linux/include/net/tls.h
Maxim Mikityanskiy 94ce3b64c6 net/tls: Use RCU API to access tls_ctx->netdev
Currently, tls_device_down synchronizes with tls_device_resync_rx using
RCU, however, the pointer to netdev is stored using WRITE_ONCE and
loaded using READ_ONCE.

Although such approach is technically correct (rcu_dereference is
essentially a READ_ONCE, and rcu_assign_pointer uses WRITE_ONCE to store
NULL), using special RCU helpers for pointers is more valid, as it
includes additional checks and might change the implementation
transparently to the callers.

Mark the netdev pointer as __rcu and use the correct RCU helpers to
access it. For non-concurrent access pass the right conditions that
guarantee safe access (locks taken, refcount value). Also use the
correct helper in mlx5e, where even READ_ONCE was missing.

The transition to RCU exposes existing issues, fixed by this commit:

1. bond_tls_device_xmit could read netdev twice, and it could become
NULL the second time, after the NULL check passed.

2. Drivers shouldn't stop processing the last packet if tls_device_down
just set netdev to NULL, before tls_dev_del was called. This prevents a
possible packet drop when transitioning to the fallback software mode.

Fixes: 89df6a810470 ("net/bonding: Implement TLS TX device offload")
Fixes: c55dcdd435aa ("net/tls: Fix use-after-free after the TLS device goes down and up")
Signed-off-by: Maxim Mikityanskiy <maximmi@nvidia.com>
Link: https://lore.kernel.org/r/20220810081602.1435800-1-maximmi@nvidia.com
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2022-08-10 22:58:43 -07:00

506 lines
13 KiB
C

/*
* Copyright (c) 2016-2017, Mellanox Technologies. All rights reserved.
* Copyright (c) 2016-2017, Dave Watson <davejwatson@fb.com>. All rights reserved.
*
* This software is available to you under a choice of one of two
* licenses. You may choose to be licensed under the terms of the GNU
* General Public License (GPL) Version 2, available from the file
* COPYING in the main directory of this source tree, or the
* OpenIB.org BSD license below:
*
* Redistribution and use in source and binary forms, with or
* without modification, are permitted provided that the following
* conditions are met:
*
* - Redistributions of source code must retain the above
* copyright notice, this list of conditions and the following
* disclaimer.
*
* - Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials
* provided with the distribution.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
* BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
* ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#ifndef _TLS_OFFLOAD_H
#define _TLS_OFFLOAD_H
#include <linux/types.h>
#include <asm/byteorder.h>
#include <linux/crypto.h>
#include <linux/socket.h>
#include <linux/tcp.h>
#include <linux/mutex.h>
#include <linux/netdevice.h>
#include <linux/rcupdate.h>
#include <net/net_namespace.h>
#include <net/tcp.h>
#include <net/strparser.h>
#include <crypto/aead.h>
#include <uapi/linux/tls.h>
struct tls_rec;
/* Maximum data size carried in a TLS record */
#define TLS_MAX_PAYLOAD_SIZE ((size_t)1 << 14)
#define TLS_HEADER_SIZE 5
#define TLS_NONCE_OFFSET TLS_HEADER_SIZE
#define TLS_CRYPTO_INFO_READY(info) ((info)->cipher_type)
#define TLS_RECORD_TYPE_DATA 0x17
#define TLS_AAD_SPACE_SIZE 13
#define MAX_IV_SIZE 16
#define TLS_TAG_SIZE 16
#define TLS_MAX_REC_SEQ_SIZE 8
#define TLS_MAX_AAD_SIZE TLS_AAD_SPACE_SIZE
/* For CCM mode, the full 16-bytes of IV is made of '4' fields of given sizes.
*
* IV[16] = b0[1] || implicit nonce[4] || explicit nonce[8] || length[3]
*
* The field 'length' is encoded in field 'b0' as '(length width - 1)'.
* Hence b0 contains (3 - 1) = 2.
*/
#define TLS_AES_CCM_IV_B0_BYTE 2
#define TLS_SM4_CCM_IV_B0_BYTE 2
enum {
TLS_BASE,
TLS_SW,
TLS_HW,
TLS_HW_RECORD,
TLS_NUM_CONFIG,
};
struct tx_work {
struct delayed_work work;
struct sock *sk;
};
struct tls_sw_context_tx {
struct crypto_aead *aead_send;
struct crypto_wait async_wait;
struct tx_work tx_work;
struct tls_rec *open_rec;
struct list_head tx_list;
atomic_t encrypt_pending;
/* protect crypto_wait with encrypt_pending */
spinlock_t encrypt_compl_lock;
int async_notify;
u8 async_capable:1;
#define BIT_TX_SCHEDULED 0
#define BIT_TX_CLOSING 1
unsigned long tx_bitmask;
};
struct tls_strparser {
struct sock *sk;
u32 mark : 8;
u32 stopped : 1;
u32 copy_mode : 1;
u32 msg_ready : 1;
struct strp_msg stm;
struct sk_buff *anchor;
struct work_struct work;
};
struct tls_sw_context_rx {
struct crypto_aead *aead_recv;
struct crypto_wait async_wait;
struct sk_buff_head rx_list; /* list of decrypted 'data' records */
void (*saved_data_ready)(struct sock *sk);
u8 reader_present;
u8 async_capable:1;
u8 zc_capable:1;
u8 reader_contended:1;
struct tls_strparser strp;
atomic_t decrypt_pending;
/* protect crypto_wait with decrypt_pending*/
spinlock_t decrypt_compl_lock;
struct sk_buff_head async_hold;
struct wait_queue_head wq;
};
struct tls_record_info {
struct list_head list;
u32 end_seq;
int len;
int num_frags;
skb_frag_t frags[MAX_SKB_FRAGS];
};
struct tls_offload_context_tx {
struct crypto_aead *aead_send;
spinlock_t lock; /* protects records list */
struct list_head records_list;
struct tls_record_info *open_record;
struct tls_record_info *retransmit_hint;
u64 hint_record_sn;
u64 unacked_record_sn;
struct scatterlist sg_tx_data[MAX_SKB_FRAGS];
void (*sk_destruct)(struct sock *sk);
struct work_struct destruct_work;
struct tls_context *ctx;
u8 driver_state[] __aligned(8);
/* The TLS layer reserves room for driver specific state
* Currently the belief is that there is not enough
* driver specific state to justify another layer of indirection
*/
#define TLS_DRIVER_STATE_SIZE_TX 16
};
#define TLS_OFFLOAD_CONTEXT_SIZE_TX \
(sizeof(struct tls_offload_context_tx) + TLS_DRIVER_STATE_SIZE_TX)
enum tls_context_flags {
/* tls_device_down was called after the netdev went down, device state
* was released, and kTLS works in software, even though rx_conf is
* still TLS_HW (needed for transition).
*/
TLS_RX_DEV_DEGRADED = 0,
/* Unlike RX where resync is driven entirely by the core in TX only
* the driver knows when things went out of sync, so we need the flag
* to be atomic.
*/
TLS_TX_SYNC_SCHED = 1,
/* tls_dev_del was called for the RX side, device state was released,
* but tls_ctx->netdev might still be kept, because TX-side driver
* resources might not be released yet. Used to prevent the second
* tls_dev_del call in tls_device_down if it happens simultaneously.
*/
TLS_RX_DEV_CLOSED = 2,
};
struct cipher_context {
char *iv;
char *rec_seq;
};
union tls_crypto_context {
struct tls_crypto_info info;
union {
struct tls12_crypto_info_aes_gcm_128 aes_gcm_128;
struct tls12_crypto_info_aes_gcm_256 aes_gcm_256;
struct tls12_crypto_info_chacha20_poly1305 chacha20_poly1305;
struct tls12_crypto_info_sm4_gcm sm4_gcm;
struct tls12_crypto_info_sm4_ccm sm4_ccm;
};
};
struct tls_prot_info {
u16 version;
u16 cipher_type;
u16 prepend_size;
u16 tag_size;
u16 overhead_size;
u16 iv_size;
u16 salt_size;
u16 rec_seq_size;
u16 aad_size;
u16 tail_size;
};
struct tls_context {
/* read-only cache line */
struct tls_prot_info prot_info;
u8 tx_conf:3;
u8 rx_conf:3;
u8 zerocopy_sendfile:1;
u8 rx_no_pad:1;
int (*push_pending_record)(struct sock *sk, int flags);
void (*sk_write_space)(struct sock *sk);
void *priv_ctx_tx;
void *priv_ctx_rx;
struct net_device __rcu *netdev;
/* rw cache line */
struct cipher_context tx;
struct cipher_context rx;
struct scatterlist *partially_sent_record;
u16 partially_sent_offset;
bool in_tcp_sendpages;
bool pending_open_record_frags;
struct mutex tx_lock; /* protects partially_sent_* fields and
* per-type TX fields
*/
unsigned long flags;
/* cache cold stuff */
struct proto *sk_proto;
struct sock *sk;
void (*sk_destruct)(struct sock *sk);
union tls_crypto_context crypto_send;
union tls_crypto_context crypto_recv;
struct list_head list;
refcount_t refcount;
struct rcu_head rcu;
};
enum tls_offload_ctx_dir {
TLS_OFFLOAD_CTX_DIR_RX,
TLS_OFFLOAD_CTX_DIR_TX,
};
struct tlsdev_ops {
int (*tls_dev_add)(struct net_device *netdev, struct sock *sk,
enum tls_offload_ctx_dir direction,
struct tls_crypto_info *crypto_info,
u32 start_offload_tcp_sn);
void (*tls_dev_del)(struct net_device *netdev,
struct tls_context *ctx,
enum tls_offload_ctx_dir direction);
int (*tls_dev_resync)(struct net_device *netdev,
struct sock *sk, u32 seq, u8 *rcd_sn,
enum tls_offload_ctx_dir direction);
};
enum tls_offload_sync_type {
TLS_OFFLOAD_SYNC_TYPE_DRIVER_REQ = 0,
TLS_OFFLOAD_SYNC_TYPE_CORE_NEXT_HINT = 1,
TLS_OFFLOAD_SYNC_TYPE_DRIVER_REQ_ASYNC = 2,
};
#define TLS_DEVICE_RESYNC_NH_START_IVAL 2
#define TLS_DEVICE_RESYNC_NH_MAX_IVAL 128
#define TLS_DEVICE_RESYNC_ASYNC_LOGMAX 13
struct tls_offload_resync_async {
atomic64_t req;
u16 loglen;
u16 rcd_delta;
u32 log[TLS_DEVICE_RESYNC_ASYNC_LOGMAX];
};
struct tls_offload_context_rx {
/* sw must be the first member of tls_offload_context_rx */
struct tls_sw_context_rx sw;
enum tls_offload_sync_type resync_type;
/* this member is set regardless of resync_type, to avoid branches */
u8 resync_nh_reset:1;
/* CORE_NEXT_HINT-only member, but use the hole here */
u8 resync_nh_do_now:1;
union {
/* TLS_OFFLOAD_SYNC_TYPE_DRIVER_REQ */
struct {
atomic64_t resync_req;
};
/* TLS_OFFLOAD_SYNC_TYPE_CORE_NEXT_HINT */
struct {
u32 decrypted_failed;
u32 decrypted_tgt;
} resync_nh;
/* TLS_OFFLOAD_SYNC_TYPE_DRIVER_REQ_ASYNC */
struct {
struct tls_offload_resync_async *resync_async;
};
};
u8 driver_state[] __aligned(8);
/* The TLS layer reserves room for driver specific state
* Currently the belief is that there is not enough
* driver specific state to justify another layer of indirection
*/
#define TLS_DRIVER_STATE_SIZE_RX 8
};
#define TLS_OFFLOAD_CONTEXT_SIZE_RX \
(sizeof(struct tls_offload_context_rx) + TLS_DRIVER_STATE_SIZE_RX)
struct tls_record_info *tls_get_record(struct tls_offload_context_tx *context,
u32 seq, u64 *p_record_sn);
static inline bool tls_record_is_start_marker(struct tls_record_info *rec)
{
return rec->len == 0;
}
static inline u32 tls_record_start_seq(struct tls_record_info *rec)
{
return rec->end_seq - rec->len;
}
struct sk_buff *
tls_validate_xmit_skb(struct sock *sk, struct net_device *dev,
struct sk_buff *skb);
struct sk_buff *
tls_validate_xmit_skb_sw(struct sock *sk, struct net_device *dev,
struct sk_buff *skb);
static inline bool tls_is_sk_tx_device_offloaded(struct sock *sk)
{
#ifdef CONFIG_SOCK_VALIDATE_XMIT
return sk_fullsock(sk) &&
(smp_load_acquire(&sk->sk_validate_xmit_skb) ==
&tls_validate_xmit_skb);
#else
return false;
#endif
}
static inline struct tls_context *tls_get_ctx(const struct sock *sk)
{
struct inet_connection_sock *icsk = inet_csk(sk);
/* Use RCU on icsk_ulp_data only for sock diag code,
* TLS data path doesn't need rcu_dereference().
*/
return (__force void *)icsk->icsk_ulp_data;
}
static inline struct tls_sw_context_rx *tls_sw_ctx_rx(
const struct tls_context *tls_ctx)
{
return (struct tls_sw_context_rx *)tls_ctx->priv_ctx_rx;
}
static inline struct tls_sw_context_tx *tls_sw_ctx_tx(
const struct tls_context *tls_ctx)
{
return (struct tls_sw_context_tx *)tls_ctx->priv_ctx_tx;
}
static inline struct tls_offload_context_tx *
tls_offload_ctx_tx(const struct tls_context *tls_ctx)
{
return (struct tls_offload_context_tx *)tls_ctx->priv_ctx_tx;
}
static inline bool tls_sw_has_ctx_tx(const struct sock *sk)
{
struct tls_context *ctx = tls_get_ctx(sk);
if (!ctx)
return false;
return !!tls_sw_ctx_tx(ctx);
}
static inline bool tls_sw_has_ctx_rx(const struct sock *sk)
{
struct tls_context *ctx = tls_get_ctx(sk);
if (!ctx)
return false;
return !!tls_sw_ctx_rx(ctx);
}
static inline struct tls_offload_context_rx *
tls_offload_ctx_rx(const struct tls_context *tls_ctx)
{
return (struct tls_offload_context_rx *)tls_ctx->priv_ctx_rx;
}
static inline void *__tls_driver_ctx(struct tls_context *tls_ctx,
enum tls_offload_ctx_dir direction)
{
if (direction == TLS_OFFLOAD_CTX_DIR_TX)
return tls_offload_ctx_tx(tls_ctx)->driver_state;
else
return tls_offload_ctx_rx(tls_ctx)->driver_state;
}
static inline void *
tls_driver_ctx(const struct sock *sk, enum tls_offload_ctx_dir direction)
{
return __tls_driver_ctx(tls_get_ctx(sk), direction);
}
#define RESYNC_REQ BIT(0)
#define RESYNC_REQ_ASYNC BIT(1)
/* The TLS context is valid until sk_destruct is called */
static inline void tls_offload_rx_resync_request(struct sock *sk, __be32 seq)
{
struct tls_context *tls_ctx = tls_get_ctx(sk);
struct tls_offload_context_rx *rx_ctx = tls_offload_ctx_rx(tls_ctx);
atomic64_set(&rx_ctx->resync_req, ((u64)ntohl(seq) << 32) | RESYNC_REQ);
}
/* Log all TLS record header TCP sequences in [seq, seq+len] */
static inline void
tls_offload_rx_resync_async_request_start(struct sock *sk, __be32 seq, u16 len)
{
struct tls_context *tls_ctx = tls_get_ctx(sk);
struct tls_offload_context_rx *rx_ctx = tls_offload_ctx_rx(tls_ctx);
atomic64_set(&rx_ctx->resync_async->req, ((u64)ntohl(seq) << 32) |
((u64)len << 16) | RESYNC_REQ | RESYNC_REQ_ASYNC);
rx_ctx->resync_async->loglen = 0;
rx_ctx->resync_async->rcd_delta = 0;
}
static inline void
tls_offload_rx_resync_async_request_end(struct sock *sk, __be32 seq)
{
struct tls_context *tls_ctx = tls_get_ctx(sk);
struct tls_offload_context_rx *rx_ctx = tls_offload_ctx_rx(tls_ctx);
atomic64_set(&rx_ctx->resync_async->req,
((u64)ntohl(seq) << 32) | RESYNC_REQ);
}
static inline void
tls_offload_rx_resync_set_type(struct sock *sk, enum tls_offload_sync_type type)
{
struct tls_context *tls_ctx = tls_get_ctx(sk);
tls_offload_ctx_rx(tls_ctx)->resync_type = type;
}
/* Driver's seq tracking has to be disabled until resync succeeded */
static inline bool tls_offload_tx_resync_pending(struct sock *sk)
{
struct tls_context *tls_ctx = tls_get_ctx(sk);
bool ret;
ret = test_bit(TLS_TX_SYNC_SCHED, &tls_ctx->flags);
smp_mb__after_atomic();
return ret;
}
struct sk_buff *tls_encrypt_skb(struct sk_buff *skb);
#ifdef CONFIG_TLS_DEVICE
void tls_device_sk_destruct(struct sock *sk);
void tls_offload_tx_resync_request(struct sock *sk, u32 got_seq, u32 exp_seq);
static inline bool tls_is_sk_rx_device_offloaded(struct sock *sk)
{
if (!sk_fullsock(sk) ||
smp_load_acquire(&sk->sk_destruct) != tls_device_sk_destruct)
return false;
return tls_get_ctx(sk)->rx_conf == TLS_HW;
}
#endif
#endif /* _TLS_OFFLOAD_H */