linux/arch/arm/kernel/signal.c
Russell King 48be69a026 ARM: move signal handlers into a vdso-like page
Move the signal handlers into a VDSO page rather than keeping them in
the vectors page.  This allows us to place them randomly within this
page, and also map the page at a random location within userspace
further protecting these code fragments from ROP attacks.  The new
VDSO page is also poisoned in the same way as the vector page.

Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
2013-08-01 14:31:56 +01:00

649 lines
17 KiB
C

/*
* linux/arch/arm/kernel/signal.c
*
* Copyright (C) 1995-2009 Russell King
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#include <linux/errno.h>
#include <linux/random.h>
#include <linux/signal.h>
#include <linux/personality.h>
#include <linux/uaccess.h>
#include <linux/tracehook.h>
#include <asm/elf.h>
#include <asm/cacheflush.h>
#include <asm/traps.h>
#include <asm/ucontext.h>
#include <asm/unistd.h>
#include <asm/vfp.h>
/*
* For ARM syscalls, we encode the syscall number into the instruction.
*/
#define SWI_SYS_SIGRETURN (0xef000000|(__NR_sigreturn)|(__NR_OABI_SYSCALL_BASE))
#define SWI_SYS_RT_SIGRETURN (0xef000000|(__NR_rt_sigreturn)|(__NR_OABI_SYSCALL_BASE))
/*
* With EABI, the syscall number has to be loaded into r7.
*/
#define MOV_R7_NR_SIGRETURN (0xe3a07000 | (__NR_sigreturn - __NR_SYSCALL_BASE))
#define MOV_R7_NR_RT_SIGRETURN (0xe3a07000 | (__NR_rt_sigreturn - __NR_SYSCALL_BASE))
/*
* For Thumb syscalls, we pass the syscall number via r7. We therefore
* need two 16-bit instructions.
*/
#define SWI_THUMB_SIGRETURN (0xdf00 << 16 | 0x2700 | (__NR_sigreturn - __NR_SYSCALL_BASE))
#define SWI_THUMB_RT_SIGRETURN (0xdf00 << 16 | 0x2700 | (__NR_rt_sigreturn - __NR_SYSCALL_BASE))
static const unsigned long sigreturn_codes[7] = {
MOV_R7_NR_SIGRETURN, SWI_SYS_SIGRETURN, SWI_THUMB_SIGRETURN,
MOV_R7_NR_RT_SIGRETURN, SWI_SYS_RT_SIGRETURN, SWI_THUMB_RT_SIGRETURN,
};
static unsigned long signal_return_offset;
#ifdef CONFIG_CRUNCH
static int preserve_crunch_context(struct crunch_sigframe __user *frame)
{
char kbuf[sizeof(*frame) + 8];
struct crunch_sigframe *kframe;
/* the crunch context must be 64 bit aligned */
kframe = (struct crunch_sigframe *)((unsigned long)(kbuf + 8) & ~7);
kframe->magic = CRUNCH_MAGIC;
kframe->size = CRUNCH_STORAGE_SIZE;
crunch_task_copy(current_thread_info(), &kframe->storage);
return __copy_to_user(frame, kframe, sizeof(*frame));
}
static int restore_crunch_context(struct crunch_sigframe __user *frame)
{
char kbuf[sizeof(*frame) + 8];
struct crunch_sigframe *kframe;
/* the crunch context must be 64 bit aligned */
kframe = (struct crunch_sigframe *)((unsigned long)(kbuf + 8) & ~7);
if (__copy_from_user(kframe, frame, sizeof(*frame)))
return -1;
if (kframe->magic != CRUNCH_MAGIC ||
kframe->size != CRUNCH_STORAGE_SIZE)
return -1;
crunch_task_restore(current_thread_info(), &kframe->storage);
return 0;
}
#endif
#ifdef CONFIG_IWMMXT
static int preserve_iwmmxt_context(struct iwmmxt_sigframe *frame)
{
char kbuf[sizeof(*frame) + 8];
struct iwmmxt_sigframe *kframe;
/* the iWMMXt context must be 64 bit aligned */
kframe = (struct iwmmxt_sigframe *)((unsigned long)(kbuf + 8) & ~7);
kframe->magic = IWMMXT_MAGIC;
kframe->size = IWMMXT_STORAGE_SIZE;
iwmmxt_task_copy(current_thread_info(), &kframe->storage);
return __copy_to_user(frame, kframe, sizeof(*frame));
}
static int restore_iwmmxt_context(struct iwmmxt_sigframe *frame)
{
char kbuf[sizeof(*frame) + 8];
struct iwmmxt_sigframe *kframe;
/* the iWMMXt context must be 64 bit aligned */
kframe = (struct iwmmxt_sigframe *)((unsigned long)(kbuf + 8) & ~7);
if (__copy_from_user(kframe, frame, sizeof(*frame)))
return -1;
if (kframe->magic != IWMMXT_MAGIC ||
kframe->size != IWMMXT_STORAGE_SIZE)
return -1;
iwmmxt_task_restore(current_thread_info(), &kframe->storage);
return 0;
}
#endif
#ifdef CONFIG_VFP
static int preserve_vfp_context(struct vfp_sigframe __user *frame)
{
const unsigned long magic = VFP_MAGIC;
const unsigned long size = VFP_STORAGE_SIZE;
int err = 0;
__put_user_error(magic, &frame->magic, err);
__put_user_error(size, &frame->size, err);
if (err)
return -EFAULT;
return vfp_preserve_user_clear_hwstate(&frame->ufp, &frame->ufp_exc);
}
static int restore_vfp_context(struct vfp_sigframe __user *frame)
{
unsigned long magic;
unsigned long size;
int err = 0;
__get_user_error(magic, &frame->magic, err);
__get_user_error(size, &frame->size, err);
if (err)
return -EFAULT;
if (magic != VFP_MAGIC || size != VFP_STORAGE_SIZE)
return -EINVAL;
return vfp_restore_user_hwstate(&frame->ufp, &frame->ufp_exc);
}
#endif
/*
* Do a signal return; undo the signal stack. These are aligned to 64-bit.
*/
struct sigframe {
struct ucontext uc;
unsigned long retcode[2];
};
struct rt_sigframe {
struct siginfo info;
struct sigframe sig;
};
static int restore_sigframe(struct pt_regs *regs, struct sigframe __user *sf)
{
struct aux_sigframe __user *aux;
sigset_t set;
int err;
err = __copy_from_user(&set, &sf->uc.uc_sigmask, sizeof(set));
if (err == 0)
set_current_blocked(&set);
__get_user_error(regs->ARM_r0, &sf->uc.uc_mcontext.arm_r0, err);
__get_user_error(regs->ARM_r1, &sf->uc.uc_mcontext.arm_r1, err);
__get_user_error(regs->ARM_r2, &sf->uc.uc_mcontext.arm_r2, err);
__get_user_error(regs->ARM_r3, &sf->uc.uc_mcontext.arm_r3, err);
__get_user_error(regs->ARM_r4, &sf->uc.uc_mcontext.arm_r4, err);
__get_user_error(regs->ARM_r5, &sf->uc.uc_mcontext.arm_r5, err);
__get_user_error(regs->ARM_r6, &sf->uc.uc_mcontext.arm_r6, err);
__get_user_error(regs->ARM_r7, &sf->uc.uc_mcontext.arm_r7, err);
__get_user_error(regs->ARM_r8, &sf->uc.uc_mcontext.arm_r8, err);
__get_user_error(regs->ARM_r9, &sf->uc.uc_mcontext.arm_r9, err);
__get_user_error(regs->ARM_r10, &sf->uc.uc_mcontext.arm_r10, err);
__get_user_error(regs->ARM_fp, &sf->uc.uc_mcontext.arm_fp, err);
__get_user_error(regs->ARM_ip, &sf->uc.uc_mcontext.arm_ip, err);
__get_user_error(regs->ARM_sp, &sf->uc.uc_mcontext.arm_sp, err);
__get_user_error(regs->ARM_lr, &sf->uc.uc_mcontext.arm_lr, err);
__get_user_error(regs->ARM_pc, &sf->uc.uc_mcontext.arm_pc, err);
__get_user_error(regs->ARM_cpsr, &sf->uc.uc_mcontext.arm_cpsr, err);
err |= !valid_user_regs(regs);
aux = (struct aux_sigframe __user *) sf->uc.uc_regspace;
#ifdef CONFIG_CRUNCH
if (err == 0)
err |= restore_crunch_context(&aux->crunch);
#endif
#ifdef CONFIG_IWMMXT
if (err == 0 && test_thread_flag(TIF_USING_IWMMXT))
err |= restore_iwmmxt_context(&aux->iwmmxt);
#endif
#ifdef CONFIG_VFP
if (err == 0)
err |= restore_vfp_context(&aux->vfp);
#endif
return err;
}
asmlinkage int sys_sigreturn(struct pt_regs *regs)
{
struct sigframe __user *frame;
/* Always make any pending restarted system calls return -EINTR */
current_thread_info()->restart_block.fn = do_no_restart_syscall;
/*
* Since we stacked the signal on a 64-bit boundary,
* then 'sp' should be word aligned here. If it's
* not, then the user is trying to mess with us.
*/
if (regs->ARM_sp & 7)
goto badframe;
frame = (struct sigframe __user *)regs->ARM_sp;
if (!access_ok(VERIFY_READ, frame, sizeof (*frame)))
goto badframe;
if (restore_sigframe(regs, frame))
goto badframe;
return regs->ARM_r0;
badframe:
force_sig(SIGSEGV, current);
return 0;
}
asmlinkage int sys_rt_sigreturn(struct pt_regs *regs)
{
struct rt_sigframe __user *frame;
/* Always make any pending restarted system calls return -EINTR */
current_thread_info()->restart_block.fn = do_no_restart_syscall;
/*
* Since we stacked the signal on a 64-bit boundary,
* then 'sp' should be word aligned here. If it's
* not, then the user is trying to mess with us.
*/
if (regs->ARM_sp & 7)
goto badframe;
frame = (struct rt_sigframe __user *)regs->ARM_sp;
if (!access_ok(VERIFY_READ, frame, sizeof (*frame)))
goto badframe;
if (restore_sigframe(regs, &frame->sig))
goto badframe;
if (restore_altstack(&frame->sig.uc.uc_stack))
goto badframe;
return regs->ARM_r0;
badframe:
force_sig(SIGSEGV, current);
return 0;
}
static int
setup_sigframe(struct sigframe __user *sf, struct pt_regs *regs, sigset_t *set)
{
struct aux_sigframe __user *aux;
int err = 0;
__put_user_error(regs->ARM_r0, &sf->uc.uc_mcontext.arm_r0, err);
__put_user_error(regs->ARM_r1, &sf->uc.uc_mcontext.arm_r1, err);
__put_user_error(regs->ARM_r2, &sf->uc.uc_mcontext.arm_r2, err);
__put_user_error(regs->ARM_r3, &sf->uc.uc_mcontext.arm_r3, err);
__put_user_error(regs->ARM_r4, &sf->uc.uc_mcontext.arm_r4, err);
__put_user_error(regs->ARM_r5, &sf->uc.uc_mcontext.arm_r5, err);
__put_user_error(regs->ARM_r6, &sf->uc.uc_mcontext.arm_r6, err);
__put_user_error(regs->ARM_r7, &sf->uc.uc_mcontext.arm_r7, err);
__put_user_error(regs->ARM_r8, &sf->uc.uc_mcontext.arm_r8, err);
__put_user_error(regs->ARM_r9, &sf->uc.uc_mcontext.arm_r9, err);
__put_user_error(regs->ARM_r10, &sf->uc.uc_mcontext.arm_r10, err);
__put_user_error(regs->ARM_fp, &sf->uc.uc_mcontext.arm_fp, err);
__put_user_error(regs->ARM_ip, &sf->uc.uc_mcontext.arm_ip, err);
__put_user_error(regs->ARM_sp, &sf->uc.uc_mcontext.arm_sp, err);
__put_user_error(regs->ARM_lr, &sf->uc.uc_mcontext.arm_lr, err);
__put_user_error(regs->ARM_pc, &sf->uc.uc_mcontext.arm_pc, err);
__put_user_error(regs->ARM_cpsr, &sf->uc.uc_mcontext.arm_cpsr, err);
__put_user_error(current->thread.trap_no, &sf->uc.uc_mcontext.trap_no, err);
__put_user_error(current->thread.error_code, &sf->uc.uc_mcontext.error_code, err);
__put_user_error(current->thread.address, &sf->uc.uc_mcontext.fault_address, err);
__put_user_error(set->sig[0], &sf->uc.uc_mcontext.oldmask, err);
err |= __copy_to_user(&sf->uc.uc_sigmask, set, sizeof(*set));
aux = (struct aux_sigframe __user *) sf->uc.uc_regspace;
#ifdef CONFIG_CRUNCH
if (err == 0)
err |= preserve_crunch_context(&aux->crunch);
#endif
#ifdef CONFIG_IWMMXT
if (err == 0 && test_thread_flag(TIF_USING_IWMMXT))
err |= preserve_iwmmxt_context(&aux->iwmmxt);
#endif
#ifdef CONFIG_VFP
if (err == 0)
err |= preserve_vfp_context(&aux->vfp);
#endif
__put_user_error(0, &aux->end_magic, err);
return err;
}
static inline void __user *
get_sigframe(struct ksignal *ksig, struct pt_regs *regs, int framesize)
{
unsigned long sp = sigsp(regs->ARM_sp, ksig);
void __user *frame;
/*
* ATPCS B01 mandates 8-byte alignment
*/
frame = (void __user *)((sp - framesize) & ~7);
/*
* Check that we can actually write to the signal frame.
*/
if (!access_ok(VERIFY_WRITE, frame, framesize))
frame = NULL;
return frame;
}
/*
* translate the signal
*/
static inline int map_sig(int sig)
{
struct thread_info *thread = current_thread_info();
if (sig < 32 && thread->exec_domain && thread->exec_domain->signal_invmap)
sig = thread->exec_domain->signal_invmap[sig];
return sig;
}
static int
setup_return(struct pt_regs *regs, struct ksignal *ksig,
unsigned long __user *rc, void __user *frame)
{
unsigned long handler = (unsigned long)ksig->ka.sa.sa_handler;
unsigned long retcode;
int thumb = 0;
unsigned long cpsr = regs->ARM_cpsr & ~(PSR_f | PSR_E_BIT);
cpsr |= PSR_ENDSTATE;
/*
* Maybe we need to deliver a 32-bit signal to a 26-bit task.
*/
if (ksig->ka.sa.sa_flags & SA_THIRTYTWO)
cpsr = (cpsr & ~MODE_MASK) | USR_MODE;
#ifdef CONFIG_ARM_THUMB
if (elf_hwcap & HWCAP_THUMB) {
/*
* The LSB of the handler determines if we're going to
* be using THUMB or ARM mode for this signal handler.
*/
thumb = handler & 1;
if (thumb) {
cpsr |= PSR_T_BIT;
#if __LINUX_ARM_ARCH__ >= 7
/* clear the If-Then Thumb-2 execution state */
cpsr &= ~PSR_IT_MASK;
#endif
} else
cpsr &= ~PSR_T_BIT;
}
#endif
if (ksig->ka.sa.sa_flags & SA_RESTORER) {
retcode = (unsigned long)ksig->ka.sa.sa_restorer;
} else {
unsigned int idx = thumb << 1;
if (ksig->ka.sa.sa_flags & SA_SIGINFO)
idx += 3;
/*
* Put the sigreturn code on the stack no matter which return
* mechanism we use in order to remain ABI compliant
*/
if (__put_user(sigreturn_codes[idx], rc) ||
__put_user(sigreturn_codes[idx+1], rc+1))
return 1;
if ((cpsr & MODE32_BIT) && !IS_ENABLED(CONFIG_ARM_MPU)) {
struct mm_struct *mm = current->mm;
/*
* 32-bit code can use the signal return page
* except when the MPU has protected the vectors
* page from PL0
*/
retcode = mm->context.sigpage + signal_return_offset +
(idx << 2) + thumb;
} else {
/*
* Ensure that the instruction cache sees
* the return code written onto the stack.
*/
flush_icache_range((unsigned long)rc,
(unsigned long)(rc + 2));
retcode = ((unsigned long)rc) + thumb;
}
}
regs->ARM_r0 = map_sig(ksig->sig);
regs->ARM_sp = (unsigned long)frame;
regs->ARM_lr = retcode;
regs->ARM_pc = handler;
regs->ARM_cpsr = cpsr;
return 0;
}
static int
setup_frame(struct ksignal *ksig, sigset_t *set, struct pt_regs *regs)
{
struct sigframe __user *frame = get_sigframe(ksig, regs, sizeof(*frame));
int err = 0;
if (!frame)
return 1;
/*
* Set uc.uc_flags to a value which sc.trap_no would never have.
*/
__put_user_error(0x5ac3c35a, &frame->uc.uc_flags, err);
err |= setup_sigframe(frame, regs, set);
if (err == 0)
err = setup_return(regs, ksig, frame->retcode, frame);
return err;
}
static int
setup_rt_frame(struct ksignal *ksig, sigset_t *set, struct pt_regs *regs)
{
struct rt_sigframe __user *frame = get_sigframe(ksig, regs, sizeof(*frame));
int err = 0;
if (!frame)
return 1;
err |= copy_siginfo_to_user(&frame->info, &ksig->info);
__put_user_error(0, &frame->sig.uc.uc_flags, err);
__put_user_error(NULL, &frame->sig.uc.uc_link, err);
err |= __save_altstack(&frame->sig.uc.uc_stack, regs->ARM_sp);
err |= setup_sigframe(&frame->sig, regs, set);
if (err == 0)
err = setup_return(regs, ksig, frame->sig.retcode, frame);
if (err == 0) {
/*
* For realtime signals we must also set the second and third
* arguments for the signal handler.
* -- Peter Maydell <pmaydell@chiark.greenend.org.uk> 2000-12-06
*/
regs->ARM_r1 = (unsigned long)&frame->info;
regs->ARM_r2 = (unsigned long)&frame->sig.uc;
}
return err;
}
/*
* OK, we're invoking a handler
*/
static void handle_signal(struct ksignal *ksig, struct pt_regs *regs)
{
sigset_t *oldset = sigmask_to_save();
int ret;
/*
* Set up the stack frame
*/
if (ksig->ka.sa.sa_flags & SA_SIGINFO)
ret = setup_rt_frame(ksig, oldset, regs);
else
ret = setup_frame(ksig, oldset, regs);
/*
* Check that the resulting registers are actually sane.
*/
ret |= !valid_user_regs(regs);
signal_setup_done(ret, ksig, 0);
}
/*
* Note that 'init' is a special process: it doesn't get signals it doesn't
* want to handle. Thus you cannot kill init even with a SIGKILL even by
* mistake.
*
* Note that we go through the signals twice: once to check the signals that
* the kernel can handle, and then we build all the user-level signal handling
* stack-frames in one go after that.
*/
static int do_signal(struct pt_regs *regs, int syscall)
{
unsigned int retval = 0, continue_addr = 0, restart_addr = 0;
struct ksignal ksig;
int restart = 0;
/*
* If we were from a system call, check for system call restarting...
*/
if (syscall) {
continue_addr = regs->ARM_pc;
restart_addr = continue_addr - (thumb_mode(regs) ? 2 : 4);
retval = regs->ARM_r0;
/*
* Prepare for system call restart. We do this here so that a
* debugger will see the already changed PSW.
*/
switch (retval) {
case -ERESTART_RESTARTBLOCK:
restart -= 2;
case -ERESTARTNOHAND:
case -ERESTARTSYS:
case -ERESTARTNOINTR:
restart++;
regs->ARM_r0 = regs->ARM_ORIG_r0;
regs->ARM_pc = restart_addr;
break;
}
}
/*
* Get the signal to deliver. When running under ptrace, at this
* point the debugger may change all our registers ...
*/
/*
* Depending on the signal settings we may need to revert the
* decision to restart the system call. But skip this if a
* debugger has chosen to restart at a different PC.
*/
if (get_signal(&ksig)) {
/* handler */
if (unlikely(restart) && regs->ARM_pc == restart_addr) {
if (retval == -ERESTARTNOHAND ||
retval == -ERESTART_RESTARTBLOCK
|| (retval == -ERESTARTSYS
&& !(ksig.ka.sa.sa_flags & SA_RESTART))) {
regs->ARM_r0 = -EINTR;
regs->ARM_pc = continue_addr;
}
}
handle_signal(&ksig, regs);
} else {
/* no handler */
restore_saved_sigmask();
if (unlikely(restart) && regs->ARM_pc == restart_addr) {
regs->ARM_pc = continue_addr;
return restart;
}
}
return 0;
}
asmlinkage int
do_work_pending(struct pt_regs *regs, unsigned int thread_flags, int syscall)
{
do {
if (likely(thread_flags & _TIF_NEED_RESCHED)) {
schedule();
} else {
if (unlikely(!user_mode(regs)))
return 0;
local_irq_enable();
if (thread_flags & _TIF_SIGPENDING) {
int restart = do_signal(regs, syscall);
if (unlikely(restart)) {
/*
* Restart without handlers.
* Deal with it without leaving
* the kernel space.
*/
return restart;
}
syscall = 0;
} else {
clear_thread_flag(TIF_NOTIFY_RESUME);
tracehook_notify_resume(regs);
}
}
local_irq_disable();
thread_flags = current_thread_info()->flags;
} while (thread_flags & _TIF_WORK_MASK);
return 0;
}
static struct page *signal_page;
struct page *get_signal_page(void)
{
if (!signal_page) {
unsigned long ptr;
unsigned offset;
void *addr;
signal_page = alloc_pages(GFP_KERNEL, 0);
if (!signal_page)
return NULL;
addr = page_address(signal_page);
/* Give the signal return code some randomness */
offset = 0x200 + (get_random_int() & 0x7fc);
signal_return_offset = offset;
/*
* Copy signal return handlers into the vector page, and
* set sigreturn to be a pointer to these.
*/
memcpy(addr + offset, sigreturn_codes, sizeof(sigreturn_codes));
ptr = (unsigned long)addr + offset;
flush_icache_range(ptr, ptr + sizeof(sigreturn_codes));
}
return signal_page;
}