linux/arch/powerpc/kernel/vdso64/gettimeofday.S
Michael Ellerman b5b4453e79 powerpc/vdso64: Fix CLOCK_MONOTONIC inconsistencies across Y2038
Jakub Drnec reported:
  Setting the realtime clock can sometimes make the monotonic clock go
  back by over a hundred years. Decreasing the realtime clock across
  the y2k38 threshold is one reliable way to reproduce. Allegedly this
  can also happen just by running ntpd, I have not managed to
  reproduce that other than booting with rtc at >2038 and then running
  ntp. When this happens, anything with timers (e.g. openjdk) breaks
  rather badly.

And included a test case (slightly edited for brevity):
  #define _POSIX_C_SOURCE 199309L
  #include <stdio.h>
  #include <time.h>
  #include <stdlib.h>
  #include <unistd.h>

  long get_time(void) {
    struct timespec tp;
    clock_gettime(CLOCK_MONOTONIC, &tp);
    return tp.tv_sec + tp.tv_nsec / 1000000000;
  }

  int main(void) {
    long last = get_time();
    while(1) {
      long now = get_time();
      if (now < last) {
        printf("clock went backwards by %ld seconds!\n", last - now);
      }
      last = now;
      sleep(1);
    }
    return 0;
  }

Which when run concurrently with:
 # date -s 2040-1-1
 # date -s 2037-1-1

Will detect the clock going backward.

The root cause is that wtom_clock_sec in struct vdso_data is only a
32-bit signed value, even though we set its value to be equal to
tk->wall_to_monotonic.tv_sec which is 64-bits.

Because the monotonic clock starts at zero when the system boots the
wall_to_montonic.tv_sec offset is negative for current and future
dates. Currently on a freshly booted system the offset will be in the
vicinity of negative 1.5 billion seconds.

However if the wall clock is set past the Y2038 boundary, the offset
from wall to monotonic becomes less than negative 2^31, and no longer
fits in 32-bits. When that value is assigned to wtom_clock_sec it is
truncated and becomes positive, causing the VDSO assembly code to
calculate CLOCK_MONOTONIC incorrectly.

That causes CLOCK_MONOTONIC to jump ahead by ~4 billion seconds which
it is not meant to do. Worse, if the time is then set back before the
Y2038 boundary CLOCK_MONOTONIC will jump backward.

We can fix it simply by storing the full 64-bit offset in the
vdso_data, and using that in the VDSO assembly code. We also shuffle
some of the fields in vdso_data to avoid creating a hole.

The original commit that added the CLOCK_MONOTONIC support to the VDSO
did actually use a 64-bit value for wtom_clock_sec, see commit
a7f290dad3 ("[PATCH] powerpc: Merge vdso's and add vdso support to
32 bits kernel") (Nov 2005). However just 3 days later it was
converted to 32-bits in commit 0c37ec2aa8 ("[PATCH] powerpc: vdso
fixes (take #2)"), and the bug has existed since then AFAICS.

Fixes: 0c37ec2aa8 ("[PATCH] powerpc: vdso fixes (take #2)")
Cc: stable@vger.kernel.org # v2.6.15+
Link: http://lkml.kernel.org/r/HaC.ZfES.62bwlnvAvMP.1STMMj@seznam.cz
Reported-by: Jakub Drnec <jaydee@email.cz>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2019-03-18 19:26:38 +11:00

291 lines
6.9 KiB
ArmAsm

/*
* Userland implementation of gettimeofday() for 64 bits processes in a
* ppc64 kernel for use in the vDSO
*
* Copyright (C) 2004 Benjamin Herrenschmuidt (benh@kernel.crashing.org),
* IBM Corp.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version
* 2 of the License, or (at your option) any later version.
*/
#include <asm/processor.h>
#include <asm/ppc_asm.h>
#include <asm/vdso.h>
#include <asm/asm-offsets.h>
#include <asm/unistd.h>
.text
/*
* Exact prototype of gettimeofday
*
* int __kernel_gettimeofday(struct timeval *tv, struct timezone *tz);
*
*/
V_FUNCTION_BEGIN(__kernel_gettimeofday)
.cfi_startproc
mflr r12
.cfi_register lr,r12
mr r11,r3 /* r11 holds tv */
mr r10,r4 /* r10 holds tz */
bl V_LOCAL_FUNC(__get_datapage) /* get data page */
cmpldi r11,0 /* check if tv is NULL */
beq 2f
lis r7,1000000@ha /* load up USEC_PER_SEC */
addi r7,r7,1000000@l
bl V_LOCAL_FUNC(__do_get_tspec) /* get sec/us from tb & kernel */
std r4,TVAL64_TV_SEC(r11) /* store sec in tv */
std r5,TVAL64_TV_USEC(r11) /* store usec in tv */
2: cmpldi r10,0 /* check if tz is NULL */
beq 1f
lwz r4,CFG_TZ_MINUTEWEST(r3)/* fill tz */
lwz r5,CFG_TZ_DSTTIME(r3)
stw r4,TZONE_TZ_MINWEST(r10)
stw r5,TZONE_TZ_DSTTIME(r10)
1: mtlr r12
crclr cr0*4+so
li r3,0 /* always success */
blr
.cfi_endproc
V_FUNCTION_END(__kernel_gettimeofday)
/*
* Exact prototype of clock_gettime()
*
* int __kernel_clock_gettime(clockid_t clock_id, struct timespec *tp);
*
*/
V_FUNCTION_BEGIN(__kernel_clock_gettime)
.cfi_startproc
/* Check for supported clock IDs */
cmpwi cr0,r3,CLOCK_REALTIME
cmpwi cr1,r3,CLOCK_MONOTONIC
cror cr0*4+eq,cr0*4+eq,cr1*4+eq
cmpwi cr5,r3,CLOCK_REALTIME_COARSE
cmpwi cr6,r3,CLOCK_MONOTONIC_COARSE
cror cr5*4+eq,cr5*4+eq,cr6*4+eq
cror cr0*4+eq,cr0*4+eq,cr5*4+eq
bne cr0,99f
mflr r12 /* r12 saves lr */
.cfi_register lr,r12
mr r11,r4 /* r11 saves tp */
bl V_LOCAL_FUNC(__get_datapage) /* get data page */
lis r7,NSEC_PER_SEC@h /* want nanoseconds */
ori r7,r7,NSEC_PER_SEC@l
beq cr5,70f
50: bl V_LOCAL_FUNC(__do_get_tspec) /* get time from tb & kernel */
bne cr1,80f /* if not monotonic, all done */
/*
* CLOCK_MONOTONIC
*/
/* now we must fixup using wall to monotonic. We need to snapshot
* that value and do the counter trick again. Fortunately, we still
* have the counter value in r8 that was returned by __do_get_tspec.
* At this point, r4,r5 contain our sec/nsec values.
*/
ld r6,WTOM_CLOCK_SEC(r3)
lwa r9,WTOM_CLOCK_NSEC(r3)
/* We now have our result in r6,r9. We create a fake dependency
* on that result and re-check the counter
*/
or r0,r6,r9
xor r0,r0,r0
add r3,r3,r0
ld r0,CFG_TB_UPDATE_COUNT(r3)
cmpld cr0,r0,r8 /* check if updated */
bne- 50b
b 78f
/*
* For coarse clocks we get data directly from the vdso data page, so
* we don't need to call __do_get_tspec, but we still need to do the
* counter trick.
*/
70: ld r8,CFG_TB_UPDATE_COUNT(r3)
andi. r0,r8,1 /* pending update ? loop */
bne- 70b
add r3,r3,r0 /* r0 is already 0 */
/*
* CLOCK_REALTIME_COARSE, below values are needed for MONOTONIC_COARSE
* too
*/
ld r4,STAMP_XTIME+TSPC64_TV_SEC(r3)
ld r5,STAMP_XTIME+TSPC64_TV_NSEC(r3)
bne cr6,75f
/* CLOCK_MONOTONIC_COARSE */
ld r6,WTOM_CLOCK_SEC(r3)
lwa r9,WTOM_CLOCK_NSEC(r3)
/* check if counter has updated */
or r0,r6,r9
75: or r0,r0,r4
or r0,r0,r5
xor r0,r0,r0
add r3,r3,r0
ld r0,CFG_TB_UPDATE_COUNT(r3)
cmpld cr0,r0,r8 /* check if updated */
bne- 70b
/* Counter has not updated, so continue calculating proper values for
* sec and nsec if monotonic coarse, or just return with the proper
* values for realtime.
*/
bne cr6,80f
/* Add wall->monotonic offset and check for overflow or underflow */
78: add r4,r4,r6
add r5,r5,r9
cmpd cr0,r5,r7
cmpdi cr1,r5,0
blt 79f
subf r5,r7,r5
addi r4,r4,1
79: bge cr1,80f
addi r4,r4,-1
add r5,r5,r7
80: std r4,TSPC64_TV_SEC(r11)
std r5,TSPC64_TV_NSEC(r11)
mtlr r12
crclr cr0*4+so
li r3,0
blr
/*
* syscall fallback
*/
99:
li r0,__NR_clock_gettime
.cfi_restore lr
sc
blr
.cfi_endproc
V_FUNCTION_END(__kernel_clock_gettime)
/*
* Exact prototype of clock_getres()
*
* int __kernel_clock_getres(clockid_t clock_id, struct timespec *res);
*
*/
V_FUNCTION_BEGIN(__kernel_clock_getres)
.cfi_startproc
/* Check for supported clock IDs */
cmpwi cr0,r3,CLOCK_REALTIME
cmpwi cr1,r3,CLOCK_MONOTONIC
cror cr0*4+eq,cr0*4+eq,cr1*4+eq
bne cr0,99f
li r3,0
cmpldi cr0,r4,0
crclr cr0*4+so
beqlr
lis r5,CLOCK_REALTIME_RES@h
ori r5,r5,CLOCK_REALTIME_RES@l
std r3,TSPC64_TV_SEC(r4)
std r5,TSPC64_TV_NSEC(r4)
blr
/*
* syscall fallback
*/
99:
li r0,__NR_clock_getres
sc
blr
.cfi_endproc
V_FUNCTION_END(__kernel_clock_getres)
/*
* Exact prototype of time()
*
* time_t time(time *t);
*
*/
V_FUNCTION_BEGIN(__kernel_time)
.cfi_startproc
mflr r12
.cfi_register lr,r12
mr r11,r3 /* r11 holds t */
bl V_LOCAL_FUNC(__get_datapage)
ld r4,STAMP_XTIME+TSPC64_TV_SEC(r3)
cmpldi r11,0 /* check if t is NULL */
beq 2f
std r4,0(r11) /* store result at *t */
2: mtlr r12
crclr cr0*4+so
mr r3,r4
blr
.cfi_endproc
V_FUNCTION_END(__kernel_time)
/*
* This is the core of clock_gettime() and gettimeofday(),
* it returns the current time in r4 (seconds) and r5.
* On entry, r7 gives the resolution of r5, either USEC_PER_SEC
* or NSEC_PER_SEC, giving r5 in microseconds or nanoseconds.
* It expects the datapage ptr in r3 and doesn't clobber it.
* It clobbers r0, r6 and r9.
* On return, r8 contains the counter value that can be reused.
* This clobbers cr0 but not any other cr field.
*/
V_FUNCTION_BEGIN(__do_get_tspec)
.cfi_startproc
/* check for update count & load values */
1: ld r8,CFG_TB_UPDATE_COUNT(r3)
andi. r0,r8,1 /* pending update ? loop */
bne- 1b
xor r0,r8,r8 /* create dependency */
add r3,r3,r0
/* Get TB & offset it. We use the MFTB macro which will generate
* workaround code for Cell.
*/
MFTB(r6)
ld r9,CFG_TB_ORIG_STAMP(r3)
subf r6,r9,r6
/* Scale result */
ld r5,CFG_TB_TO_XS(r3)
sldi r6,r6,12 /* compute time since stamp_xtime */
mulhdu r6,r6,r5 /* in units of 2^-32 seconds */
/* Add stamp since epoch */
ld r4,STAMP_XTIME+TSPC64_TV_SEC(r3)
lwz r5,STAMP_SEC_FRAC(r3)
or r0,r4,r5
or r0,r0,r6
xor r0,r0,r0
add r3,r3,r0
ld r0,CFG_TB_UPDATE_COUNT(r3)
cmpld r0,r8 /* check if updated */
bne- 1b /* reload if so */
/* convert to seconds & nanoseconds and add to stamp */
add r6,r6,r5 /* add on fractional seconds of xtime */
mulhwu r5,r6,r7 /* compute micro or nanoseconds and */
srdi r6,r6,32 /* seconds since stamp_xtime */
clrldi r5,r5,32
add r4,r4,r6
blr
.cfi_endproc
V_FUNCTION_END(__do_get_tspec)