e1d9148582
Microsoft introduced support in Windows XP for blocking port I/O to various regions. For Windows compatibility ACPICA has adopted the same protections and will disallow writes to those (presumably) the same regions. On some systems the AML included with the firmware will issue 4 byte long writes to 0x80. These writes aren't making it over because of this blockage. The first 4 byte write attempt is rejected, and then subsequently 1 byte at a time each offset is tried. The first at 0x80 works, but then the next 3 bytes are rejected. This manifests in bizarre failures for devices that expected the AML to write all 4 bytes. Trying the same AML on Windows 10 or 11 doesn't hit this failure and all 4 bytes are written. Either some of these regions were wrong or some point after Windows XP some of these regions blocks have been lifted. In the last 15 years there doesn't seem to be any reports popping up of this error in the Windows event viewer anymore. There is no documentation at Microsoft's developer site indicating that Windows ACPI interpreter blocks these regions. Between the lack of documentation and the fact that the writes actually do work in Windows 10 and 11, it's quite likely Windows doesn't actually enforce this anymore. So to help the issue, only enforce Windows XP specific entries if the latest _OSI supported is Windows XP. Continue to enforce the ALWAYS_ILLEGAL entries. Link: https://github.com/acpica/acpica/pull/817 Fixes: 7f0719039085 ("ACPICA: New: I/O port protection") Signed-off-by: Mario Limonciello <mario.limonciello@amd.com> Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
326 lines
9.5 KiB
C
326 lines
9.5 KiB
C
// SPDX-License-Identifier: BSD-3-Clause OR GPL-2.0
|
|
/******************************************************************************
|
|
*
|
|
* Module Name: hwvalid - I/O request validation
|
|
*
|
|
* Copyright (C) 2000 - 2022, Intel Corp.
|
|
*
|
|
*****************************************************************************/
|
|
|
|
#include <acpi/acpi.h>
|
|
#include "accommon.h"
|
|
|
|
#define _COMPONENT ACPI_HARDWARE
|
|
ACPI_MODULE_NAME("hwvalid")
|
|
|
|
/* Local prototypes */
|
|
static acpi_status
|
|
acpi_hw_validate_io_request(acpi_io_address address, u32 bit_width);
|
|
|
|
/*
|
|
* Protected I/O ports. Some ports are always illegal, and some are
|
|
* conditionally illegal. This table must remain ordered by port address.
|
|
*
|
|
* The table is used to implement the Microsoft port access rules that
|
|
* first appeared in Windows XP. Some ports are always illegal, and some
|
|
* ports are only illegal if the BIOS calls _OSI with nothing newer than
|
|
* the specific _OSI strings.
|
|
*
|
|
* This provides ACPICA with the desired port protections and
|
|
* Microsoft compatibility.
|
|
*
|
|
* Description of port entries:
|
|
* DMA: DMA controller
|
|
* PIC0: Programmable Interrupt Controller (8259A)
|
|
* PIT1: System Timer 1
|
|
* PIT2: System Timer 2 failsafe
|
|
* RTC: Real-time clock
|
|
* CMOS: Extended CMOS
|
|
* DMA1: DMA 1 page registers
|
|
* DMA1L: DMA 1 Ch 0 low page
|
|
* DMA2: DMA 2 page registers
|
|
* DMA2L: DMA 2 low page refresh
|
|
* ARBC: Arbitration control
|
|
* SETUP: Reserved system board setup
|
|
* POS: POS channel select
|
|
* PIC1: Cascaded PIC
|
|
* IDMA: ISA DMA
|
|
* ELCR: PIC edge/level registers
|
|
* PCI: PCI configuration space
|
|
*/
|
|
static const struct acpi_port_info acpi_protected_ports[] = {
|
|
{"DMA", 0x0000, 0x000F, ACPI_OSI_WIN_XP},
|
|
{"PIC0", 0x0020, 0x0021, ACPI_ALWAYS_ILLEGAL},
|
|
{"PIT1", 0x0040, 0x0043, ACPI_OSI_WIN_XP},
|
|
{"PIT2", 0x0048, 0x004B, ACPI_OSI_WIN_XP},
|
|
{"RTC", 0x0070, 0x0071, ACPI_OSI_WIN_XP},
|
|
{"CMOS", 0x0074, 0x0076, ACPI_OSI_WIN_XP},
|
|
{"DMA1", 0x0081, 0x0083, ACPI_OSI_WIN_XP},
|
|
{"DMA1L", 0x0087, 0x0087, ACPI_OSI_WIN_XP},
|
|
{"DMA2", 0x0089, 0x008B, ACPI_OSI_WIN_XP},
|
|
{"DMA2L", 0x008F, 0x008F, ACPI_OSI_WIN_XP},
|
|
{"ARBC", 0x0090, 0x0091, ACPI_OSI_WIN_XP},
|
|
{"SETUP", 0x0093, 0x0094, ACPI_OSI_WIN_XP},
|
|
{"POS", 0x0096, 0x0097, ACPI_OSI_WIN_XP},
|
|
{"PIC1", 0x00A0, 0x00A1, ACPI_ALWAYS_ILLEGAL},
|
|
{"IDMA", 0x00C0, 0x00DF, ACPI_OSI_WIN_XP},
|
|
{"ELCR", 0x04D0, 0x04D1, ACPI_ALWAYS_ILLEGAL},
|
|
{"PCI", 0x0CF8, 0x0CFF, ACPI_OSI_WIN_XP}
|
|
};
|
|
|
|
#define ACPI_PORT_INFO_ENTRIES ACPI_ARRAY_LENGTH (acpi_protected_ports)
|
|
|
|
/******************************************************************************
|
|
*
|
|
* FUNCTION: acpi_hw_validate_io_request
|
|
*
|
|
* PARAMETERS: Address Address of I/O port/register
|
|
* bit_width Number of bits (8,16,32)
|
|
*
|
|
* RETURN: Status
|
|
*
|
|
* DESCRIPTION: Validates an I/O request (address/length). Certain ports are
|
|
* always illegal and some ports are only illegal depending on
|
|
* the requests the BIOS AML code makes to the predefined
|
|
* _OSI method.
|
|
*
|
|
******************************************************************************/
|
|
|
|
static acpi_status
|
|
acpi_hw_validate_io_request(acpi_io_address address, u32 bit_width)
|
|
{
|
|
u32 i;
|
|
u32 byte_width;
|
|
acpi_io_address last_address;
|
|
const struct acpi_port_info *port_info;
|
|
|
|
ACPI_FUNCTION_TRACE(hw_validate_io_request);
|
|
|
|
/* Supported widths are 8/16/32 */
|
|
|
|
if ((bit_width != 8) && (bit_width != 16) && (bit_width != 32)) {
|
|
ACPI_ERROR((AE_INFO,
|
|
"Bad BitWidth parameter: %8.8X", bit_width));
|
|
return_ACPI_STATUS(AE_BAD_PARAMETER);
|
|
}
|
|
|
|
port_info = acpi_protected_ports;
|
|
byte_width = ACPI_DIV_8(bit_width);
|
|
last_address = address + byte_width - 1;
|
|
|
|
ACPI_DEBUG_PRINT((ACPI_DB_IO,
|
|
"Address %8.8X%8.8X LastAddress %8.8X%8.8X Length %X",
|
|
ACPI_FORMAT_UINT64(address),
|
|
ACPI_FORMAT_UINT64(last_address), byte_width));
|
|
|
|
/* Maximum 16-bit address in I/O space */
|
|
|
|
if (last_address > ACPI_UINT16_MAX) {
|
|
ACPI_ERROR((AE_INFO,
|
|
"Illegal I/O port address/length above 64K: %8.8X%8.8X/0x%X",
|
|
ACPI_FORMAT_UINT64(address), byte_width));
|
|
return_ACPI_STATUS(AE_LIMIT);
|
|
}
|
|
|
|
/* Exit if requested address is not within the protected port table */
|
|
|
|
if (address > acpi_protected_ports[ACPI_PORT_INFO_ENTRIES - 1].end) {
|
|
return_ACPI_STATUS(AE_OK);
|
|
}
|
|
|
|
/* Check request against the list of protected I/O ports */
|
|
|
|
for (i = 0; i < ACPI_PORT_INFO_ENTRIES; i++, port_info++) {
|
|
/*
|
|
* Check if the requested address range will write to a reserved
|
|
* port. There are four cases to consider:
|
|
*
|
|
* 1) Address range is contained completely in the port address range
|
|
* 2) Address range overlaps port range at the port range start
|
|
* 3) Address range overlaps port range at the port range end
|
|
* 4) Address range completely encompasses the port range
|
|
*/
|
|
if ((address <= port_info->end)
|
|
&& (last_address >= port_info->start)) {
|
|
|
|
/* Port illegality may depend on the _OSI calls made by the BIOS */
|
|
|
|
if (port_info->osi_dependency == ACPI_ALWAYS_ILLEGAL ||
|
|
acpi_gbl_osi_data == port_info->osi_dependency) {
|
|
ACPI_DEBUG_PRINT((ACPI_DB_VALUES,
|
|
"Denied AML access to port 0x%8.8X%8.8X/%X (%s 0x%.4X-0x%.4X)\n",
|
|
ACPI_FORMAT_UINT64(address),
|
|
byte_width, port_info->name,
|
|
port_info->start,
|
|
port_info->end));
|
|
|
|
return_ACPI_STATUS(AE_AML_ILLEGAL_ADDRESS);
|
|
}
|
|
}
|
|
|
|
/* Finished if address range ends before the end of this port */
|
|
|
|
if (last_address <= port_info->end) {
|
|
break;
|
|
}
|
|
}
|
|
|
|
return_ACPI_STATUS(AE_OK);
|
|
}
|
|
|
|
/******************************************************************************
|
|
*
|
|
* FUNCTION: acpi_hw_read_port
|
|
*
|
|
* PARAMETERS: Address Address of I/O port/register to read
|
|
* Value Where value (data) is returned
|
|
* Width Number of bits
|
|
*
|
|
* RETURN: Status and value read from port
|
|
*
|
|
* DESCRIPTION: Read data from an I/O port or register. This is a front-end
|
|
* to acpi_os_read_port that performs validation on both the port
|
|
* address and the length.
|
|
*
|
|
*****************************************************************************/
|
|
|
|
acpi_status acpi_hw_read_port(acpi_io_address address, u32 *value, u32 width)
|
|
{
|
|
acpi_status status;
|
|
u32 one_byte;
|
|
u32 i;
|
|
|
|
/* Truncate address to 16 bits if requested */
|
|
|
|
if (acpi_gbl_truncate_io_addresses) {
|
|
address &= ACPI_UINT16_MAX;
|
|
}
|
|
|
|
/* Validate the entire request and perform the I/O */
|
|
|
|
status = acpi_hw_validate_io_request(address, width);
|
|
if (ACPI_SUCCESS(status)) {
|
|
status = acpi_os_read_port(address, value, width);
|
|
return (status);
|
|
}
|
|
|
|
if (status != AE_AML_ILLEGAL_ADDRESS) {
|
|
return (status);
|
|
}
|
|
|
|
/*
|
|
* There has been a protection violation within the request. Fall
|
|
* back to byte granularity port I/O and ignore the failing bytes.
|
|
* This provides compatibility with other ACPI implementations.
|
|
*/
|
|
for (i = 0, *value = 0; i < width; i += 8) {
|
|
|
|
/* Validate and read one byte */
|
|
|
|
if (acpi_hw_validate_io_request(address, 8) == AE_OK) {
|
|
status = acpi_os_read_port(address, &one_byte, 8);
|
|
if (ACPI_FAILURE(status)) {
|
|
return (status);
|
|
}
|
|
|
|
*value |= (one_byte << i);
|
|
}
|
|
|
|
address++;
|
|
}
|
|
|
|
return (AE_OK);
|
|
}
|
|
|
|
/******************************************************************************
|
|
*
|
|
* FUNCTION: acpi_hw_write_port
|
|
*
|
|
* PARAMETERS: Address Address of I/O port/register to write
|
|
* Value Value to write
|
|
* Width Number of bits
|
|
*
|
|
* RETURN: Status
|
|
*
|
|
* DESCRIPTION: Write data to an I/O port or register. This is a front-end
|
|
* to acpi_os_write_port that performs validation on both the port
|
|
* address and the length.
|
|
*
|
|
*****************************************************************************/
|
|
|
|
acpi_status acpi_hw_write_port(acpi_io_address address, u32 value, u32 width)
|
|
{
|
|
acpi_status status;
|
|
u32 i;
|
|
|
|
/* Truncate address to 16 bits if requested */
|
|
|
|
if (acpi_gbl_truncate_io_addresses) {
|
|
address &= ACPI_UINT16_MAX;
|
|
}
|
|
|
|
/* Validate the entire request and perform the I/O */
|
|
|
|
status = acpi_hw_validate_io_request(address, width);
|
|
if (ACPI_SUCCESS(status)) {
|
|
status = acpi_os_write_port(address, value, width);
|
|
return (status);
|
|
}
|
|
|
|
if (status != AE_AML_ILLEGAL_ADDRESS) {
|
|
return (status);
|
|
}
|
|
|
|
/*
|
|
* There has been a protection violation within the request. Fall
|
|
* back to byte granularity port I/O and ignore the failing bytes.
|
|
* This provides compatibility with other ACPI implementations.
|
|
*/
|
|
for (i = 0; i < width; i += 8) {
|
|
|
|
/* Validate and write one byte */
|
|
|
|
if (acpi_hw_validate_io_request(address, 8) == AE_OK) {
|
|
status =
|
|
acpi_os_write_port(address, (value >> i) & 0xFF, 8);
|
|
if (ACPI_FAILURE(status)) {
|
|
return (status);
|
|
}
|
|
}
|
|
|
|
address++;
|
|
}
|
|
|
|
return (AE_OK);
|
|
}
|
|
|
|
/******************************************************************************
|
|
*
|
|
* FUNCTION: acpi_hw_validate_io_block
|
|
*
|
|
* PARAMETERS: Address Address of I/O port/register blobk
|
|
* bit_width Number of bits (8,16,32) in each register
|
|
* count Number of registers in the block
|
|
*
|
|
* RETURN: Status
|
|
*
|
|
* DESCRIPTION: Validates a block of I/O ports/registers.
|
|
*
|
|
******************************************************************************/
|
|
|
|
acpi_status acpi_hw_validate_io_block(u64 address, u32 bit_width, u32 count)
|
|
{
|
|
acpi_status status;
|
|
|
|
while (count--) {
|
|
status = acpi_hw_validate_io_request((acpi_io_address)address,
|
|
bit_width);
|
|
if (ACPI_FAILURE(status))
|
|
return_ACPI_STATUS(status);
|
|
|
|
address += ACPI_DIV_8(bit_width);
|
|
}
|
|
|
|
return_ACPI_STATUS(AE_OK);
|
|
}
|