best fitted erase commands and verifies if the erase can
|
||
* be performed.
|
||
*
|
||
* Return: 0 on success, -errno otherwise.
|
||
*/
|
||
static int spi_nor_init_erase_cmd_list(struct spi_nor *nor,
|
||
struct list_head *erase_list,
|
||
u64 addr, u32 len)
|
||
{
|
||
const struct spi_nor_erase_map *map = &nor->params->erase_map;
|
||
const struct spi_nor_erase_type *erase, *prev_erase = NULL;
|
||
struct spi_nor_erase_region *region;
|
||
struct spi_nor_erase_command *cmd = NULL;
|
||
u64 region_end;
|
||
unsigned int i;
|
||
int ret = -EINVAL;
|
||
|
||
for (i = 0; i < map->n_regions && len; i++) {
|
||
region = &map->regions[i];
|
||
region_end = region->offset + region->size;
|
||
|
||
while (len && addr >= region->offset && addr < region_end) {
|
||
erase = spi_nor_find_best_erase_type(map, region, addr,
|
||
len);
|
||
if (!erase)
|
||
goto destroy_erase_cmd_list;
|
||
|
||
if (prev_erase != erase || erase->size != cmd->size ||
|
||
region->overlaid) {
|
||
cmd = spi_nor_init_erase_cmd(region, erase);
|
||
if (IS_ERR(cmd)) {
|
||
ret = PTR_ERR(cmd);
|
||
goto destroy_erase_cmd_list;
|
||
}
|
||
|
||
list_add_tail(&cmd->list, erase_list);
|
||
} else {
|
||
cmd->count++;
|
||
}
|
||
|
||
len -= cmd->size;
|
||
addr += cmd->size;
|
||
prev_erase = erase;
|
||
}
|
||
}
|
||
|
||
return 0;
|
||
|
||
destroy_erase_cmd_list:
|
||
spi_nor_destroy_erase_cmd_list(erase_list);
|
||
return ret;
|
||
}
|
||
|
||
/**
|
||
* spi_nor_erase_multi_sectors() - perform a non-uniform erase
|
||
* @nor: pointer to a 'struct spi_nor'
|
||
* @addr: offset in the serial flash memory
|
||
* @len: number of bytes to erase
|
||
*
|
||
* Build a list of best fitted erase commands and execute it once we validate
|
||
* that the erase can be performed.
|
||
*
|
||
* Return: 0 on success, -errno otherwise.
|
||
*/
|
||
static int spi_nor_erase_multi_sectors(struct spi_nor *nor, u64 addr, u32 len)
|
||
{
|
||
LIST_HEAD(erase_list);
|
||
struct spi_nor_erase_command *cmd, *next;
|
||
int ret;
|
||
|
||
ret = spi_nor_init_erase_cmd_list(nor, &erase_list, addr, len);
|
||
if (ret)
|
||
return ret;
|
||
|
||
list_for_each_entry_safe(cmd, next, &erase_list, list) {
|
||
nor->erase_opcode = cmd->opcode;
|
||
while (cmd->count) {
|
||
dev_vdbg(nor->dev, "erase_cmd->size = 0x%08x, erase_cmd->opcode = 0x%02x, erase_cmd->count = %u\n",
|
||
cmd->size, cmd->opcode, cmd->count);
|
||
|
||
ret = spi_nor_lock_device(nor);
|
||
if (ret)
|
||
goto destroy_erase_cmd_list;
|
||
|
||
ret = spi_nor_write_enable(nor);
|
||
if (ret) {
|
||
spi_nor_unlock_device(nor);
|
||
goto destroy_erase_cmd_list;
|
||
}
|
||
|
||
ret = spi_nor_erase_sector(nor, addr);
|
||
spi_nor_unlock_device(nor);
|
||
if (ret)
|
||
goto destroy_erase_cmd_list;
|
||
|
||
ret = spi_nor_wait_till_ready(nor);
|
||
if (ret)
|
||
goto destroy_erase_cmd_list;
|
||
|
||
addr += cmd->size;
|
||
cmd->count--;
|
||
}
|
||
list_del(&cmd->list);
|
||
kfree(cmd);
|
||
}
|
||
|
||
return 0;
|
||
|
||
destroy_erase_cmd_list:
|
||
spi_nor_destroy_erase_cmd_list(&erase_list);
|
||
return ret;
|
||
}
|
||
|
||
static int spi_nor_erase_dice(struct spi_nor *nor, loff_t addr,
|
||
size_t len, size_t die_size)
|
||
{
|
||
unsigned long timeout;
|
||
int ret;
|
||
|
||
/*
|
||
* Scale the timeout linearly with the size of the flash, with
|
||
* a minimum calibrated to an old 2MB flash. We could try to
|
||
* pull these from CFI/SFDP, but these values should be good
|
||
* enough for now.
|
||
*/
|
||
timeout = max(CHIP_ERASE_2MB_READY_WAIT_JIFFIES,
|
||
CHIP_ERASE_2MB_READY_WAIT_JIFFIES *
|
||
(unsigned long)(nor->mtd.size / SZ_2M));
|
||
|
||
do {
|
||
ret = spi_nor_lock_device(nor);
|
||
if (ret)
|
||
return ret;
|
||
|
||
ret = spi_nor_write_enable(nor);
|
||
if (ret) {
|
||
spi_nor_unlock_device(nor);
|
||
return ret;
|
||
}
|
||
|
||
ret = spi_nor_erase_die(nor, addr, die_size);
|
||
|
||
spi_nor_unlock_device(nor);
|
||
if (ret)
|
||
return ret;
|
||
|
||
ret = spi_nor_wait_till_ready_with_timeout(nor, timeout);
|
||
if (ret)
|
||
return ret;
|
||
|
||
addr += die_size;
|
||
len -= die_size;
|
||
|
||
} while (len);
|
||
|
||
return 0;
|
||
}
|
||
|
||
/*
|
||
* Erase an address range on the nor chip. The address range may extend
|
||
* one or more erase sectors. Return an error if there is a problem erasing.
|
||
*/
|
||
static int spi_nor_erase(struct mtd_info *mtd, struct erase_info *instr)
|
||
{
|
||
struct spi_nor *nor = mtd_to_spi_nor(mtd);
|
||
u8 n_dice = nor->params->n_dice;
|
||
bool multi_die_erase = false;
|
||
u32 addr, len, rem;
|
||
size_t die_size;
|
||
int ret;
|
||
|
||
dev_dbg(nor->dev, "at 0x%llx, len %lld\n", (long long)instr->addr,
|
||
(long long)instr->len);
|
||
|
||
if (spi_nor_has_uniform_erase(nor)) {
|
||
div_u64_rem(instr->len, mtd->erasesize, &rem);
|
||
if (rem)
|
||
return -EINVAL;
|
||
}
|
||
|
||
addr = instr->addr;
|
||
len = instr->len;
|
||
|
||
if (n_dice) {
|
||
die_size = div_u64(mtd->size, n_dice);
|
||
if (!(len & (die_size - 1)) && !(addr & (die_size - 1)))
|
||
multi_die_erase = true;
|
||
} else {
|
||
die_size = mtd->size;
|
||
}
|
||
|
||
ret = spi_nor_prep_and_lock_pe(nor, instr->addr, instr->len);
|
||
if (ret)
|
||
return ret;
|
||
|
||
/* chip (die) erase? */
|
||
if ((len == mtd->size && !(nor->flags & SNOR_F_NO_OP_CHIP_ERASE)) ||
|
||
multi_die_erase) {
|
||
ret = spi_nor_erase_dice(nor, addr, len, die_size);
|
||
if (ret)
|
||
goto erase_err;
|
||
|
||
/* REVISIT in some cases we could speed up erasing large regions
|
||
* by using SPINOR_OP_SE instead of SPINOR_OP_BE_4K. We may have set up
|
||
* to use "small sector erase", but that's not always optimal.
|
||
*/
|
||
|
||
/* "sector"-at-a-time erase */
|
||
} else if (spi_nor_has_uniform_erase(nor)) {
|
||
while (len) {
|
||
ret = spi_nor_lock_device(nor);
|
||
if (ret)
|
||
goto erase_err;
|
||
|
||
ret = spi_nor_write_enable(nor);
|
||
if (ret) {
|
||
spi_nor_unlock_device(nor);
|
||
goto erase_err;
|
||
}
|
||
|
||
ret = spi_nor_erase_sector(nor, addr);
|
||
spi_nor_unlock_device(nor);
|
||
if (ret)
|
||
goto erase_err;
|
||
|
||
ret = spi_nor_wait_till_ready(nor);
|
||
if (ret)
|
||
goto erase_err;
|
||
|
||
addr += mtd->erasesize;
|
||
len -= mtd->erasesize;
|
||
}
|
||
|
||
/* erase multiple sectors */
|
||
} else {
|
||
ret = spi_nor_erase_multi_sectors(nor, addr, len);
|
||
if (ret)
|
||
goto erase_err;
|
||
}
|
||
|
||
ret = spi_nor_write_disable(nor);
|
||
|
||
erase_err:
|
||
spi_nor_unlock_and_unprep_pe(nor, instr->addr, instr->len);
|
||
|
||
return ret;
|
||
}
|
||
|
||
/**
|
||
* spi_nor_sr1_bit6_quad_enable() - Set the Quad Enable BIT(6) in the Status
|
||
* Register 1.
|
||
* @nor: pointer to a 'struct spi_nor'
|
||
*
|
||
* Bit 6 of the Status Register 1 is the QE bit for Macronix like QSPI memories.
|
||
*
|
||
* Return: 0 on success, -errno otherwise.
|
||
*/
|
||
int spi_nor_sr1_bit6_quad_enable(struct spi_nor *nor)
|
||
{
|
||
int ret;
|
||
|
||
ret = spi_nor_read_sr(nor, nor->bouncebuf);
|
||
if (ret)
|
||
return ret;
|
||
|
||
if (nor->bouncebuf[0] & SR1_QUAD_EN_BIT6)
|
||
return 0;
|
||
|
||
nor->bouncebuf[0] |= SR1_QUAD_EN_BIT6;
|
||
|
||
return spi_nor_write_sr1_and_check(nor, nor->bouncebuf[0]);
|
||
}
|
||
|
||
/**
|
||
* spi_nor_sr2_bit1_quad_enable() - set the Quad Enable BIT(1) in the Status
|
||
* Register 2.
|
||
* @nor: pointer to a 'struct spi_nor'.
|
||
*
|
||
* Bit 1 of the Status Register 2 is the QE bit for Spansion like QSPI memories.
|
||
*
|
||
* Return: 0 on success, -errno otherwise.
|
||
*/
|
||
int spi_nor_sr2_bit1_quad_enable(struct spi_nor *nor)
|
||
{
|
||
int ret;
|
||
|
||
if (nor->flags & SNOR_F_NO_READ_CR)
|
||
return spi_nor_write_16bit_cr_and_check(nor, SR2_QUAD_EN_BIT1);
|
||
|
||
ret = spi_nor_read_cr(nor, nor->bouncebuf);
|
||
if (ret)
|
||
return ret;
|
||
|
||
if (nor->bouncebuf[0] & SR2_QUAD_EN_BIT1)
|
||
return 0;
|
||
|
||
nor->bouncebuf[0] |= SR2_QUAD_EN_BIT1;
|
||
|
||
return spi_nor_write_16bit_cr_and_check(nor, nor->bouncebuf[0]);
|
||
}
|
||
|
||
/**
|
||
* spi_nor_sr2_bit7_quad_enable() - set QE bit in Status Register 2.
|
||
* @nor: pointer to a 'struct spi_nor'
|
||
*
|
||
* Set the Quad Enable (QE) bit in the Status Register 2.
|
||
*
|
||
* This is one of the procedures to set the QE bit described in the SFDP
|
||
* (JESD216 rev B) specification but no manufacturer using this procedure has
|
||
* been identified yet, hence the name of the function.
|
||
*
|
||
* Return: 0 on success, -errno otherwise.
|
||
*/
|
||
int spi_nor_sr2_bit7_quad_enable(struct spi_nor *nor)
|
||
{
|
||
u8 *sr2 = nor->bouncebuf;
|
||
int ret;
|
||
u8 sr2_written;
|
||
|
||
/* Check current Quad Enable bit value. */
|
||
ret = spi_nor_read_sr2(nor, sr2);
|
||
if (ret)
|
||
return ret;
|
||
if (*sr2 & SR2_QUAD_EN_BIT7)
|
||
return 0;
|
||
|
||
/* Update the Quad Enable bit. */
|
||
*sr2 |= SR2_QUAD_EN_BIT7;
|
||
|
||
ret = spi_nor_write_sr2(nor, sr2);
|
||
if (ret)
|
||
return ret;
|
||
|
||
sr2_written = *sr2;
|
||
|
||
/* Read back and check it. */
|
||
ret = spi_nor_read_sr2(nor, sr2);
|
||
if (ret)
|
||
return ret;
|
||
|
||
if (*sr2 != sr2_written) {
|
||
dev_dbg(nor->dev, "SR2: Read back test failed\n");
|
||
return -EIO;
|
||
}
|
||
|
||
return 0;
|
||
}
|
||
|
||
static const struct spi_nor_manufacturer *manufacturers[] = {
|
||
&spi_nor_atmel,
|
||
&spi_nor_eon,
|
||
&spi_nor_esmt,
|
||
&spi_nor_everspin,
|
||
&spi_nor_gigadevice,
|
||
&spi_nor_intel,
|
||
&spi_nor_issi,
|
||
&spi_nor_macronix,
|
||
&spi_nor_micron,
|
||
&spi_nor_st,
|
||
&spi_nor_spansion,
|
||
&spi_nor_sst,
|
||
&spi_nor_winbond,
|
||
&spi_nor_xilinx,
|
||
&spi_nor_xmc,
|
||
};
|
||
|
||
static const struct flash_info spi_nor_generic_flash = {
|
||
.name = "spi-nor-generic",
|
||
};
|
||
|
||
static const struct flash_info *spi_nor_match_id(struct spi_nor *nor,
|
||
const u8 *id)
|
||
{
|
||
const struct flash_info *part;
|
||
unsigned int i, j;
|
||
|
||
for (i = 0; i < ARRAY_SIZE(manufacturers); i++) {
|
||
for (j = 0; j < manufacturers[i]->nparts; j++) {
|
||
part = &manufacturers[i]->parts[j];
|
||
if (part->id &&
|
||
!memcmp(part->id->bytes, id, part->id->len)) {
|
||
nor->manufacturer = manufacturers[i];
|
||
return part;
|
||
}
|
||
}
|
||
}
|
||
|
||
return NULL;
|
||
}
|
||
|
||
static const struct flash_info *spi_nor_detect(struct spi_nor *nor)
|
||
{
|
||
const struct flash_info *info;
|
||
u8 *id = nor->bouncebuf;
|
||
int ret;
|
||
|
||
ret = spi_nor_read_id(nor, 0, 0, id, nor->reg_proto);
|
||
if (ret) {
|
||
dev_dbg(nor->dev, "error %d reading JEDEC ID\n", ret);
|
||
return ERR_PTR(ret);
|
||
}
|
||
|
||
/* Cache the complete flash ID. */
|
||
nor->id = devm_kmemdup(nor->dev, id, SPI_NOR_MAX_ID_LEN, GFP_KERNEL);
|
||
if (!nor->id)
|
||
return ERR_PTR(-ENOMEM);
|
||
|
||
info = spi_nor_match_id(nor, id);
|
||
|
||
/* Fallback to a generic flash described only by its SFDP data. */
|
||
if (!info) {
|
||
ret = spi_nor_check_sfdp_signature(nor);
|
||
if (!ret)
|
||
info = &spi_nor_generic_flash;
|
||
}
|
||
|
||
if (!info) {
|
||
dev_err(nor->dev, "unrecognized JEDEC id bytes: %*ph\n",
|
||
SPI_NOR_MAX_ID_LEN, id);
|
||
return ERR_PTR(-ENODEV);
|
||
}
|
||
return info;
|
||
}
|
||
|
||
static int spi_nor_read(struct mtd_info *mtd, loff_t from, size_t len,
|
||
size_t *retlen, u_char *buf)
|
||
{
|
||
struct spi_nor *nor = mtd_to_spi_nor(mtd);
|
||
loff_t from_lock = from;
|
||
size_t len_lock = len;
|
||
ssize_t ret;
|
||
|
||
dev_dbg(nor->dev, "from 0x%08x, len %zd\n", (u32)from, len);
|
||
|
||
ret = spi_nor_prep_and_lock_rd(nor, from_lock, len_lock);
|
||
if (ret)
|
||
return ret;
|
||
|
||
while (len) {
|
||
loff_t addr = from;
|
||
|
||
addr = spi_nor_convert_addr(nor, addr);
|
||
|
||
ret = spi_nor_read_data(nor, addr, len, buf);
|
||
if (ret == 0) {
|
||
/* We shouldn't see 0-length reads */
|
||
ret = -EIO;
|
||
goto read_err;
|
||
}
|
||
if (ret < 0)
|
||
goto read_err;
|
||
|
||
WARN_ON(ret > len);
|
||
*retlen += ret;
|
||
buf += ret;
|
||
from += ret;
|
||
len -= ret;
|
||
}
|
||
ret = 0;
|
||
|
||
read_err:
|
||
spi_nor_unlock_and_unprep_rd(nor, from_lock, len_lock);
|
||
|
||
return ret;
|
||
}
|
||
|
||
/*
|
||
* Write an address range to the nor chip. Data must be written in
|
||
* FLASH_PAGESIZE chunks. The address range may be any size provided
|
||
* it is within the physical boundaries.
|
||
*/
|
||
static int spi_nor_write(struct mtd_info *mtd, loff_t to, size_t len,
|
||
size_t *retlen, const u_char *buf)
|
||
{
|
||
struct spi_nor *nor = mtd_to_spi_nor(mtd);
|
||
size_t page_offset, page_remain, i;
|
||
ssize_t ret;
|
||
u32 page_size = nor->params->page_size;
|
||
|
||
dev_dbg(nor->dev, "to 0x%08x, len %zd\n", (u32)to, len);
|
||
|
||
ret = spi_nor_prep_and_lock_pe(nor, to, len);
|
||
if (ret)
|
||
return ret;
|
||
|
||
for (i = 0; i < len; ) {
|
||
ssize_t written;
|
||
loff_t addr = to + i;
|
||
|
||
/*
|
||
* If page_size is a power of two, the offset can be quickly
|
||
* calculated with an AND operation. On the other cases we
|
||
* need to do a modulus operation (more expensive).
|
||
*/
|
||
if (is_power_of_2(page_size)) {
|
||
page_offset = addr & (page_size - 1);
|
||
} else {
|
||
u64 aux = addr;
|
||
|
||
page_offset = do_div(aux, page_size);
|
||
}
|
||
/* the size of data remaining on the first page */
|
||
page_remain = min_t(size_t, page_size - page_offset, len - i);
|
||
|
||
addr = spi_nor_convert_addr(nor, addr);
|
||
|
||
ret = spi_nor_lock_device(nor);
|
||
if (ret)
|
||
goto write_err;
|
||
|
||
ret = spi_nor_write_enable(nor);
|
||
if (ret) {
|
||
spi_nor_unlock_device(nor);
|
||
goto write_err;
|
||
}
|
||
|
||
ret = spi_nor_write_data(nor, addr, page_remain, buf + i);
|
||
spi_nor_unlock_device(nor);
|
||
if (ret < 0)
|
||
goto write_err;
|
||
written = ret;
|
||
|
||
ret = spi_nor_wait_till_ready(nor);
|
||
if (ret)
|
||
goto write_err;
|
||
*retlen += written;
|
||
i += written;
|
||
}
|
||
|
||
write_err:
|
||
spi_nor_unlock_and_unprep_pe(nor, to, len);
|
||
|
||
return ret;
|
||
}
|
||
|
||
static int spi_nor_check(struct spi_nor *nor)
|
||
{
|
||
if (!nor->dev ||
|
||
(!nor->spimem && !nor->controller_ops) ||
|
||
(!nor->spimem && nor->controller_ops &&
|
||
(!nor->controller_ops->read ||
|
||
!nor->controller_ops->write ||
|
||
!nor->controller_ops->read_reg ||
|
||
!nor->controller_ops->write_reg))) {
|
||
pr_err("spi-nor: please fill all the necessary fields!\n");
|
||
return -EINVAL;
|
||
}
|
||
|
||
if (nor->spimem && nor->controller_ops) {
|
||
dev_err(nor->dev, "nor->spimem and nor->controller_ops are mutually exclusive, please set just one of them.\n");
|
||
return -EINVAL;
|
||
}
|
||
|
||
return 0;
|
||
}
|
||
|
||
void
|
||
spi_nor_set_read_settings(struct spi_nor_read_command *read,
|
||
u8 num_mode_clocks,
|
||
u8 num_wait_states,
|
||
u8 opcode,
|
||
enum spi_nor_protocol proto)
|
||
{
|
||
read->num_mode_clocks = num_mode_clocks;
|
||
read->num_wait_states = num_wait_states;
|
||
read->opcode = opcode;
|
||
read->proto = proto;
|
||
}
|
||
|
||
void spi_nor_set_pp_settings(struct spi_nor_pp_command *pp, u8 opcode,
|
||
enum spi_nor_protocol proto)
|
||
{
|
||
pp->opcode = opcode;
|
||
pp->proto = proto;
|
||
}
|
||
|
||
static int spi_nor_hwcaps2cmd(u32 hwcaps, const int table[][2], size_t size)
|
||
{
|
||
size_t i;
|
||
|
||
for (i = 0; i < size; i++)
|
||
if (table[i][0] == (int)hwcaps)
|
||
return table[i][1];
|
||
|
||
return -EINVAL;
|
||
}
|
||
|
||
int spi_nor_hwcaps_read2cmd(u32 hwcaps)
|
||
{
|
||
static const int hwcaps_read2cmd[][2] = {
|
||
{ SNOR_HWCAPS_READ, SNOR_CMD_READ },
|
||
{ SNOR_HWCAPS_READ_FAST, SNOR_CMD_READ_FAST },
|
||
{ SNOR_HWCAPS_READ_1_1_1_DTR, SNOR_CMD_READ_1_1_1_DTR },
|
||
{ SNOR_HWCAPS_READ_1_1_2, SNOR_CMD_READ_1_1_2 },
|
||
{ SNOR_HWCAPS_READ_1_2_2, SNOR_CMD_READ_1_2_2 },
|
||
{ SNOR_HWCAPS_READ_2_2_2, SNOR_CMD_READ_2_2_2 },
|
||
{ SNOR_HWCAPS_READ_1_2_2_DTR, SNOR_CMD_READ_1_2_2_DTR },
|
||
{ SNOR_HWCAPS_READ_1_1_4, SNOR_CMD_READ_1_1_4 },
|
||
{ SNOR_HWCAPS_READ_1_4_4, SNOR_CMD_READ_1_4_4 },
|
||
{ SNOR_HWCAPS_READ_4_4_4, SNOR_CMD_READ_4_4_4 },
|
||
{ SNOR_HWCAPS_READ_1_4_4_DTR, SNOR_CMD_READ_1_4_4_DTR },
|
||
{ SNOR_HWCAPS_READ_1_1_8, SNOR_CMD_READ_1_1_8 },
|
||
{ SNOR_HWCAPS_READ_1_8_8, SNOR_CMD_READ_1_8_8 },
|
||
{ SNOR_HWCAPS_READ_8_8_8, SNOR_CMD_READ_8_8_8 },
|
||
{ SNOR_HWCAPS_READ_1_8_8_DTR, SNOR_CMD_READ_1_8_8_DTR },
|
||
{ SNOR_HWCAPS_READ_8_8_8_DTR, SNOR_CMD_READ_8_8_8_DTR },
|
||
};
|
||
|
||
return spi_nor_hwcaps2cmd(hwcaps, hwcaps_read2cmd,
|
||
ARRAY_SIZE(hwcaps_read2cmd));
|
||
}
|
||
|
||
int spi_nor_hwcaps_pp2cmd(u32 hwcaps)
|
||
{
|
||
static const int hwcaps_pp2cmd[][2] = {
|
||
{ SNOR_HWCAPS_PP, SNOR_CMD_PP },
|
||
{ SNOR_HWCAPS_PP_1_1_4, SNOR_CMD_PP_1_1_4 },
|
||
{ SNOR_HWCAPS_PP_1_4_4, SNOR_CMD_PP_1_4_4 },
|
||
{ SNOR_HWCAPS_PP_4_4_4, SNOR_CMD_PP_4_4_4 },
|
||
{ SNOR_HWCAPS_PP_1_1_8, SNOR_CMD_PP_1_1_8 },
|
||
{ SNOR_HWCAPS_PP_1_8_8, SNOR_CMD_PP_1_8_8 },
|
||
{ SNOR_HWCAPS_PP_8_8_8, SNOR_CMD_PP_8_8_8 },
|
||
{ SNOR_HWCAPS_PP_8_8_8_DTR, SNOR_CMD_PP_8_8_8_DTR },
|
||
};
|
||
|
||
return spi_nor_hwcaps2cmd(hwcaps, hwcaps_pp2cmd,
|
||
ARRAY_SIZE(hwcaps_pp2cmd));
|
||
}
|
||
|
||
/**
|
||
* spi_nor_spimem_check_op - check if the operation is supported
|
||
* by controller
|
||
*@nor: pointer to a 'struct spi_nor'
|
||
*@op: pointer to op template to be checked
|
||
*
|
||
* Returns 0 if operation is supported, -EOPNOTSUPP otherwise.
|
||
*/
|
||
static int spi_nor_spimem_check_op(struct spi_nor *nor,
|
||
struct spi_mem_op *op)
|
||
{
|
||
/*
|
||
* First test with 4 address bytes. The opcode itself might
|
||
* be a 3B addressing opcode but we don't care, because
|
||
* SPI controller implementation should not check the opcode,
|
||
* but just the sequence.
|
||
*/
|
||
op->addr.nbytes = 4;
|
||
if (!spi_mem_supports_op(nor->spimem, op)) {
|
||
if (nor->params->size > SZ_16M)
|
||
return -EOPNOTSUPP;
|
||
|
||
/* If flash size <= 16MB, 3 address bytes are sufficient */
|
||
op->addr.nbytes = 3;
|
||
if (!spi_mem_supports_op(nor->spimem, op))
|
||
return -EOPNOTSUPP;
|
||
}
|
||
|
||
return 0;
|
||
}
|
||
|
||
/**
|
||
* spi_nor_spimem_check_readop - check if the read op is supported
|
||
* by controller
|
||
*@nor: pointer to a 'struct spi_nor'
|
||
*@read: pointer to op template to be checked
|
||
*
|
||
* Returns 0 if operation is supported, -EOPNOTSUPP otherwise.
|
||
*/
|
||
static int spi_nor_spimem_check_readop(struct spi_nor *nor,
|
||
const struct spi_nor_read_command *read)
|
||
{
|
||
struct spi_mem_op op = SPI_NOR_READ_OP(read->opcode);
|
||
|
||
spi_nor_spimem_setup_op(nor, &op, read->proto);
|
||
|
||
/* convert the dummy cycles to the number of bytes */
|
||
op.dummy.nbytes = (read->num_mode_clocks + read->num_wait_states) *
|
||
op.dummy.buswidth / 8;
|
||
if (spi_nor_protocol_is_dtr(nor->read_proto))
|
||
op.dummy.nbytes *= 2;
|
||
|
||
return spi_nor_spimem_check_op(nor, &op);
|
||
}
|
||
|
||
/**
|
||
* spi_nor_spimem_check_pp - check if the page program op is supported
|
||
* by controller
|
||
*@nor: pointer to a 'struct spi_nor'
|
||
*@pp: pointer to op template to be checked
|
||
*
|
||
* Returns 0 if operation is supported, -EOPNOTSUPP otherwise.
|
||
*/
|
||
static int spi_nor_spimem_check_pp(struct spi_nor *nor,
|
||
const struct spi_nor_pp_command *pp)
|
||
{
|
||
struct spi_mem_op op = SPI_NOR_PP_OP(pp->opcode);
|
||
|
||
spi_nor_spimem_setup_op(nor, &op, pp->proto);
|
||
|
||
return spi_nor_spimem_check_op(nor, &op);
|
||
}
|
||
|
||
/**
|
||
* spi_nor_spimem_adjust_hwcaps - Find optimal Read/Write protocol
|
||
* based on SPI controller capabilities
|
||
* @nor: pointer to a 'struct spi_nor'
|
||
* @hwcaps: pointer to resulting capabilities after adjusting
|
||
* according to controller and flash's capability
|
||
*/
|
||
static void
|
||
spi_nor_spimem_adjust_hwcaps(struct spi_nor *nor, u32 *hwcaps)
|
||
{
|
||
struct spi_nor_flash_parameter *params = nor->params;
|
||
unsigned int cap;
|
||
|
||
/* X-X-X modes are not supported yet, mask them all. */
|
||
*hwcaps &= ~SNOR_HWCAPS_X_X_X;
|
||
|
||
/*
|
||
* If the reset line is broken, we do not want to enter a stateful
|
||
* mode.
|
||
*/
|
||
if (nor->flags & SNOR_F_BROKEN_RESET)
|
||
*hwcaps &= ~(SNOR_HWCAPS_X_X_X | SNOR_HWCAPS_X_X_X_DTR);
|
||
|
||
for (cap = 0; cap < sizeof(*hwcaps) * BITS_PER_BYTE; cap++) {
|
||
int rdidx, ppidx;
|
||
|
||
if (!(*hwcaps & BIT(cap)))
|
||
continue;
|
||
|
||
rdidx = spi_nor_hwcaps_read2cmd(BIT(cap));
|
||
if (rdidx >= 0 &&
|
||
spi_nor_spimem_check_readop(nor, ¶ms->reads[rdidx]))
|
||
*hwcaps &= ~BIT(cap);
|
||
|
||
ppidx = spi_nor_hwcaps_pp2cmd(BIT(cap));
|
||
if (ppidx < 0)
|
||
continue;
|
||
|
||
if (spi_nor_spimem_check_pp(nor,
|
||
¶ms->page_programs[ppidx]))
|
||
*hwcaps &= ~BIT(cap);
|
||
}
|
||
}
|
||
|
||
/**
|
||
* spi_nor_set_erase_type() - set a SPI NOR erase type
|
||
* @erase: pointer to a structure that describes a SPI NOR erase type
|
||
* @size: the size of the sector/block erased by the erase type
|
||
* @opcode: the SPI command op code to erase the sector/block
|
||
*/
|
||
void spi_nor_set_erase_type(struct spi_nor_erase_type *erase, u32 size,
|
||
u8 opcode)
|
||
{
|
||
erase->size = size;
|
||
erase->opcode = opcode;
|
||
/* JEDEC JESD216B Standard imposes erase sizes to be power of 2. */
|
||
erase->size_shift = ffs(erase->size) - 1;
|
||
erase->size_mask = (1 << erase->size_shift) - 1;
|
||
}
|
||
|
||
/**
|
||
* spi_nor_mask_erase_type() - mask out a SPI NOR erase type
|
||
* @erase: pointer to a structure that describes a SPI NOR erase type
|
||
*/
|
||
void spi_nor_mask_erase_type(struct spi_nor_erase_type *erase)
|
||
{
|
||
erase->size = 0;
|
||
}
|
||
|
||
/**
|
||
* spi_nor_init_uniform_erase_map() - Initialize uniform erase map
|
||
* @map: the erase map of the SPI NOR
|
||
* @erase_mask: bitmask encoding erase types that can erase the entire
|
||
* flash memory
|
||
* @flash_size: the spi nor flash memory size
|
||
*/
|
||
void spi_nor_init_uniform_erase_map(struct spi_nor_erase_map *map,
|
||
u8 erase_mask, u64 flash_size)
|
||
{
|
||
map->uniform_region.offset = 0;
|
||
map->uniform_region.size = flash_size;
|
||
map->uniform_region.erase_mask = erase_mask;
|
||
map->regions = &map->uniform_region;
|
||
map->n_regions = 1;
|
||
}
|
||
|
||
int spi_nor_post_bfpt_fixups(struct spi_nor *nor,
|
||
const struct sfdp_parameter_header *bfpt_header,
|
||
const struct sfdp_bfpt *bfpt)
|
||
{
|
||
int ret;
|
||
|
||
if (nor->manufacturer && nor->manufacturer->fixups &&
|
||
nor->manufacturer->fixups->post_bfpt) {
|
||
ret = nor->manufacturer->fixups->post_bfpt(nor, bfpt_header,
|
||
bfpt);
|
||
if (ret)
|
||
return ret;
|
||
}
|
||
|
||
if (nor->info->fixups && nor->info->fixups->post_bfpt)
|
||
return nor->info->fixups->post_bfpt(nor, bfpt_header, bfpt);
|
||
|
||
return 0;
|
||
}
|
||
|
||
static int spi_nor_select_read(struct spi_nor *nor,
|
||
u32 shared_hwcaps)
|
||
{
|
||
int cmd, best_match = fls(shared_hwcaps & SNOR_HWCAPS_READ_MASK) - 1;
|
||
const struct spi_nor_read_command *read;
|
||
|
||
if (best_match < 0)
|
||
return -EINVAL;
|
||
|
||
cmd = spi_nor_hwcaps_read2cmd(BIT(best_match));
|
||
if (cmd < 0)
|
||
return -EINVAL;
|
||
|
||
read = &nor->params->reads[cmd];
|
||
nor->read_opcode = read->opcode;
|
||
nor->read_proto = read->proto;
|
||
|
||
/*
|
||
* In the SPI NOR framework, we don't need to make the difference
|
||
* between mode clock cycles and wait state clock cycles.
|
||
* Indeed, the value of the mode clock cycles is used by a QSPI
|
||
* flash memory to know whether it should enter or leave its 0-4-4
|
||
* (Continuous Read / XIP) mode.
|
||
* eXecution In Place is out of the scope of the mtd sub-system.
|
||
* Hence we choose to merge both mode and wait state clock cycles
|
||
* into the so called dummy clock cycles.
|
||
*/
|
||
nor->read_dummy = read->num_mode_clocks + read->num_wait_states;
|
||
return 0;
|
||
}
|
||
|
||
static int spi_nor_select_pp(struct spi_nor *nor,
|
||
u32 shared_hwcaps)
|
||
{
|
||
int cmd, best_match = fls(shared_hwcaps & SNOR_HWCAPS_PP_MASK) - 1;
|
||
const struct spi_nor_pp_command *pp;
|
||
|
||
if (best_match < 0)
|
||
return -EINVAL;
|
||
|
||
cmd = spi_nor_hwcaps_pp2cmd(BIT(best_match));
|
||
if (cmd < 0)
|
||
return -EINVAL;
|
||
|
||
pp = &nor->params->page_programs[cmd];
|
||
nor->program_opcode = pp->opcode;
|
||
nor->write_proto = pp->proto;
|
||
return 0;
|
||
}
|
||
|
||
/**
|
||
* spi_nor_select_uniform_erase() - select optimum uniform erase type
|
||
* @map: the erase map of the SPI NOR
|
||
*
|
||
* Once the optimum uniform sector erase command is found, disable all the
|
||
* other.
|
||
*
|
||
* Return: pointer to erase type on success, NULL otherwise.
|
||
*/
|
||
static const struct spi_nor_erase_type *
|
||
spi_nor_select_uniform_erase(struct spi_nor_erase_map *map)
|
||
{
|
||
const struct spi_nor_erase_type *tested_erase, *erase = NULL;
|
||
int i;
|
||
u8 uniform_erase_type = map->uniform_region.erase_mask;
|
||
|
||
/*
|
||
* Search for the biggest erase size, except for when compiled
|
||
* to use 4k erases.
|
||
*/
|
||
for (i = SNOR_ERASE_TYPE_MAX - 1; i >= 0; i--) {
|
||
if (!(uniform_erase_type & BIT(i)))
|
||
continue;
|
||
|
||
tested_erase = &map->erase_type[i];
|
||
|
||
/* Skip masked erase types. */
|
||
if (!tested_erase->size)
|
||
continue;
|
||
|
||
/*
|
||
* If the current erase size is the 4k one, stop here,
|
||
* we have found the right uniform Sector Erase command.
|
||
*/
|
||
if (IS_ENABLED(CONFIG_MTD_SPI_NOR_USE_4K_SECTORS) &&
|
||
tested_erase->size == SZ_4K) {
|
||
erase = tested_erase;
|
||
break;
|
||
}
|
||
|
||
/*
|
||
* Otherwise, the current erase size is still a valid candidate.
|
||
* Select the biggest valid candidate.
|
||
*/
|
||
if (!erase && tested_erase->size)
|
||
erase = tested_erase;
|
||
/* keep iterating to find the wanted_size */
|
||
}
|
||
|
||
if (!erase)
|
||
return NULL;
|
||
|
||
/* Disable all other Sector Erase commands. */
|
||
map->uniform_region.erase_mask = BIT(erase - map->erase_type);
|
||
return erase;
|
||
}
|
||
|
||
static int spi_nor_select_erase(struct spi_nor *nor)
|
||
{
|
||
struct spi_nor_erase_map *map = &nor->params->erase_map;
|
||
const struct spi_nor_erase_type *erase = NULL;
|
||
struct mtd_info *mtd = &nor->mtd;
|
||
int i;
|
||
|
||
/*
|
||
* The previous implementation handling Sector Erase commands assumed
|
||
* that the SPI flash memory has an uniform layout then used only one
|
||
* of the supported erase sizes for all Sector Erase commands.
|
||
* So to be backward compatible, the new implementation also tries to
|
||
* manage the SPI flash memory as uniform with a single erase sector
|
||
* size, when possible.
|
||
*/
|
||
if (spi_nor_has_uniform_erase(nor)) {
|
||
erase = spi_nor_select_uniform_erase(map);
|
||
if (!erase)
|
||
return -EINVAL;
|
||
nor->erase_opcode = erase->opcode;
|
||
mtd->erasesize = erase->size;
|
||
return 0;
|
||
}
|
||
|
||
/*
|
||
* For non-uniform SPI flash memory, set mtd->erasesize to the
|
||
* maximum erase sector size. No need to set nor->erase_opcode.
|
||
*/
|
||
for (i = SNOR_ERASE_TYPE_MAX - 1; i >= 0; i--) {
|
||
if (map->erase_type[i].size) {
|
||
erase = &map->erase_type[i];
|
||
break;
|
||
}
|
||
}
|
||
|
||
if (!erase)
|
||
return -EINVAL;
|
||
|
||
mtd->erasesize = erase->size;
|
||
return 0;
|
||
}
|
||
|
||
static int spi_nor_default_setup(struct spi_nor *nor,
|
||
const struct spi_nor_hwcaps *hwcaps)
|
||
{
|
||
struct spi_nor_flash_parameter *params = nor->params;
|
||
u32 ignored_mask, shared_mask;
|
||
int err;
|
||
|
||
/*
|
||
* Keep only the hardware capabilities supported by both the SPI
|
||
* controller and the SPI flash memory.
|
||
*/
|
||
shared_mask = hwcaps->mask & params->hwcaps.mask;
|
||
|
||
if (nor->spimem) {
|
||
/*
|
||
* When called from spi_nor_probe(), all caps are set and we
|
||
* need to discard some of them based on what the SPI
|
||
* controller actually supports (using spi_mem_supports_op()).
|
||
*/
|
||
spi_nor_spimem_adjust_hwcaps(nor, &shared_mask);
|
||
} else {
|
||
/*
|
||
* SPI n-n-n protocols are not supported when the SPI
|
||
* controller directly implements the spi_nor interface.
|
||
* Yet another reason to switch to spi-mem.
|
||
*/
|
||
ignored_mask = SNOR_HWCAPS_X_X_X | SNOR_HWCAPS_X_X_X_DTR;
|
||
if (shared_mask & ignored_mask) {
|
||
dev_dbg(nor->dev,
|
||
"SPI n-n-n protocols are not supported.\n");
|
||
shared_mask &= ~ignored_mask;
|
||
}
|
||
}
|
||
|
||
/* Select the (Fast) Read command. */
|
||
err = spi_nor_select_read(nor, shared_mask);
|
||
if (err) {
|
||
dev_dbg(nor->dev,
|
||
"can't select read settings supported by both the SPI controller and memory.\n");
|
||
return err;
|
||
}
|
||
|
||
/* Select the Page Program command. */
|
||
err = spi_nor_select_pp(nor, shared_mask);
|
||
if (err) {
|
||
dev_dbg(nor->dev,
|
||
"can't select write settings supported by both the SPI controller and memory.\n");
|
||
return err;
|
||
}
|
||
|
||
/* Select the Sector Erase command. */
|
||
err = spi_nor_select_erase(nor);
|
||
if (err) {
|
||
dev_dbg(nor->dev,
|
||
"can't select erase settings supported by both the SPI controller and memory.\n");
|
||
return err;
|
||
}
|
||
|
||
return 0;
|
||
}
|
||
|
||
static int spi_nor_set_addr_nbytes(struct spi_nor *nor)
|
||
{
|
||
if (nor->params->addr_nbytes) {
|
||
nor->addr_nbytes = nor->params->addr_nbytes;
|
||
} else if (nor->read_proto == SNOR_PROTO_8_8_8_DTR) {
|
||
/*
|
||
* In 8D-8D-8D mode, one byte takes half a cycle to transfer. So
|
||
* in this protocol an odd addr_nbytes cannot be used because
|
||
* then the address phase would only span a cycle and a half.
|
||
* Half a cycle would be left over. We would then have to start
|
||
* the dummy phase in the middle of a cycle and so too the data
|
||
* phase, and we will end the transaction with half a cycle left
|
||
* over.
|
||
*
|
||
* Force all 8D-8D-8D flashes to use an addr_nbytes of 4 to
|
||
* avoid this situation.
|
||
*/
|
||
nor->addr_nbytes = 4;
|
||
} else if (nor->info->addr_nbytes) {
|
||
nor->addr_nbytes = nor->info->addr_nbytes;
|
||
} else {
|
||
nor->addr_nbytes = 3;
|
||
}
|
||
|
||
if (nor->addr_nbytes == 3 && nor->params->size > 0x1000000) {
|
||
/* enable 4-byte addressing if the device exceeds 16MiB */
|
||
nor->addr_nbytes = 4;
|
||
}
|
||
|
||
if (nor->addr_nbytes > SPI_NOR_MAX_ADDR_NBYTES) {
|
||
dev_dbg(nor->dev, "The number of address bytes is too large: %u\n",
|
||
nor->addr_nbytes);
|
||
return -EINVAL;
|
||
}
|
||
|
||
/* Set 4byte opcodes when possible. */
|
||
if (nor->addr_nbytes == 4 && nor->flags & SNOR_F_4B_OPCODES &&
|
||
!(nor->flags & SNOR_F_HAS_4BAIT))
|
||
spi_nor_set_4byte_opcodes(nor);
|
||
|
||
return 0;
|
||
}
|
||
|
||
static int spi_nor_setup(struct spi_nor *nor,
|
||
const struct spi_nor_hwcaps *hwcaps)
|
||
{
|
||
int ret;
|
||
|
||
if (nor->params->setup)
|
||
ret = nor->params->setup(nor, hwcaps);
|
||
else
|
||
ret = spi_nor_default_setup(nor, hwcaps);
|
||
if (ret)
|
||
return ret;
|
||
|
||
return spi_nor_set_addr_nbytes(nor);
|
||
}
|
||
|
||
/**
|
||
* spi_nor_manufacturer_init_params() - Initialize the flash's parameters and
|
||
* settings based on MFR register and ->default_init() hook.
|
||
* @nor: pointer to a 'struct spi_nor'.
|
||
*/
|
||
static void spi_nor_manufacturer_init_params(struct spi_nor *nor)
|
||
{
|
||
if (nor->manufacturer && nor->manufacturer->fixups &&
|
||
nor->manufacturer->fixups->default_init)
|
||
nor->manufacturer->fixups->default_init(nor);
|
||
|
||
if (nor->info->fixups && nor->info->fixups->default_init)
|
||
nor->info->fixups->default_init(nor);
|
||
}
|
||
|
||
/**
|
||
* spi_nor_no_sfdp_init_params() - Initialize the flash's parameters and
|
||
* settings based on nor->info->sfdp_flags. This method should be called only by
|
||
* flashes that do not define SFDP tables. If the flash supports SFDP but the
|
||
* information is wrong and the settings from this function can not be retrieved
|
||
* by parsing SFDP, one should instead use the fixup hooks and update the wrong
|
||
* bits.
|
||
* @nor: pointer to a 'struct spi_nor'.
|
||
*/
|
||
static void spi_nor_no_sfdp_init_params(struct spi_nor *nor)
|
||
{
|
||
struct spi_nor_flash_parameter *params = nor->params;
|
||
struct spi_nor_erase_map *map = ¶ms->erase_map;
|
||
const struct flash_info *info = nor->info;
|
||
const u8 no_sfdp_flags = info->no_sfdp_flags;
|
||
u8 i, erase_mask;
|
||
|
||
if (no_sfdp_flags & SPI_NOR_DUAL_READ) {
|
||
params->hwcaps.mask |= SNOR_HWCAPS_READ_1_1_2;
|
||
spi_nor_set_read_settings(¶ms->reads[SNOR_CMD_READ_1_1_2],
|
||
0, 8, SPINOR_OP_READ_1_1_2,
|
||
SNOR_PROTO_1_1_2);
|
||
}
|
||
|
||
if (no_sfdp_flags & SPI_NOR_QUAD_READ) {
|
||
params->hwcaps.mask |= SNOR_HWCAPS_READ_1_1_4;
|
||
spi_nor_set_read_settings(¶ms->reads[SNOR_CMD_READ_1_1_4],
|
||
0, 8, SPINOR_OP_READ_1_1_4,
|
||
SNOR_PROTO_1_1_4);
|
||
}
|
||
|
||
if (no_sfdp_flags & SPI_NOR_OCTAL_READ) {
|
||
params->hwcaps.mask |= SNOR_HWCAPS_READ_1_1_8;
|
||
spi_nor_set_read_settings(¶ms->reads[SNOR_CMD_READ_1_1_8],
|
||
0, 8, SPINOR_OP_READ_1_1_8,
|
||
SNOR_PROTO_1_1_8);
|
||
}
|
||
|
||
if (no_sfdp_flags & SPI_NOR_OCTAL_DTR_READ) {
|
||
params->hwcaps.mask |= SNOR_HWCAPS_READ_8_8_8_DTR;
|
||
spi_nor_set_read_settings(¶ms->reads[SNOR_CMD_READ_8_8_8_DTR],
|
||
0, 20, SPINOR_OP_READ_FAST,
|
||
SNOR_PROTO_8_8_8_DTR);
|
||
}
|
||
|
||
if (no_sfdp_flags & SPI_NOR_OCTAL_DTR_PP) {
|
||
params->hwcaps.mask |= SNOR_HWCAPS_PP_8_8_8_DTR;
|
||
/*
|
||
* Since xSPI Page Program opcode is backward compatible with
|
||
* Legacy SPI, use Legacy SPI opcode there as well.
|
||
*/
|
||
spi_nor_set_pp_settings(¶ms->page_programs[SNOR_CMD_PP_8_8_8_DTR],
|
||
SPINOR_OP_PP, SNOR_PROTO_8_8_8_DTR);
|
||
}
|
||
|
||
/*
|
||
* Sector Erase settings. Sort Erase Types in ascending order, with the
|
||
* smallest erase size starting at BIT(0).
|
||
*/
|
||
erase_mask = 0;
|
||
i = 0;
|
||
if (no_sfdp_flags & SECT_4K) {
|
||
erase_mask |= BIT(i);
|
||
spi_nor_set_erase_type(&map->erase_type[i], 4096u,
|
||
SPINOR_OP_BE_4K);
|
||
i++;
|
||
}
|
||
erase_mask |= BIT(i);
|
||
spi_nor_set_erase_type(&map->erase_type[i],
|
||
info->sector_size ?: SPI_NOR_DEFAULT_SECTOR_SIZE,
|
||
SPINOR_OP_SE);
|
||
spi_nor_init_uniform_erase_map(map, erase_mask, params->size);
|
||
}
|
||
|
||
/**
|
||
* spi_nor_init_flags() - Initialize NOR flags for settings that are not defined
|
||
* in the JESD216 SFDP standard, thus can not be retrieved when parsing SFDP.
|
||
* @nor: pointer to a 'struct spi_nor'
|
||
*/
|
||
static void spi_nor_init_flags(struct spi_nor *nor)
|
||
{
|
||
struct device_node *np = spi_nor_get_flash_node(nor);
|
||
const u16 flags = nor->info->flags;
|
||
|
||
if (of_property_read_bool(np, "broken-flash-reset"))
|
||
nor->flags |= SNOR_F_BROKEN_RESET;
|
||
|
||
if (of_property_read_bool(np, "no-wp"))
|
||
nor->flags |= SNOR_F_NO_WP;
|
||
|
||
if (flags & SPI_NOR_SWP_IS_VOLATILE)
|
||
nor->flags |= SNOR_F_SWP_IS_VOLATILE;
|
||
|
||
if (flags & SPI_NOR_HAS_LOCK)
|
||
nor->flags |= SNOR_F_HAS_LOCK;
|
||
|
||
if (flags & SPI_NOR_HAS_TB) {
|
||
nor->flags |= SNOR_F_HAS_SR_TB;
|
||
if (flags & SPI_NOR_TB_SR_BIT6)
|
||
nor->flags |= SNOR_F_HAS_SR_TB_BIT6;
|
||
}
|
||
|
||
if (flags & SPI_NOR_4BIT_BP) {
|
||
nor->flags |= SNOR_F_HAS_4BIT_BP;
|
||
if (flags & SPI_NOR_BP3_SR_BIT6)
|
||
nor->flags |= SNOR_F_HAS_SR_BP3_BIT6;
|
||
}
|
||
|
||
if (flags & SPI_NOR_RWW && nor->params->n_banks > 1 &&
|
||
!nor->controller_ops)
|
||
nor->flags |= SNOR_F_RWW;
|
||
}
|
||
|
||
/**
|
||
* spi_nor_init_fixup_flags() - Initialize NOR flags for settings that can not
|
||
* be discovered by SFDP for this particular flash because the SFDP table that
|
||
* indicates this support is not defined in the flash. In case the table for
|
||
* this support is defined but has wrong values, one should instead use a
|
||
* post_sfdp() hook to set the SNOR_F equivalent flag.
|
||
* @nor: pointer to a 'struct spi_nor'
|
||
*/
|
||
static void spi_nor_init_fixup_flags(struct spi_nor *nor)
|
||
{
|
||
const u8 fixup_flags = nor->info->fixup_flags;
|
||
|
||
if (fixup_flags & SPI_NOR_4B_OPCODES)
|
||
nor->flags |= SNOR_F_4B_OPCODES;
|
||
|
||
if (fixup_flags & SPI_NOR_IO_MODE_EN_VOLATILE)
|
||
nor->flags |= SNOR_F_IO_MODE_EN_VOLATILE;
|
||
}
|
||
|
||
/**
|
||
* spi_nor_late_init_params() - Late initialization of default flash parameters.
|
||
* @nor: pointer to a 'struct spi_nor'
|
||
*
|
||
* Used to initialize flash parameters that are not declared in the JESD216
|
||
* SFDP standard, or where SFDP tables are not defined at all.
|
||
* Will replace the spi_nor_manufacturer_init_params() method.
|
||
*/
|
||
static int spi_nor_late_init_params(struct spi_nor *nor)
|
||
{
|
||
struct spi_nor_flash_parameter *params = nor->params;
|
||
int ret;
|
||
|
||
if (nor->manufacturer && nor->manufacturer->fixups &&
|
||
nor->manufacturer->fixups->late_init) {
|
||
ret = nor->manufacturer->fixups->late_init(nor);
|
||
if (ret)
|
||
return ret;
|
||
}
|
||
|
||
/* Needed by some flashes late_init hooks. */
|
||
spi_nor_init_flags(nor);
|
||
|
||
if (nor->info->fixups && nor->info->fixups->late_init) {
|
||
ret = nor->info->fixups->late_init(nor);
|
||
if (ret)
|
||
return ret;
|
||
}
|
||
|
||
if (!nor->params->die_erase_opcode)
|
||
nor->params->die_erase_opcode = SPINOR_OP_CHIP_ERASE;
|
||
|
||
/* Default method kept for backward compatibility. */
|
||
if (!params->set_4byte_addr_mode)
|
||
params->set_4byte_addr_mode = spi_nor_set_4byte_addr_mode_brwr;
|
||
|
||
spi_nor_init_fixup_flags(nor);
|
||
|
||
/*
|
||
* NOR protection support. When locking_ops are not provided, we pick
|
||
* the default ones.
|
||
*/
|
||
if (nor->flags & SNOR_F_HAS_LOCK && !nor->params->locking_ops)
|
||
spi_nor_init_default_locking_ops(nor);
|
||
|
||
if (params->n_banks > 1)
|
||
params->bank_size = div_u64(params->size, params->n_banks);
|
||
|
||
return 0;
|
||
}
|
||
|
||
/**
|
||
* spi_nor_sfdp_init_params_deprecated() - Deprecated way of initializing flash
|
||
* parameters and settings based on JESD216 SFDP standard.
|
||
* @nor: pointer to a 'struct spi_nor'.
|
||
*
|
||
* The method has a roll-back mechanism: in case the SFDP parsing fails, the
|
||
* legacy flash parameters and settings will be restored.
|
||
*/
|
||
static void spi_nor_sfdp_init_params_deprecated(struct spi_nor *nor)
|
||
{
|
||
struct spi_nor_flash_parameter sfdp_params;
|
||
|
||
memcpy(&sfdp_params, nor->params, sizeof(sfdp_params));
|
||
|
||
if (spi_nor_parse_sfdp(nor)) {
|
||
memcpy(nor->params, &sfdp_params, sizeof(*nor->params));
|
||
nor->flags &= ~SNOR_F_4B_OPCODES;
|
||
}
|
||
}
|
||
|
||
/**
|
||
* spi_nor_init_params_deprecated() - Deprecated way of initializing flash
|
||
* parameters and settings.
|
||
* @nor: pointer to a 'struct spi_nor'.
|
||
*
|
||
* The method assumes that flash doesn't support SFDP so it initializes flash
|
||
* parameters in spi_nor_no_sfdp_init_params() which later on can be overwritten
|
||
* when parsing SFDP, if supported.
|
||
*/
|
||
static void spi_nor_init_params_deprecated(struct spi_nor *nor)
|
||
{
|
||
spi_nor_no_sfdp_init_params(nor);
|
||
|
||
spi_nor_manufacturer_init_params(nor);
|
||
|
||
if (nor->info->no_sfdp_flags & (SPI_NOR_DUAL_READ |
|
||
SPI_NOR_QUAD_READ |
|
||
SPI_NOR_OCTAL_READ |
|
||
SPI_NOR_OCTAL_DTR_READ))
|
||
spi_nor_sfdp_init_params_deprecated(nor);
|
||
}
|
||
|
||
/**
|
||
* spi_nor_init_default_params() - Default initialization of flash parameters
|
||
* and settings. Done for all flashes, regardless is they define SFDP tables
|
||
* or not.
|
||
* @nor: pointer to a 'struct spi_nor'.
|
||
*/
|
||
static void spi_nor_init_default_params(struct spi_nor *nor)
|
||
{
|
||
struct spi_nor_flash_parameter *params = nor->params;
|
||
const struct flash_info *info = nor->info;
|
||
struct device_node *np = spi_nor_get_flash_node(nor);
|
||
|
||
params->quad_enable = spi_nor_sr2_bit1_quad_enable;
|
||
params->otp.org = info->otp;
|
||
|
||
/* Default to 16-bit Write Status (01h) Command */
|
||
nor->flags |= SNOR_F_HAS_16BIT_SR;
|
||
|
||
/* Set SPI NOR sizes. */
|
||
params->writesize = 1;
|
||
params->size = info->size;
|
||
params->bank_size = params->size;
|
||
params->page_size = info->page_size ?: SPI_NOR_DEFAULT_PAGE_SIZE;
|
||
params->n_banks = info->n_banks ?: SPI_NOR_DEFAULT_N_BANKS;
|
||
|
||
if (!(info->flags & SPI_NOR_NO_FR)) {
|
||
/* Default to Fast Read for DT and non-DT platform devices. */
|
||
params->hwcaps.mask |= SNOR_HWCAPS_READ_FAST;
|
||
|
||
/* Mask out Fast Read if not requested at DT instantiation. */
|
||
if (np && !of_property_read_bool(np, "m25p,fast-read"))
|
||
params->hwcaps.mask &= ~SNOR_HWCAPS_READ_FAST;
|
||
}
|
||
|
||
/* (Fast) Read settings. */
|
||
params->hwcaps.mask |= SNOR_HWCAPS_READ;
|
||
spi_nor_set_read_settings(¶ms->reads[SNOR_CMD_READ],
|
||
0, 0, SPINOR_OP_READ,
|
||
SNOR_PROTO_1_1_1);
|
||
|
||
if (params->hwcaps.mask & SNOR_HWCAPS_READ_FAST)
|
||
spi_nor_set_read_settings(¶ms->reads[SNOR_CMD_READ_FAST],
|
||
0, 8, SPINOR_OP_READ_FAST,
|
||
SNOR_PROTO_1_1_1);
|
||
/* Page Program settings. */
|
||
params->hwcaps.mask |= SNOR_HWCAPS_PP;
|
||
spi_nor_set_pp_settings(¶ms->page_programs[SNOR_CMD_PP],
|
||
SPINOR_OP_PP, SNOR_PROTO_1_1_1);
|
||
|
||
if (info->flags & SPI_NOR_QUAD_PP) {
|
||
params->hwcaps.mask |= SNOR_HWCAPS_PP_1_1_4;
|
||
spi_nor_set_pp_settings(¶ms->page_programs[SNOR_CMD_PP_1_1_4],
|
||
SPINOR_OP_PP_1_1_4, SNOR_PROTO_1_1_4);
|
||
}
|
||
}
|
||
|
||
/**
|
||
* spi_nor_init_params() - Initialize the flash's parameters and settings.
|
||
* @nor: pointer to a 'struct spi_nor'.
|
||
*
|
||
* The flash parameters and settings are initialized based on a sequence of
|
||
* calls that are ordered by priority:
|
||
*
|
||
* 1/ Default flash parameters initialization. The initializations are done
|
||
* based on nor->info data:
|
||
* spi_nor_info_init_params()
|
||
*
|
||
* which can be overwritten by:
|
||
* 2/ Manufacturer flash parameters initialization. The initializations are
|
||
* done based on MFR register, or when the decisions can not be done solely
|
||
* based on MFR, by using specific flash_info tweeks, ->default_init():
|
||
* spi_nor_manufacturer_init_params()
|
||
*
|
||
* which can be overwritten by:
|
||
* 3/ SFDP flash parameters initialization. JESD216 SFDP is a standard and
|
||
* should be more accurate that the above.
|
||
* spi_nor_parse_sfdp() or spi_nor_no_sfdp_init_params()
|
||
*
|
||
* Please note that there is a ->post_bfpt() fixup hook that can overwrite
|
||
* the flash parameters and settings immediately after parsing the Basic
|
||
* Flash Parameter Table.
|
||
* spi_nor_post_sfdp_fixups() is called after the SFDP tables are parsed.
|
||
* It is used to tweak various flash parameters when information provided
|
||
* by the SFDP tables are wrong.
|
||
*
|
||
* which can be overwritten by:
|
||
* 4/ Late flash parameters initialization, used to initialize flash
|
||
* parameters that are not declared in the JESD216 SFDP standard, or where SFDP
|
||
* tables are not defined at all.
|
||
* spi_nor_late_init_params()
|
||
*
|
||
* Return: 0 on success, -errno otherwise.
|
||
*/
|
||
static int spi_nor_init_params(struct spi_nor *nor)
|
||
{
|
||
int ret;
|
||
|
||
nor->params = devm_kzalloc(nor->dev, sizeof(*nor->params), GFP_KERNEL);
|
||
if (!nor->params)
|
||
return -ENOMEM;
|
||
|
||
spi_nor_init_default_params(nor);
|
||
|
||
if (spi_nor_needs_sfdp(nor)) {
|
||
ret = spi_nor_parse_sfdp(nor);
|
||
if (ret) {
|
||
dev_err(nor->dev, "BFPT parsing failed. Please consider using SPI_NOR_SKIP_SFDP when declaring the flash\n");
|
||
return ret;
|
||
}
|
||
} else if (nor->info->no_sfdp_flags & SPI_NOR_SKIP_SFDP) {
|
||
spi_nor_no_sfdp_init_params(nor);
|
||
} else {
|
||
spi_nor_init_params_deprecated(nor);
|
||
}
|
||
|
||
return spi_nor_late_init_params(nor);
|
||
}
|
||
|
||
/** spi_nor_set_octal_dtr() - enable or disable Octal DTR I/O.
|
||
* @nor: pointer to a 'struct spi_nor'
|
||
* @enable: whether to enable or disable Octal DTR
|
||
*
|
||
* Return: 0 on success, -errno otherwise.
|
||
*/
|
||
static int spi_nor_set_octal_dtr(struct spi_nor *nor, bool enable)
|
||
{
|
||
int ret;
|
||
|
||
if (!nor->params->set_octal_dtr)
|
||
return 0;
|
||
|
||
if (!(nor->read_proto == SNOR_PROTO_8_8_8_DTR &&
|
||
nor->write_proto == SNOR_PROTO_8_8_8_DTR))
|
||
return 0;
|
||
|
||
if (!(nor->flags & SNOR_F_IO_MODE_EN_VOLATILE))
|
||
return 0;
|
||
|
||
ret = nor->params->set_octal_dtr(nor, enable);
|
||
if (ret)
|
||
return ret;
|
||
|
||
if (enable)
|
||
nor->reg_proto = SNOR_PROTO_8_8_8_DTR;
|
||
else
|
||
nor->reg_proto = SNOR_PROTO_1_1_1;
|
||
|
||
return 0;
|
||
}
|
||
|
||
/**
|
||
* spi_nor_quad_enable() - enable Quad I/O if needed.
|
||
* @nor: pointer to a 'struct spi_nor'
|
||
*
|
||
* Return: 0 on success, -errno otherwise.
|
||
*/
|
||
static int spi_nor_quad_enable(struct spi_nor *nor)
|
||
{
|
||
if (!nor->params->quad_enable)
|
||
return 0;
|
||
|
||
if (!(spi_nor_get_protocol_width(nor->read_proto) == 4 ||
|
||
spi_nor_get_protocol_width(nor->write_proto) == 4))
|
||
return 0;
|
||
|
||
return nor->params->quad_enable(nor);
|
||
}
|
||
|
||
/**
|
||
* spi_nor_set_4byte_addr_mode() - Set address mode.
|
||
* @nor: pointer to a 'struct spi_nor'.
|
||
* @enable: enable/disable 4 byte address mode.
|
||
*
|
||
* Return: 0 on success, -errno otherwise.
|
||
*/
|
||
int spi_nor_set_4byte_addr_mode(struct spi_nor *nor, bool enable)
|
||
{
|
||
struct spi_nor_flash_parameter *params = nor->params;
|
||
int ret;
|
||
|
||
if (enable) {
|
||
/*
|
||
* If the RESET# pin isn't hooked up properly, or the system
|
||
* otherwise doesn't perform a reset command in the boot
|
||
* sequence, it's impossible to 100% protect against unexpected
|
||
* reboots (e.g., crashes). Warn the user (or hopefully, system
|
||
* designer) that this is bad.
|
||
*/
|
||
WARN_ONCE(nor->flags & SNOR_F_BROKEN_RESET,
|
||
"enabling reset hack; may not recover from unexpected reboots\n");
|
||
}
|
||
|
||
ret = params->set_4byte_addr_mode(nor, enable);
|
||
if (ret && ret != -EOPNOTSUPP)
|
||
return ret;
|
||
|
||
if (enable) {
|
||
params->addr_nbytes = 4;
|
||
params->addr_mode_nbytes = 4;
|
||
} else {
|
||
params->addr_nbytes = 3;
|
||
params->addr_mode_nbytes = 3;
|
||
}
|
||
|
||
return 0;
|
||
}
|
||
|
||
static int spi_nor_init(struct spi_nor *nor)
|
||
{
|
||
int err;
|
||
|
||
err = spi_nor_set_octal_dtr(nor, true);
|
||
if (err) {
|
||
dev_dbg(nor->dev, "octal mode not supported\n");
|
||
return err;
|
||
}
|
||
|
||
err = spi_nor_quad_enable(nor);
|
||
if (err) {
|
||
dev_dbg(nor->dev, "quad mode not supported\n");
|
||
return err;
|
||
}
|
||
|
||
/*
|
||
* Some SPI NOR flashes are write protected by default after a power-on
|
||
* reset cycle, in order to avoid inadvertent writes during power-up.
|
||
* Backward compatibility imposes to unlock the entire flash memory
|
||
* array at power-up by default. Depending on the kernel configuration
|
||
* (1) do nothing, (2) always unlock the entire flash array or (3)
|
||
* unlock the entire flash array only when the software write
|
||
* protection bits are volatile. The latter is indicated by
|
||
* SNOR_F_SWP_IS_VOLATILE.
|
||
*/
|
||
if (IS_ENABLED(CONFIG_MTD_SPI_NOR_SWP_DISABLE) ||
|
||
(IS_ENABLED(CONFIG_MTD_SPI_NOR_SWP_DISABLE_ON_VOLATILE) &&
|
||
nor->flags & SNOR_F_SWP_IS_VOLATILE))
|
||
spi_nor_try_unlock_all(nor);
|
||
|
||
if (nor->addr_nbytes == 4 &&
|
||
nor->read_proto != SNOR_PROTO_8_8_8_DTR &&
|
||
!(nor->flags & SNOR_F_4B_OPCODES))
|
||
return spi_nor_set_4byte_addr_mode(nor, true);
|
||
|
||
return 0;
|
||
}
|
||
|
||
/**
|
||
* spi_nor_soft_reset() - Perform a software reset
|
||
* @nor: pointer to 'struct spi_nor'
|
||
*
|
||
* Performs a "Soft Reset and Enter Default Protocol Mode" sequence which resets
|
||
* the device to its power-on-reset state. This is useful when the software has
|
||
* made some changes to device (volatile) registers and needs to reset it before
|
||
* shutting down, for example.
|
||
*
|
||
* Not every flash supports this sequence. The same set of opcodes might be used
|
||
* for some other operation on a flash that does not support this. Support for
|
||
* this sequence can be discovered via SFDP in the BFPT table.
|
||
*
|
||
* Return: 0 on success, -errno otherwise.
|
||
*/
|
||
static void spi_nor_soft_reset(struct spi_nor *nor)
|
||
{
|
||
struct spi_mem_op op;
|
||
int ret;
|
||
|
||
op = (struct spi_mem_op)SPINOR_SRSTEN_OP;
|
||
|
||
spi_nor_spimem_setup_op(nor, &op, nor->reg_proto);
|
||
|
||
ret = spi_mem_exec_op(nor->spimem, &op);
|
||
if (ret) {
|
||
if (ret != -EOPNOTSUPP)
|
||
dev_warn(nor->dev, "Software reset failed: %d\n", ret);
|
||
return;
|
||
}
|
||
|
||
op = (struct spi_mem_op)SPINOR_SRST_OP;
|
||
|
||
spi_nor_spimem_setup_op(nor, &op, nor->reg_proto);
|
||
|
||
ret = spi_mem_exec_op(nor->spimem, &op);
|
||
if (ret) {
|
||
dev_warn(nor->dev, "Software reset failed: %d\n", ret);
|
||
return;
|
||
}
|
||
|
||
/*
|
||
* Software Reset is not instant, and the delay varies from flash to
|
||
* flash. Looking at a few flashes, most range somewhere below 100
|
||
* microseconds. So, sleep for a range of 200-400 us.
|
||
*/
|
||
usleep_range(SPI_NOR_SRST_SLEEP_MIN, SPI_NOR_SRST_SLEEP_MAX);
|
||
}
|
||
|
||
/* mtd suspend handler */
|
||
static int spi_nor_suspend(struct mtd_info *mtd)
|
||
{
|
||
struct spi_nor *nor = mtd_to_spi_nor(mtd);
|
||
int ret;
|
||
|
||
/* Disable octal DTR mode if we enabled it. */
|
||
ret = spi_nor_set_octal_dtr(nor, false);
|
||
if (ret)
|
||
dev_err(nor->dev, "suspend() failed\n");
|
||
|
||
return ret;
|
||
}
|
||
|
||
/* mtd resume handler */
|
||
static void spi_nor_resume(struct mtd_info *mtd)
|
||
{
|
||
struct spi_nor *nor = mtd_to_spi_nor(mtd);
|
||
struct device *dev = nor->dev;
|
||
int ret;
|
||
|
||
/* re-initialize the nor chip */
|
||
ret = spi_nor_init(nor);
|
||
if (ret)
|
||
dev_err(dev, "resume() failed\n");
|
||
}
|
||
|
||
static int spi_nor_get_device(struct mtd_info *mtd)
|
||
{
|
||
struct mtd_info *master = mtd_get_master(mtd);
|
||
struct spi_nor *nor = mtd_to_spi_nor(master);
|
||
struct device *dev;
|
||
|
||
if (nor->spimem)
|
||
dev = nor->spimem->spi->controller->dev.parent;
|
||
else
|
||
dev = nor->dev;
|
||
|
||
if (!try_module_get(dev->driver->owner))
|
||
return -ENODEV;
|
||
|
||
return 0;
|
||
}
|
||
|
||
static void spi_nor_put_device(struct mtd_info *mtd)
|
||
{
|
||
struct mtd_info *master = mtd_get_master(mtd);
|
||
struct spi_nor *nor = mtd_to_spi_nor(master);
|
||
struct device *dev;
|
||
|
||
if (nor->spimem)
|
||
dev = nor->spimem->spi->controller->dev.parent;
|
||
else
|
||
dev = nor->dev;
|
||
|
||
module_put(dev->driver->owner);
|
||
}
|
||
|
||
static void spi_nor_restore(struct spi_nor *nor)
|
||
{
|
||
int ret;
|
||
|
||
/* restore the addressing mode */
|
||
if (nor->addr_nbytes == 4 && !(nor->flags & SNOR_F_4B_OPCODES) &&
|
||
nor->flags & SNOR_F_BROKEN_RESET) {
|
||
ret = spi_nor_set_4byte_addr_mode(nor, false);
|
||
if (ret)
|
||
/*
|
||
* Do not stop the execution in the hope that the flash
|
||
* will default to the 3-byte address mode after the
|
||
* software reset.
|
||
*/
|
||
dev_err(nor->dev, "Failed to exit 4-byte address mode, err = %d\n", ret);
|
||
}
|
||
|
||
if (nor->flags & SNOR_F_SOFT_RESET)
|
||
spi_nor_soft_reset(nor);
|
||
}
|
||
|
||
static const struct flash_info *spi_nor_match_name(struct spi_nor *nor,
|
||
const char *name)
|
||
{
|
||
unsigned int i, j;
|
||
|
||
for (i = 0; i < ARRAY_SIZE(manufacturers); i++) {
|
||
for (j = 0; j < manufacturers[i]->nparts; j++) {
|
||
if (!strcmp(name, manufacturers[i]->parts[j].name)) {
|
||
nor->manufacturer = manufacturers[i];
|
||
return &manufacturers[i]->parts[j];
|
||
}
|
||
}
|
||
}
|
||
|
||
return NULL;
|
||
}
|
||
|
||
static const struct flash_info *spi_nor_get_flash_info(struct spi_nor *nor,
|
||
const char *name)
|
||
{
|
||
const struct flash_info *info = NULL;
|
||
|
||
if (name)
|
||
info = spi_nor_match_name(nor, name);
|
||
/* Try to auto-detect if chip name wasn't specified or not found */
|
||
if (!info)
|
||
return spi_nor_detect(nor);
|
||
|
||
/*
|
||
* If caller has specified name of flash model that can normally be
|
||
* detected using JEDEC, let's verify it.
|
||
*/
|
||
if (name && info->id) {
|
||
const struct flash_info *jinfo;
|
||
|
||
jinfo = spi_nor_detect(nor);
|
||
if (IS_ERR(jinfo)) {
|
||
return jinfo;
|
||
} else if (jinfo != info) {
|
||
/*
|
||
* JEDEC knows better, so overwrite platform ID. We
|
||
* can't trust partitions any longer, but we'll let
|
||
* mtd apply them anyway, since some partitions may be
|
||
* marked read-only, and we don't want to loose that
|
||
* information, even if it's not 100% accurate.
|
||
*/
|
||
dev_warn(nor->dev, "found %s, expected %s\n",
|
||
jinfo->name, info->name);
|
||
info = jinfo;
|
||
}
|
||
}
|
||
|
||
return info;
|
||
}
|
||
|
||
static u32
|
||
spi_nor_get_region_erasesize(const struct spi_nor_erase_region *region,
|
||
const struct spi_nor_erase_type *erase_type)
|
||
{
|
||
int i;
|
||
|
||
if (region->overlaid)
|
||
return region->size;
|
||
|
||
for (i = SNOR_ERASE_TYPE_MAX - 1; i >= 0; i--) {
|
||
if (region->erase_mask & BIT(i))
|
||
return erase_type[i].size;
|
||
}
|
||
|
||
return 0;
|
||
}
|
||
|
||
static int spi_nor_set_mtd_eraseregions(struct spi_nor *nor)
|
||
{
|
||
const struct spi_nor_erase_map *map = &nor->params->erase_map;
|
||
const struct spi_nor_erase_region *region = map->regions;
|
||
struct mtd_erase_region_info *mtd_region;
|
||
struct mtd_info *mtd = &nor->mtd;
|
||
u32 erasesize, i;
|
||
|
||
mtd_region = devm_kcalloc(nor->dev, map->n_regions, sizeof(*mtd_region),
|
||
GFP_KERNEL);
|
||
if (!mtd_region)
|
||
return -ENOMEM;
|
||
|
||
for (i = 0; i < map->n_regions; i++) {
|
||
erasesize = spi_nor_get_region_erasesize(®ion[i],
|
||
map->erase_type);
|
||
if (!erasesize)
|
||
return -EINVAL;
|
||
|
||
mtd_region[i].erasesize = erasesize;
|
||
mtd_region[i].numblocks = div_u64(region[i].size, erasesize);
|
||
mtd_region[i].offset = region[i].offset;
|
||
}
|
||
|
||
mtd->numeraseregions = map->n_regions;
|
||
mtd->eraseregions = mtd_region;
|
||
|
||
return 0;
|
||
}
|
||
|
||
static int spi_nor_set_mtd_info(struct spi_nor *nor)
|
||
{
|
||
struct mtd_info *mtd = &nor->mtd;
|
||
struct device *dev = nor->dev;
|
||
|
||
spi_nor_set_mtd_locking_ops(nor);
|
||
spi_nor_set_mtd_otp_ops(nor);
|
||
|
||
mtd->dev.parent = dev;
|
||
if (!mtd->name)
|
||
mtd->name = dev_name(dev);
|
||
mtd->type = MTD_NORFLASH;
|
||
mtd->flags = MTD_CAP_NORFLASH;
|
||
/* Unset BIT_WRITEABLE to enable JFFS2 write buffer for ECC'd NOR */
|
||
if (nor->flags & SNOR_F_ECC)
|
||
mtd->flags &= ~MTD_BIT_WRITEABLE;
|
||
if (nor->info->flags & SPI_NOR_NO_ERASE)
|
||
mtd->flags |= MTD_NO_ERASE;
|
||
else
|
||
mtd->_erase = spi_nor_erase;
|
||
mtd->writesize = nor->params->writesize;
|
||
mtd->writebufsize = nor->params->page_size;
|
||
mtd->size = nor->params->size;
|
||
mtd->_read = spi_nor_read;
|
||
/* Might be already set by some SST flashes. */
|
||
if (!mtd->_write)
|
||
mtd->_write = spi_nor_write;
|
||
mtd->_suspend = spi_nor_suspend;
|
||
mtd->_resume = spi_nor_resume;
|
||
mtd->_get_device = spi_nor_get_device;
|
||
mtd->_put_device = spi_nor_put_device;
|
||
|
||
if (!spi_nor_has_uniform_erase(nor))
|
||
return spi_nor_set_mtd_eraseregions(nor);
|
||
|
||
return 0;
|
||
}
|
||
|
||
static int spi_nor_hw_reset(struct spi_nor *nor)
|
||
{
|
||
struct gpio_desc *reset;
|
||
|
||
reset = devm_gpiod_get_optional(nor->dev, "reset", GPIOD_OUT_LOW);
|
||
if (IS_ERR_OR_NULL(reset))
|
||
return PTR_ERR_OR_ZERO(reset);
|
||
|
||
/*
|
||
* Experimental delay values by looking at different flash device
|
||
* vendors datasheets.
|
||
*/
|
||
usleep_range(1, 5);
|
||
gpiod_set_value_cansleep(reset, 1);
|
||
usleep_range(100, 150);
|
||
gpiod_set_value_cansleep(reset, 0);
|
||
usleep_range(1000, 1200);
|
||
|
||
return 0;
|
||
}
|
||
|
||
int spi_nor_scan(struct spi_nor *nor, const char *name,
|
||
const struct spi_nor_hwcaps *hwcaps)
|
||
{
|
||
const struct flash_info *info;
|
||
struct device *dev = nor->dev;
|
||
int ret;
|
||
|
||
ret = spi_nor_check(nor);
|
||
if (ret)
|
||
return ret;
|
||
|
||
/* Reset SPI protocol for all commands. */
|
||
nor->reg_proto = SNOR_PROTO_1_1_1;
|
||
nor->read_proto = SNOR_PROTO_1_1_1;
|
||
nor->write_proto = SNOR_PROTO_1_1_1;
|
||
|
||
/*
|
||
* We need the bounce buffer early to read/write registers when going
|
||
* through the spi-mem layer (buffers have to be DMA-able).
|
||
* For spi-mem drivers, we'll reallocate a new buffer if
|
||
* nor->params->page_size turns out to be greater than PAGE_SIZE (which
|
||
* shouldn't happen before long since NOR pages are usually less
|
||
* than 1KB) after spi_nor_scan() returns.
|
||
*/
|
||
nor->bouncebuf_size = PAGE_SIZE;
|
||
nor->bouncebuf = devm_kmalloc(dev, nor->bouncebuf_size,
|
||
GFP_KERNEL);
|
||
if (!nor->bouncebuf)
|
||
return -ENOMEM;
|
||
|
||
ret = spi_nor_hw_reset(nor);
|
||
if (ret)
|
||
return ret;
|
||
|
||
info = spi_nor_get_flash_info(nor, name);
|
||
if (IS_ERR(info))
|
||
return PTR_ERR(info);
|
||
|
||
nor->info = info;
|
||
|
||
mutex_init(&nor->lock);
|
||
|
||
/* Init flash parameters based on flash_info struct and SFDP */
|
||
ret = spi_nor_init_params(nor);
|
||
if (ret)
|
||
return ret;
|
||
|
||
if (spi_nor_use_parallel_locking(nor))
|
||
init_waitqueue_head(&nor->rww.wait);
|
||
|
||
/*
|
||
* Configure the SPI memory:
|
||
* - select op codes for (Fast) Read, Page Program and Sector Erase.
|
||
* - set the number of dummy cycles (mode cycles + wait states).
|
||
* - set the SPI protocols for register and memory accesses.
|
||
* - set the number of address bytes.
|
||
*/
|
||
ret = spi_nor_setup(nor, hwcaps);
|
||
if (ret)
|
||
return ret;
|
||
|
||
/* Send all the required SPI flash commands to initialize device */
|
||
ret = spi_nor_init(nor);
|
||
if (ret)
|
||
return ret;
|
||
|
||
/* No mtd_info fields should be used up to this point. */
|
||
ret = spi_nor_set_mtd_info(nor);
|
||
if (ret)
|
||
return ret;
|
||
|
||
dev_dbg(dev, "Manufacturer and device ID: %*phN\n",
|
||
SPI_NOR_MAX_ID_LEN, nor->id);
|
||
|
||
return 0;
|
||
}
|
||
EXPORT_SYMBOL_GPL(spi_nor_scan);
|
||
|
||
static int spi_nor_create_read_dirmap(struct spi_nor *nor)
|
||
{
|
||
struct spi_mem_dirmap_info info = {
|
||
.op_tmpl = SPI_MEM_OP(SPI_MEM_OP_CMD(nor->read_opcode, 0),
|
||
SPI_MEM_OP_ADDR(nor->addr_nbytes, 0, 0),
|
||
SPI_MEM_OP_DUMMY(nor->read_dummy, 0),
|
||
SPI_MEM_OP_DATA_IN(0, NULL, 0)),
|
||
.offset = 0,
|
||
.length = nor->params->size,
|
||
};
|
||
struct spi_mem_op *op = &info.op_tmpl;
|
||
|
||
spi_nor_spimem_setup_op(nor, op, nor->read_proto);
|
||
|
||
/* convert the dummy cycles to the number of bytes */
|
||
op->dummy.nbytes = (nor->read_dummy * op->dummy.buswidth) / 8;
|
||
if (spi_nor_protocol_is_dtr(nor->read_proto))
|
||
op->dummy.nbytes *= 2;
|
||
|
||
/*
|
||
* Since spi_nor_spimem_setup_op() only sets buswidth when the number
|
||
* of data bytes is non-zero, the data buswidth won't be set here. So,
|
||
* do it explicitly.
|
||
*/
|
||
op->data.buswidth = spi_nor_get_protocol_data_nbits(nor->read_proto);
|
||
|
||
nor->dirmap.rdesc = devm_spi_mem_dirmap_create(nor->dev, nor->spimem,
|
||
&info);
|
||
return PTR_ERR_OR_ZERO(nor->dirmap.rdesc);
|
||
}
|
||
|
||
static int spi_nor_create_write_dirmap(struct spi_nor *nor)
|
||
{
|
||
struct spi_mem_dirmap_info info = {
|
||
.op_tmpl = SPI_MEM_OP(SPI_MEM_OP_CMD(nor->program_opcode, 0),
|
||
SPI_MEM_OP_ADDR(nor->addr_nbytes, 0, 0),
|
||
SPI_MEM_OP_NO_DUMMY,
|
||
SPI_MEM_OP_DATA_OUT(0, NULL, 0)),
|
||
.offset = 0,
|
||
.length = nor->params->size,
|
||
};
|
||
struct spi_mem_op *op = &info.op_tmpl;
|
||
|
||
if (nor->program_opcode == SPINOR_OP_AAI_WP && nor->sst_write_second)
|
||
op->addr.nbytes = 0;
|
||
|
||
spi_nor_spimem_setup_op(nor, op, nor->write_proto);
|
||
|
||
/*
|
||
* Since spi_nor_spimem_setup_op() only sets buswidth when the number
|
||
* of data bytes is non-zero, the data buswidth won't be set here. So,
|
||
* do it explicitly.
|
||
*/
|
||
op->data.buswidth = spi_nor_get_protocol_data_nbits(nor->write_proto);
|
||
|
||
nor->dirmap.wdesc = devm_spi_mem_dirmap_create(nor->dev, nor->spimem,
|
||
&info);
|
||
return PTR_ERR_OR_ZERO(nor->dirmap.wdesc);
|
||
}
|
||
|
||
static int spi_nor_probe(struct spi_mem *spimem)
|
||
{
|
||
struct spi_device *spi = spimem->spi;
|
||
struct flash_platform_data *data = dev_get_platdata(&spi->dev);
|
||
struct spi_nor *nor;
|
||
/*
|
||
* Enable all caps by default. The core will mask them after
|
||
* checking what's really supported using spi_mem_supports_op().
|
||
*/
|
||
const struct spi_nor_hwcaps hwcaps = { .mask = SNOR_HWCAPS_ALL };
|
||
char *flash_name;
|
||
int ret;
|
||
|
||
nor = devm_kzalloc(&spi->dev, sizeof(*nor), GFP_KERNEL);
|
||
if (!nor)
|
||
return -ENOMEM;
|
||
|
||
nor->spimem = spimem;
|
||
nor->dev = &spi->dev;
|
||
spi_nor_set_flash_node(nor, spi->dev.of_node);
|
||
|
||
spi_mem_set_drvdata(spimem, nor);
|
||
|
||
if (data && data->name)
|
||
nor->mtd.name = data->name;
|
||
|
||
if (!nor->mtd.name)
|
||
nor->mtd.name = spi_mem_get_name(spimem);
|
||
|
||
/*
|
||
* For some (historical?) reason many platforms provide two different
|
||
* names in flash_platform_data: "name" and "type". Quite often name is
|
||
* set to "m25p80" and then "type" provides a real chip name.
|
||
* If that's the case, respect "type" and ignore a "name".
|
||
*/
|
||
if (data && data->type)
|
||
flash_name = data->type;
|
||
else if (!strcmp(spi->modalias, "spi-nor"))
|
||
flash_name = NULL; /* auto-detect */
|
||
else
|
||
flash_name = spi->modalias;
|
||
|
||
ret = spi_nor_scan(nor, flash_name, &hwcaps);
|
||
if (ret)
|
||
return ret;
|
||
|
||
spi_nor_debugfs_register(nor);
|
||
|
||
/*
|
||
* None of the existing parts have > 512B pages, but let's play safe
|
||
* and add this logic so that if anyone ever adds support for such
|
||
* a NOR we don't end up with buffer overflows.
|
||
*/
|
||
if (nor->params->page_size > PAGE_SIZE) {
|
||
nor->bouncebuf_size = nor->params->page_size;
|
||
devm_kfree(nor->dev, nor->bouncebuf);
|
||
nor->bouncebuf = devm_kmalloc(nor->dev,
|
||
nor->bouncebuf_size,
|
||
GFP_KERNEL);
|
||
if (!nor->bouncebuf)
|
||
return -ENOMEM;
|
||
}
|
||
|
||
ret = spi_nor_create_read_dirmap(nor);
|
||
if (ret)
|
||
return ret;
|
||
|
||
ret = spi_nor_create_write_dirmap(nor);
|
||
if (ret)
|
||
return ret;
|
||
|
||
return mtd_device_register(&nor->mtd, data ? data->parts : NULL,
|
||
data ? data->nr_parts : 0);
|
||
}
|
||
|
||
static int spi_nor_remove(struct spi_mem *spimem)
|
||
{
|
||
struct spi_nor *nor = spi_mem_get_drvdata(spimem);
|
||
|
||
spi_nor_restore(nor);
|
||
|
||
/* Clean up MTD stuff. */
|
||
return mtd_device_unregister(&nor->mtd);
|
||
}
|
||
|
||
static void spi_nor_shutdown(struct spi_mem *spimem)
|
||
{
|
||
struct spi_nor *nor = spi_mem_get_drvdata(spimem);
|
||
|
||
spi_nor_restore(nor);
|
||
}
|
||
|
||
/*
|
||
* Do NOT add to this array without reading the following:
|
||
*
|
||
* Historically, many flash devices are bound to this driver by their name. But
|
||
* since most of these flash are compatible to some extent, and their
|
||
* differences can often be differentiated by the JEDEC read-ID command, we
|
||
* encourage new users to add support to the spi-nor library, and simply bind
|
||
* against a generic string here (e.g., "jedec,spi-nor").
|
||
*
|
||
* Many flash names are kept here in this list to keep them available
|
||
* as module aliases for existing platforms.
|
||
*/
|
||
static const struct spi_device_id spi_nor_dev_ids[] = {
|
||
/*
|
||
* Allow non-DT platform devices to bind to the "spi-nor" modalias, and
|
||
* hack around the fact that the SPI core does not provide uevent
|
||
* matching for .of_match_table
|
||
*/
|
||
{"spi-nor"},
|
||
|
||
/*
|
||
* Entries not used in DTs that should be safe to drop after replacing
|
||
* them with "spi-nor" in platform data.
|
||
*/
|
||
{"s25sl064a"}, {"w25x16"}, {"m25p10"}, {"m25px64"},
|
||
|
||
/*
|
||
* Entries that were used in DTs without "jedec,spi-nor" fallback and
|
||
* should be kept for backward compatibility.
|
||
*/
|
||
{"at25df321a"}, {"at25df641"}, {"at26df081a"},
|
||
{"mx25l4005a"}, {"mx25l1606e"}, {"mx25l6405d"}, {"mx25l12805d"},
|
||
{"mx25l25635e"},{"mx66l51235l"},
|
||
{"n25q064"}, {"n25q128a11"}, {"n25q128a13"}, {"n25q512a"},
|
||
{"s25fl256s1"}, {"s25fl512s"}, {"s25sl12801"}, {"s25fl008k"},
|
||
{"s25fl064k"},
|
||
{"sst25vf040b"},{"sst25vf016b"},{"sst25vf032b"},{"sst25wf040"},
|
||
{"m25p40"}, {"m25p80"}, {"m25p16"}, {"m25p32"},
|
||
{"m25p64"}, {"m25p128"},
|
||
{"w25x80"}, {"w25x32"}, {"w25q32"}, {"w25q32dw"},
|
||
{"w25q80bl"}, {"w25q128"}, {"w25q256"},
|
||
|
||
/* Flashes that can't be detected using JEDEC */
|
||
{"m25p05-nonjedec"}, {"m25p10-nonjedec"}, {"m25p20-nonjedec"},
|
||
{"m25p40-nonjedec"}, {"m25p80-nonjedec"}, {"m25p16-nonjedec"},
|
||
{"m25p32-nonjedec"}, {"m25p64-nonjedec"}, {"m25p128-nonjedec"},
|
||
|
||
/* Everspin MRAMs (non-JEDEC) */
|
||
{ "mr25h128" }, /* 128 Kib, 40 MHz */
|
||
{ "mr25h256" }, /* 256 Kib, 40 MHz */
|
||
{ "mr25h10" }, /* 1 Mib, 40 MHz */
|
||
{ "mr25h40" }, /* 4 Mib, 40 MHz */
|
||
|
||
{ },
|
||
};
|
||
MODULE_DEVICE_TABLE(spi, spi_nor_dev_ids);
|
||
|
||
static const struct of_device_id spi_nor_of_table[] = {
|
||
/*
|
||
* Generic compatibility for SPI NOR that can be identified by the
|
||
* JEDEC READ ID opcode (0x9F). Use this, if possible.
|
||
*/
|
||
{ .compatible = "jedec,spi-nor" },
|
||
{ /* sentinel */ },
|
||
};
|
||
MODULE_DEVICE_TABLE(of, spi_nor_of_table);
|
||
|
||
/*
|
||
* REVISIT: many of these chips have deep power-down modes, which
|
||
* should clearly be entered on suspend() to minimize power use.
|
||
* And also when they're otherwise idle...
|
||
*/
|
||
static struct spi_mem_driver spi_nor_driver = {
|
||
.spidrv = {
|
||
.driver = {
|
||
.name = "spi-nor",
|
||
.of_match_table = spi_nor_of_table,
|
||
.dev_groups = spi_nor_sysfs_groups,
|
||
},
|
||
.id_table = spi_nor_dev_ids,
|
||
},
|
||
.probe = spi_nor_probe,
|
||
.remove = spi_nor_remove,
|
||
.shutdown = spi_nor_shutdown,
|
||
};
|
||
|
||
static int __init spi_nor_module_init(void)
|
||
{
|
||
return spi_mem_driver_register(&spi_nor_driver);
|
||
}
|
||
module_init(spi_nor_module_init);
|
||
|
||
static void __exit spi_nor_module_exit(void)
|
||
{
|
||
spi_mem_driver_unregister(&spi_nor_driver);
|
||
spi_nor_debugfs_shutdown();
|
||
}
|
||
module_exit(spi_nor_module_exit);
|
||
|
||
MODULE_LICENSE("GPL v2");
|
||
MODULE_AUTHOR("Huang Shijie <shijie8@gmail.com>");
|
||
MODULE_AUTHOR("Mike Lavender");
|
||
MODULE_DESCRIPTION("framework for SPI NOR");
|