linux/drivers/hv/ring_buffer.c
Michael Kelley b6cae15b57 Drivers: hv: vmbus: Prevent load re-ordering when reading ring buffer
When reading a packet from a host-to-guest ring buffer, there is no
memory barrier between reading the write index (to see if there is
a packet to read) and reading the contents of the packet. The Hyper-V
host uses store-release when updating the write index to ensure that
writes of the packet data are completed first. On the guest side,
the processor can reorder and read the packet data before the write
index, and sometimes get stale packet data. Getting such stale packet
data has been observed in a reproducible case in a VM on ARM64.

Fix this by using virt_load_acquire() to read the write index,
ensuring that reads of the packet data cannot be reordered
before it. Preventing such reordering is logically correct, and
with this change, getting stale data can no longer be reproduced.

Signed-off-by: Michael Kelley <mikelley@microsoft.com>
Reviewed-by: Andrea Parri (Microsoft) <parri.andrea@gmail.com>
Link: https://lore.kernel.org/r/1648394710-33480-1-git-send-email-mikelley@microsoft.com
Signed-off-by: Wei Liu <wei.liu@kernel.org>
2022-03-29 13:19:33 +00:00

670 lines
19 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
*
* Copyright (c) 2009, Microsoft Corporation.
*
* Authors:
* Haiyang Zhang <haiyangz@microsoft.com>
* Hank Janssen <hjanssen@microsoft.com>
* K. Y. Srinivasan <kys@microsoft.com>
*/
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <linux/kernel.h>
#include <linux/mm.h>
#include <linux/hyperv.h>
#include <linux/uio.h>
#include <linux/vmalloc.h>
#include <linux/slab.h>
#include <linux/prefetch.h>
#include <linux/io.h>
#include <asm/mshyperv.h>
#include "hyperv_vmbus.h"
#define VMBUS_PKT_TRAILER 8
/*
* When we write to the ring buffer, check if the host needs to
* be signaled. Here is the details of this protocol:
*
* 1. The host guarantees that while it is draining the
* ring buffer, it will set the interrupt_mask to
* indicate it does not need to be interrupted when
* new data is placed.
*
* 2. The host guarantees that it will completely drain
* the ring buffer before exiting the read loop. Further,
* once the ring buffer is empty, it will clear the
* interrupt_mask and re-check to see if new data has
* arrived.
*
* KYS: Oct. 30, 2016:
* It looks like Windows hosts have logic to deal with DOS attacks that
* can be triggered if it receives interrupts when it is not expecting
* the interrupt. The host expects interrupts only when the ring
* transitions from empty to non-empty (or full to non full on the guest
* to host ring).
* So, base the signaling decision solely on the ring state until the
* host logic is fixed.
*/
static void hv_signal_on_write(u32 old_write, struct vmbus_channel *channel)
{
struct hv_ring_buffer_info *rbi = &channel->outbound;
virt_mb();
if (READ_ONCE(rbi->ring_buffer->interrupt_mask))
return;
/* check interrupt_mask before read_index */
virt_rmb();
/*
* This is the only case we need to signal when the
* ring transitions from being empty to non-empty.
*/
if (old_write == READ_ONCE(rbi->ring_buffer->read_index)) {
++channel->intr_out_empty;
vmbus_setevent(channel);
}
}
/* Get the next write location for the specified ring buffer. */
static inline u32
hv_get_next_write_location(struct hv_ring_buffer_info *ring_info)
{
u32 next = ring_info->ring_buffer->write_index;
return next;
}
/* Set the next write location for the specified ring buffer. */
static inline void
hv_set_next_write_location(struct hv_ring_buffer_info *ring_info,
u32 next_write_location)
{
ring_info->ring_buffer->write_index = next_write_location;
}
/* Get the size of the ring buffer. */
static inline u32
hv_get_ring_buffersize(const struct hv_ring_buffer_info *ring_info)
{
return ring_info->ring_datasize;
}
/* Get the read and write indices as u64 of the specified ring buffer. */
static inline u64
hv_get_ring_bufferindices(struct hv_ring_buffer_info *ring_info)
{
return (u64)ring_info->ring_buffer->write_index << 32;
}
/*
* Helper routine to copy from source to ring buffer.
* Assume there is enough room. Handles wrap-around in dest case only!!
*/
static u32 hv_copyto_ringbuffer(
struct hv_ring_buffer_info *ring_info,
u32 start_write_offset,
const void *src,
u32 srclen)
{
void *ring_buffer = hv_get_ring_buffer(ring_info);
u32 ring_buffer_size = hv_get_ring_buffersize(ring_info);
memcpy(ring_buffer + start_write_offset, src, srclen);
start_write_offset += srclen;
if (start_write_offset >= ring_buffer_size)
start_write_offset -= ring_buffer_size;
return start_write_offset;
}
/*
*
* hv_get_ringbuffer_availbytes()
*
* Get number of bytes available to read and to write to
* for the specified ring buffer
*/
static void
hv_get_ringbuffer_availbytes(const struct hv_ring_buffer_info *rbi,
u32 *read, u32 *write)
{
u32 read_loc, write_loc, dsize;
/* Capture the read/write indices before they changed */
read_loc = READ_ONCE(rbi->ring_buffer->read_index);
write_loc = READ_ONCE(rbi->ring_buffer->write_index);
dsize = rbi->ring_datasize;
*write = write_loc >= read_loc ? dsize - (write_loc - read_loc) :
read_loc - write_loc;
*read = dsize - *write;
}
/* Get various debug metrics for the specified ring buffer. */
int hv_ringbuffer_get_debuginfo(struct hv_ring_buffer_info *ring_info,
struct hv_ring_buffer_debug_info *debug_info)
{
u32 bytes_avail_towrite;
u32 bytes_avail_toread;
mutex_lock(&ring_info->ring_buffer_mutex);
if (!ring_info->ring_buffer) {
mutex_unlock(&ring_info->ring_buffer_mutex);
return -EINVAL;
}
hv_get_ringbuffer_availbytes(ring_info,
&bytes_avail_toread,
&bytes_avail_towrite);
debug_info->bytes_avail_toread = bytes_avail_toread;
debug_info->bytes_avail_towrite = bytes_avail_towrite;
debug_info->current_read_index = ring_info->ring_buffer->read_index;
debug_info->current_write_index = ring_info->ring_buffer->write_index;
debug_info->current_interrupt_mask
= ring_info->ring_buffer->interrupt_mask;
mutex_unlock(&ring_info->ring_buffer_mutex);
return 0;
}
EXPORT_SYMBOL_GPL(hv_ringbuffer_get_debuginfo);
/* Initialize a channel's ring buffer info mutex locks */
void hv_ringbuffer_pre_init(struct vmbus_channel *channel)
{
mutex_init(&channel->inbound.ring_buffer_mutex);
mutex_init(&channel->outbound.ring_buffer_mutex);
}
/* Initialize the ring buffer. */
int hv_ringbuffer_init(struct hv_ring_buffer_info *ring_info,
struct page *pages, u32 page_cnt, u32 max_pkt_size)
{
struct page **pages_wraparound;
unsigned long *pfns_wraparound;
u64 pfn;
int i;
BUILD_BUG_ON((sizeof(struct hv_ring_buffer) != PAGE_SIZE));
/*
* First page holds struct hv_ring_buffer, do wraparound mapping for
* the rest.
*/
if (hv_isolation_type_snp()) {
pfn = page_to_pfn(pages) +
PFN_DOWN(ms_hyperv.shared_gpa_boundary);
pfns_wraparound = kcalloc(page_cnt * 2 - 1,
sizeof(unsigned long), GFP_KERNEL);
if (!pfns_wraparound)
return -ENOMEM;
pfns_wraparound[0] = pfn;
for (i = 0; i < 2 * (page_cnt - 1); i++)
pfns_wraparound[i + 1] = pfn + i % (page_cnt - 1) + 1;
ring_info->ring_buffer = (struct hv_ring_buffer *)
vmap_pfn(pfns_wraparound, page_cnt * 2 - 1,
PAGE_KERNEL);
kfree(pfns_wraparound);
if (!ring_info->ring_buffer)
return -ENOMEM;
/* Zero ring buffer after setting memory host visibility. */
memset(ring_info->ring_buffer, 0x00, PAGE_SIZE * page_cnt);
} else {
pages_wraparound = kcalloc(page_cnt * 2 - 1,
sizeof(struct page *),
GFP_KERNEL);
if (!pages_wraparound)
return -ENOMEM;
pages_wraparound[0] = pages;
for (i = 0; i < 2 * (page_cnt - 1); i++)
pages_wraparound[i + 1] =
&pages[i % (page_cnt - 1) + 1];
ring_info->ring_buffer = (struct hv_ring_buffer *)
vmap(pages_wraparound, page_cnt * 2 - 1, VM_MAP,
PAGE_KERNEL);
kfree(pages_wraparound);
if (!ring_info->ring_buffer)
return -ENOMEM;
}
ring_info->ring_buffer->read_index =
ring_info->ring_buffer->write_index = 0;
/* Set the feature bit for enabling flow control. */
ring_info->ring_buffer->feature_bits.value = 1;
ring_info->ring_size = page_cnt << PAGE_SHIFT;
ring_info->ring_size_div10_reciprocal =
reciprocal_value(ring_info->ring_size / 10);
ring_info->ring_datasize = ring_info->ring_size -
sizeof(struct hv_ring_buffer);
ring_info->priv_read_index = 0;
/* Initialize buffer that holds copies of incoming packets */
if (max_pkt_size) {
ring_info->pkt_buffer = kzalloc(max_pkt_size, GFP_KERNEL);
if (!ring_info->pkt_buffer)
return -ENOMEM;
ring_info->pkt_buffer_size = max_pkt_size;
}
spin_lock_init(&ring_info->ring_lock);
return 0;
}
/* Cleanup the ring buffer. */
void hv_ringbuffer_cleanup(struct hv_ring_buffer_info *ring_info)
{
mutex_lock(&ring_info->ring_buffer_mutex);
vunmap(ring_info->ring_buffer);
ring_info->ring_buffer = NULL;
mutex_unlock(&ring_info->ring_buffer_mutex);
kfree(ring_info->pkt_buffer);
ring_info->pkt_buffer = NULL;
ring_info->pkt_buffer_size = 0;
}
/* Write to the ring buffer. */
int hv_ringbuffer_write(struct vmbus_channel *channel,
const struct kvec *kv_list, u32 kv_count,
u64 requestid)
{
int i;
u32 bytes_avail_towrite;
u32 totalbytes_towrite = sizeof(u64);
u32 next_write_location;
u32 old_write;
u64 prev_indices;
unsigned long flags;
struct hv_ring_buffer_info *outring_info = &channel->outbound;
struct vmpacket_descriptor *desc = kv_list[0].iov_base;
u64 rqst_id = VMBUS_NO_RQSTOR;
if (channel->rescind)
return -ENODEV;
for (i = 0; i < kv_count; i++)
totalbytes_towrite += kv_list[i].iov_len;
spin_lock_irqsave(&outring_info->ring_lock, flags);
bytes_avail_towrite = hv_get_bytes_to_write(outring_info);
/*
* If there is only room for the packet, assume it is full.
* Otherwise, the next time around, we think the ring buffer
* is empty since the read index == write index.
*/
if (bytes_avail_towrite <= totalbytes_towrite) {
++channel->out_full_total;
if (!channel->out_full_flag) {
++channel->out_full_first;
channel->out_full_flag = true;
}
spin_unlock_irqrestore(&outring_info->ring_lock, flags);
return -EAGAIN;
}
channel->out_full_flag = false;
/* Write to the ring buffer */
next_write_location = hv_get_next_write_location(outring_info);
old_write = next_write_location;
for (i = 0; i < kv_count; i++) {
next_write_location = hv_copyto_ringbuffer(outring_info,
next_write_location,
kv_list[i].iov_base,
kv_list[i].iov_len);
}
/*
* Allocate the request ID after the data has been copied into the
* ring buffer. Once this request ID is allocated, the completion
* path could find the data and free it.
*/
if (desc->flags == VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED) {
if (channel->next_request_id_callback != NULL) {
rqst_id = channel->next_request_id_callback(channel, requestid);
if (rqst_id == VMBUS_RQST_ERROR) {
spin_unlock_irqrestore(&outring_info->ring_lock, flags);
return -EAGAIN;
}
}
}
desc = hv_get_ring_buffer(outring_info) + old_write;
desc->trans_id = (rqst_id == VMBUS_NO_RQSTOR) ? requestid : rqst_id;
/* Set previous packet start */
prev_indices = hv_get_ring_bufferindices(outring_info);
next_write_location = hv_copyto_ringbuffer(outring_info,
next_write_location,
&prev_indices,
sizeof(u64));
/* Issue a full memory barrier before updating the write index */
virt_mb();
/* Now, update the write location */
hv_set_next_write_location(outring_info, next_write_location);
spin_unlock_irqrestore(&outring_info->ring_lock, flags);
hv_signal_on_write(old_write, channel);
if (channel->rescind) {
if (rqst_id != VMBUS_NO_RQSTOR) {
/* Reclaim request ID to avoid leak of IDs */
if (channel->request_addr_callback != NULL)
channel->request_addr_callback(channel, rqst_id);
}
return -ENODEV;
}
return 0;
}
int hv_ringbuffer_read(struct vmbus_channel *channel,
void *buffer, u32 buflen, u32 *buffer_actual_len,
u64 *requestid, bool raw)
{
struct vmpacket_descriptor *desc;
u32 packetlen, offset;
if (unlikely(buflen == 0))
return -EINVAL;
*buffer_actual_len = 0;
*requestid = 0;
/* Make sure there is something to read */
desc = hv_pkt_iter_first(channel);
if (desc == NULL) {
/*
* No error is set when there is even no header, drivers are
* supposed to analyze buffer_actual_len.
*/
return 0;
}
offset = raw ? 0 : (desc->offset8 << 3);
packetlen = (desc->len8 << 3) - offset;
*buffer_actual_len = packetlen;
*requestid = desc->trans_id;
if (unlikely(packetlen > buflen))
return -ENOBUFS;
/* since ring is double mapped, only one copy is necessary */
memcpy(buffer, (const char *)desc + offset, packetlen);
/* Advance ring index to next packet descriptor */
__hv_pkt_iter_next(channel, desc, true);
/* Notify host of update */
hv_pkt_iter_close(channel);
return 0;
}
/*
* Determine number of bytes available in ring buffer after
* the current iterator (priv_read_index) location.
*
* This is similar to hv_get_bytes_to_read but with private
* read index instead.
*/
static u32 hv_pkt_iter_avail(const struct hv_ring_buffer_info *rbi)
{
u32 priv_read_loc = rbi->priv_read_index;
u32 write_loc;
/*
* The Hyper-V host writes the packet data, then uses
* store_release() to update the write_index. Use load_acquire()
* here to prevent loads of the packet data from being re-ordered
* before the read of the write_index and potentially getting
* stale data.
*/
write_loc = virt_load_acquire(&rbi->ring_buffer->write_index);
if (write_loc >= priv_read_loc)
return write_loc - priv_read_loc;
else
return (rbi->ring_datasize - priv_read_loc) + write_loc;
}
/*
* Get first vmbus packet without copying it out of the ring buffer
*/
struct vmpacket_descriptor *hv_pkt_iter_first_raw(struct vmbus_channel *channel)
{
struct hv_ring_buffer_info *rbi = &channel->inbound;
hv_debug_delay_test(channel, MESSAGE_DELAY);
if (hv_pkt_iter_avail(rbi) < sizeof(struct vmpacket_descriptor))
return NULL;
return (struct vmpacket_descriptor *)(hv_get_ring_buffer(rbi) + rbi->priv_read_index);
}
EXPORT_SYMBOL_GPL(hv_pkt_iter_first_raw);
/*
* Get first vmbus packet from ring buffer after read_index
*
* If ring buffer is empty, returns NULL and no other action needed.
*/
struct vmpacket_descriptor *hv_pkt_iter_first(struct vmbus_channel *channel)
{
struct hv_ring_buffer_info *rbi = &channel->inbound;
struct vmpacket_descriptor *desc, *desc_copy;
u32 bytes_avail, pkt_len, pkt_offset;
desc = hv_pkt_iter_first_raw(channel);
if (!desc)
return NULL;
bytes_avail = min(rbi->pkt_buffer_size, hv_pkt_iter_avail(rbi));
/*
* Ensure the compiler does not use references to incoming Hyper-V values (which
* could change at any moment) when reading local variables later in the code
*/
pkt_len = READ_ONCE(desc->len8) << 3;
pkt_offset = READ_ONCE(desc->offset8) << 3;
/*
* If pkt_len is invalid, set it to the smaller of hv_pkt_iter_avail() and
* rbi->pkt_buffer_size
*/
if (pkt_len < sizeof(struct vmpacket_descriptor) || pkt_len > bytes_avail)
pkt_len = bytes_avail;
/*
* If pkt_offset is invalid, arbitrarily set it to
* the size of vmpacket_descriptor
*/
if (pkt_offset < sizeof(struct vmpacket_descriptor) || pkt_offset > pkt_len)
pkt_offset = sizeof(struct vmpacket_descriptor);
/* Copy the Hyper-V packet out of the ring buffer */
desc_copy = (struct vmpacket_descriptor *)rbi->pkt_buffer;
memcpy(desc_copy, desc, pkt_len);
/*
* Hyper-V could still change len8 and offset8 after the earlier read.
* Ensure that desc_copy has legal values for len8 and offset8 that
* are consistent with the copy we just made
*/
desc_copy->len8 = pkt_len >> 3;
desc_copy->offset8 = pkt_offset >> 3;
return desc_copy;
}
EXPORT_SYMBOL_GPL(hv_pkt_iter_first);
/*
* Get next vmbus packet from ring buffer.
*
* Advances the current location (priv_read_index) and checks for more
* data. If the end of the ring buffer is reached, then return NULL.
*/
struct vmpacket_descriptor *
__hv_pkt_iter_next(struct vmbus_channel *channel,
const struct vmpacket_descriptor *desc,
bool copy)
{
struct hv_ring_buffer_info *rbi = &channel->inbound;
u32 packetlen = desc->len8 << 3;
u32 dsize = rbi->ring_datasize;
hv_debug_delay_test(channel, MESSAGE_DELAY);
/* bump offset to next potential packet */
rbi->priv_read_index += packetlen + VMBUS_PKT_TRAILER;
if (rbi->priv_read_index >= dsize)
rbi->priv_read_index -= dsize;
/* more data? */
return copy ? hv_pkt_iter_first(channel) : hv_pkt_iter_first_raw(channel);
}
EXPORT_SYMBOL_GPL(__hv_pkt_iter_next);
/* How many bytes were read in this iterator cycle */
static u32 hv_pkt_iter_bytes_read(const struct hv_ring_buffer_info *rbi,
u32 start_read_index)
{
if (rbi->priv_read_index >= start_read_index)
return rbi->priv_read_index - start_read_index;
else
return rbi->ring_datasize - start_read_index +
rbi->priv_read_index;
}
/*
* Update host ring buffer after iterating over packets. If the host has
* stopped queuing new entries because it found the ring buffer full, and
* sufficient space is being freed up, signal the host. But be careful to
* only signal the host when necessary, both for performance reasons and
* because Hyper-V protects itself by throttling guests that signal
* inappropriately.
*
* Determining when to signal is tricky. There are three key data inputs
* that must be handled in this order to avoid race conditions:
*
* 1. Update the read_index
* 2. Read the pending_send_sz
* 3. Read the current write_index
*
* The interrupt_mask is not used to determine when to signal. The
* interrupt_mask is used only on the guest->host ring buffer when
* sending requests to the host. The host does not use it on the host->
* guest ring buffer to indicate whether it should be signaled.
*/
void hv_pkt_iter_close(struct vmbus_channel *channel)
{
struct hv_ring_buffer_info *rbi = &channel->inbound;
u32 curr_write_sz, pending_sz, bytes_read, start_read_index;
/*
* Make sure all reads are done before we update the read index since
* the writer may start writing to the read area once the read index
* is updated.
*/
virt_rmb();
start_read_index = rbi->ring_buffer->read_index;
rbi->ring_buffer->read_index = rbi->priv_read_index;
/*
* Older versions of Hyper-V (before WS2102 and Win8) do not
* implement pending_send_sz and simply poll if the host->guest
* ring buffer is full. No signaling is needed or expected.
*/
if (!rbi->ring_buffer->feature_bits.feat_pending_send_sz)
return;
/*
* Issue a full memory barrier before making the signaling decision.
* If reading pending_send_sz were to be reordered and happen
* before we commit the new read_index, a race could occur. If the
* host were to set the pending_send_sz after we have sampled
* pending_send_sz, and the ring buffer blocks before we commit the
* read index, we could miss sending the interrupt. Issue a full
* memory barrier to address this.
*/
virt_mb();
/*
* If the pending_send_sz is zero, then the ring buffer is not
* blocked and there is no need to signal. This is far by the
* most common case, so exit quickly for best performance.
*/
pending_sz = READ_ONCE(rbi->ring_buffer->pending_send_sz);
if (!pending_sz)
return;
/*
* Ensure the read of write_index in hv_get_bytes_to_write()
* happens after the read of pending_send_sz.
*/
virt_rmb();
curr_write_sz = hv_get_bytes_to_write(rbi);
bytes_read = hv_pkt_iter_bytes_read(rbi, start_read_index);
/*
* We want to signal the host only if we're transitioning
* from a "not enough free space" state to a "enough free
* space" state. For example, it's possible that this function
* could run and free up enough space to signal the host, and then
* run again and free up additional space before the host has a
* chance to clear the pending_send_sz. The 2nd invocation would
* be a null transition from "enough free space" to "enough free
* space", which doesn't warrant a signal.
*
* Exactly filling the ring buffer is treated as "not enough
* space". The ring buffer always must have at least one byte
* empty so the empty and full conditions are distinguishable.
* hv_get_bytes_to_write() doesn't fully tell the truth in
* this regard.
*
* So first check if we were in the "enough free space" state
* before we began the iteration. If so, the host was not
* blocked, and there's no need to signal.
*/
if (curr_write_sz - bytes_read > pending_sz)
return;
/*
* Similarly, if the new state is "not enough space", then
* there's no need to signal.
*/
if (curr_write_sz <= pending_sz)
return;
++channel->intr_in_full;
vmbus_setevent(channel);
}
EXPORT_SYMBOL_GPL(hv_pkt_iter_close);