48bff1053c
In6f98a4bfee
("random: block in /dev/urandom"), we tried to make a successful try_to_generate_entropy() call *required* if the RNG was not already initialized. Unfortunately, weird architectures and old userspaces combined in TCG test harnesses, making that change still not realistic, so it was reverted in0313bc278d
("Revert "random: block in /dev/urandom""). However, rather than making a successful try_to_generate_entropy() call *required*, we can instead make it *best-effort*. If try_to_generate_entropy() fails, it fails, and nothing changes from the current behavior. If it succeeds, then /dev/urandom becomes safe to use for free. This way, we don't risk the regression potential that led to us reverting the required-try_to_generate_entropy() call before. Practically speaking, this means that at least on x86, /dev/urandom becomes safe. Probably other architectures with working cycle counters will also become safe. And architectures with slow or broken cycle counters at least won't be affected at all by this change. So it may not be the glorious "all things are unified!" change we were hoping for initially, but practically speaking, it makes a positive impact. Cc: Theodore Ts'o <tytso@mit.edu> Cc: Dominik Brodowski <linux@dominikbrodowski.net> Cc: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
1785 lines
52 KiB
C
1785 lines
52 KiB
C
// SPDX-License-Identifier: (GPL-2.0 OR BSD-3-Clause)
|
|
/*
|
|
* Copyright (C) 2017-2022 Jason A. Donenfeld <Jason@zx2c4.com>. All Rights Reserved.
|
|
* Copyright Matt Mackall <mpm@selenic.com>, 2003, 2004, 2005
|
|
* Copyright Theodore Ts'o, 1994, 1995, 1996, 1997, 1998, 1999. All rights reserved.
|
|
*
|
|
* This driver produces cryptographically secure pseudorandom data. It is divided
|
|
* into roughly six sections, each with a section header:
|
|
*
|
|
* - Initialization and readiness waiting.
|
|
* - Fast key erasure RNG, the "crng".
|
|
* - Entropy accumulation and extraction routines.
|
|
* - Entropy collection routines.
|
|
* - Userspace reader/writer interfaces.
|
|
* - Sysctl interface.
|
|
*
|
|
* The high level overview is that there is one input pool, into which
|
|
* various pieces of data are hashed. Some of that data is then "credited" as
|
|
* having a certain number of bits of entropy. When enough bits of entropy are
|
|
* available, the hash is finalized and handed as a key to a stream cipher that
|
|
* expands it indefinitely for various consumers. This key is periodically
|
|
* refreshed as the various entropy collectors, described below, add data to the
|
|
* input pool and credit it. There is currently no Fortuna-like scheduler
|
|
* involved, which can lead to malicious entropy sources causing a premature
|
|
* reseed, and the entropy estimates are, at best, conservative guesses.
|
|
*/
|
|
|
|
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
|
|
|
|
#include <linux/utsname.h>
|
|
#include <linux/module.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/major.h>
|
|
#include <linux/string.h>
|
|
#include <linux/fcntl.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/random.h>
|
|
#include <linux/poll.h>
|
|
#include <linux/init.h>
|
|
#include <linux/fs.h>
|
|
#include <linux/blkdev.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/nodemask.h>
|
|
#include <linux/spinlock.h>
|
|
#include <linux/kthread.h>
|
|
#include <linux/percpu.h>
|
|
#include <linux/ptrace.h>
|
|
#include <linux/workqueue.h>
|
|
#include <linux/irq.h>
|
|
#include <linux/ratelimit.h>
|
|
#include <linux/syscalls.h>
|
|
#include <linux/completion.h>
|
|
#include <linux/uuid.h>
|
|
#include <linux/uaccess.h>
|
|
#include <crypto/chacha.h>
|
|
#include <crypto/blake2s.h>
|
|
#include <asm/processor.h>
|
|
#include <asm/irq.h>
|
|
#include <asm/irq_regs.h>
|
|
#include <asm/io.h>
|
|
|
|
/*********************************************************************
|
|
*
|
|
* Initialization and readiness waiting.
|
|
*
|
|
* Much of the RNG infrastructure is devoted to various dependencies
|
|
* being able to wait until the RNG has collected enough entropy and
|
|
* is ready for safe consumption.
|
|
*
|
|
*********************************************************************/
|
|
|
|
/*
|
|
* crng_init = 0 --> Uninitialized
|
|
* 1 --> Initialized
|
|
* 2 --> Initialized from input_pool
|
|
*
|
|
* crng_init is protected by base_crng->lock, and only increases
|
|
* its value (from 0->1->2).
|
|
*/
|
|
static int crng_init = 0;
|
|
#define crng_ready() (likely(crng_init > 1))
|
|
/* Various types of waiters for crng_init->2 transition. */
|
|
static DECLARE_WAIT_QUEUE_HEAD(crng_init_wait);
|
|
static struct fasync_struct *fasync;
|
|
static DEFINE_SPINLOCK(random_ready_chain_lock);
|
|
static RAW_NOTIFIER_HEAD(random_ready_chain);
|
|
|
|
/* Control how we warn userspace. */
|
|
static struct ratelimit_state unseeded_warning =
|
|
RATELIMIT_STATE_INIT("warn_unseeded_randomness", HZ, 3);
|
|
static struct ratelimit_state urandom_warning =
|
|
RATELIMIT_STATE_INIT("warn_urandom_randomness", HZ, 3);
|
|
static int ratelimit_disable __read_mostly;
|
|
module_param_named(ratelimit_disable, ratelimit_disable, int, 0644);
|
|
MODULE_PARM_DESC(ratelimit_disable, "Disable random ratelimit suppression");
|
|
|
|
/*
|
|
* Returns whether or not the input pool has been seeded and thus guaranteed
|
|
* to supply cryptographically secure random numbers. This applies to: the
|
|
* /dev/urandom device, the get_random_bytes function, and the get_random_{u32,
|
|
* ,u64,int,long} family of functions.
|
|
*
|
|
* Returns: true if the input pool has been seeded.
|
|
* false if the input pool has not been seeded.
|
|
*/
|
|
bool rng_is_initialized(void)
|
|
{
|
|
return crng_ready();
|
|
}
|
|
EXPORT_SYMBOL(rng_is_initialized);
|
|
|
|
/* Used by wait_for_random_bytes(), and considered an entropy collector, below. */
|
|
static void try_to_generate_entropy(void);
|
|
|
|
/*
|
|
* Wait for the input pool to be seeded and thus guaranteed to supply
|
|
* cryptographically secure random numbers. This applies to: the /dev/urandom
|
|
* device, the get_random_bytes function, and the get_random_{u32,u64,int,long}
|
|
* family of functions. Using any of these functions without first calling
|
|
* this function forfeits the guarantee of security.
|
|
*
|
|
* Returns: 0 if the input pool has been seeded.
|
|
* -ERESTARTSYS if the function was interrupted by a signal.
|
|
*/
|
|
int wait_for_random_bytes(void)
|
|
{
|
|
while (!crng_ready()) {
|
|
int ret;
|
|
|
|
try_to_generate_entropy();
|
|
ret = wait_event_interruptible_timeout(crng_init_wait, crng_ready(), HZ);
|
|
if (ret)
|
|
return ret > 0 ? 0 : ret;
|
|
}
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL(wait_for_random_bytes);
|
|
|
|
/*
|
|
* Add a callback function that will be invoked when the input
|
|
* pool is initialised.
|
|
*
|
|
* returns: 0 if callback is successfully added
|
|
* -EALREADY if pool is already initialised (callback not called)
|
|
*/
|
|
int register_random_ready_notifier(struct notifier_block *nb)
|
|
{
|
|
unsigned long flags;
|
|
int ret = -EALREADY;
|
|
|
|
if (crng_ready())
|
|
return ret;
|
|
|
|
spin_lock_irqsave(&random_ready_chain_lock, flags);
|
|
if (!crng_ready())
|
|
ret = raw_notifier_chain_register(&random_ready_chain, nb);
|
|
spin_unlock_irqrestore(&random_ready_chain_lock, flags);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Delete a previously registered readiness callback function.
|
|
*/
|
|
int unregister_random_ready_notifier(struct notifier_block *nb)
|
|
{
|
|
unsigned long flags;
|
|
int ret;
|
|
|
|
spin_lock_irqsave(&random_ready_chain_lock, flags);
|
|
ret = raw_notifier_chain_unregister(&random_ready_chain, nb);
|
|
spin_unlock_irqrestore(&random_ready_chain_lock, flags);
|
|
return ret;
|
|
}
|
|
|
|
static void process_random_ready_list(void)
|
|
{
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&random_ready_chain_lock, flags);
|
|
raw_notifier_call_chain(&random_ready_chain, 0, NULL);
|
|
spin_unlock_irqrestore(&random_ready_chain_lock, flags);
|
|
}
|
|
|
|
#define warn_unseeded_randomness(previous) \
|
|
_warn_unseeded_randomness(__func__, (void *)_RET_IP_, (previous))
|
|
|
|
static void _warn_unseeded_randomness(const char *func_name, void *caller, void **previous)
|
|
{
|
|
#ifdef CONFIG_WARN_ALL_UNSEEDED_RANDOM
|
|
const bool print_once = false;
|
|
#else
|
|
static bool print_once __read_mostly;
|
|
#endif
|
|
|
|
if (print_once || crng_ready() ||
|
|
(previous && (caller == READ_ONCE(*previous))))
|
|
return;
|
|
WRITE_ONCE(*previous, caller);
|
|
#ifndef CONFIG_WARN_ALL_UNSEEDED_RANDOM
|
|
print_once = true;
|
|
#endif
|
|
if (__ratelimit(&unseeded_warning))
|
|
printk_deferred(KERN_NOTICE "random: %s called from %pS with crng_init=%d\n",
|
|
func_name, caller, crng_init);
|
|
}
|
|
|
|
|
|
/*********************************************************************
|
|
*
|
|
* Fast key erasure RNG, the "crng".
|
|
*
|
|
* These functions expand entropy from the entropy extractor into
|
|
* long streams for external consumption using the "fast key erasure"
|
|
* RNG described at <https://blog.cr.yp.to/20170723-random.html>.
|
|
*
|
|
* There are a few exported interfaces for use by other drivers:
|
|
*
|
|
* void get_random_bytes(void *buf, size_t nbytes)
|
|
* u32 get_random_u32()
|
|
* u64 get_random_u64()
|
|
* unsigned int get_random_int()
|
|
* unsigned long get_random_long()
|
|
*
|
|
* These interfaces will return the requested number of random bytes
|
|
* into the given buffer or as a return value. This is equivalent to
|
|
* a read from /dev/urandom. The u32, u64, int, and long family of
|
|
* functions may be higher performance for one-off random integers,
|
|
* because they do a bit of buffering and do not invoke reseeding
|
|
* until the buffer is emptied.
|
|
*
|
|
*********************************************************************/
|
|
|
|
enum {
|
|
CRNG_RESEED_INTERVAL = 300 * HZ,
|
|
CRNG_INIT_CNT_THRESH = 2 * CHACHA_KEY_SIZE
|
|
};
|
|
|
|
static struct {
|
|
u8 key[CHACHA_KEY_SIZE] __aligned(__alignof__(long));
|
|
unsigned long birth;
|
|
unsigned long generation;
|
|
spinlock_t lock;
|
|
} base_crng = {
|
|
.lock = __SPIN_LOCK_UNLOCKED(base_crng.lock)
|
|
};
|
|
|
|
struct crng {
|
|
u8 key[CHACHA_KEY_SIZE];
|
|
unsigned long generation;
|
|
local_lock_t lock;
|
|
};
|
|
|
|
static DEFINE_PER_CPU(struct crng, crngs) = {
|
|
.generation = ULONG_MAX,
|
|
.lock = INIT_LOCAL_LOCK(crngs.lock),
|
|
};
|
|
|
|
/* Used by crng_reseed() to extract a new seed from the input pool. */
|
|
static bool drain_entropy(void *buf, size_t nbytes, bool force);
|
|
|
|
/*
|
|
* This extracts a new crng key from the input pool, but only if there is a
|
|
* sufficient amount of entropy available or force is true, in order to
|
|
* mitigate bruteforcing of newly added bits.
|
|
*/
|
|
static void crng_reseed(bool force)
|
|
{
|
|
unsigned long flags;
|
|
unsigned long next_gen;
|
|
u8 key[CHACHA_KEY_SIZE];
|
|
bool finalize_init = false;
|
|
|
|
/* Only reseed if we can, to prevent brute forcing a small amount of new bits. */
|
|
if (!drain_entropy(key, sizeof(key), force))
|
|
return;
|
|
|
|
/*
|
|
* We copy the new key into the base_crng, overwriting the old one,
|
|
* and update the generation counter. We avoid hitting ULONG_MAX,
|
|
* because the per-cpu crngs are initialized to ULONG_MAX, so this
|
|
* forces new CPUs that come online to always initialize.
|
|
*/
|
|
spin_lock_irqsave(&base_crng.lock, flags);
|
|
memcpy(base_crng.key, key, sizeof(base_crng.key));
|
|
next_gen = base_crng.generation + 1;
|
|
if (next_gen == ULONG_MAX)
|
|
++next_gen;
|
|
WRITE_ONCE(base_crng.generation, next_gen);
|
|
WRITE_ONCE(base_crng.birth, jiffies);
|
|
if (!crng_ready()) {
|
|
crng_init = 2;
|
|
finalize_init = true;
|
|
}
|
|
spin_unlock_irqrestore(&base_crng.lock, flags);
|
|
memzero_explicit(key, sizeof(key));
|
|
if (finalize_init) {
|
|
process_random_ready_list();
|
|
wake_up_interruptible(&crng_init_wait);
|
|
kill_fasync(&fasync, SIGIO, POLL_IN);
|
|
pr_notice("crng init done\n");
|
|
if (unseeded_warning.missed) {
|
|
pr_notice("%d get_random_xx warning(s) missed due to ratelimiting\n",
|
|
unseeded_warning.missed);
|
|
unseeded_warning.missed = 0;
|
|
}
|
|
if (urandom_warning.missed) {
|
|
pr_notice("%d urandom warning(s) missed due to ratelimiting\n",
|
|
urandom_warning.missed);
|
|
urandom_warning.missed = 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* This generates a ChaCha block using the provided key, and then
|
|
* immediately overwites that key with half the block. It returns
|
|
* the resultant ChaCha state to the user, along with the second
|
|
* half of the block containing 32 bytes of random data that may
|
|
* be used; random_data_len may not be greater than 32.
|
|
*/
|
|
static void crng_fast_key_erasure(u8 key[CHACHA_KEY_SIZE],
|
|
u32 chacha_state[CHACHA_STATE_WORDS],
|
|
u8 *random_data, size_t random_data_len)
|
|
{
|
|
u8 first_block[CHACHA_BLOCK_SIZE];
|
|
|
|
BUG_ON(random_data_len > 32);
|
|
|
|
chacha_init_consts(chacha_state);
|
|
memcpy(&chacha_state[4], key, CHACHA_KEY_SIZE);
|
|
memset(&chacha_state[12], 0, sizeof(u32) * 4);
|
|
chacha20_block(chacha_state, first_block);
|
|
|
|
memcpy(key, first_block, CHACHA_KEY_SIZE);
|
|
memcpy(random_data, first_block + CHACHA_KEY_SIZE, random_data_len);
|
|
memzero_explicit(first_block, sizeof(first_block));
|
|
}
|
|
|
|
/*
|
|
* Return whether the crng seed is considered to be sufficiently
|
|
* old that a reseeding might be attempted. This happens if the last
|
|
* reseeding was CRNG_RESEED_INTERVAL ago, or during early boot, at
|
|
* an interval proportional to the uptime.
|
|
*/
|
|
static bool crng_has_old_seed(void)
|
|
{
|
|
static bool early_boot = true;
|
|
unsigned long interval = CRNG_RESEED_INTERVAL;
|
|
|
|
if (unlikely(READ_ONCE(early_boot))) {
|
|
time64_t uptime = ktime_get_seconds();
|
|
if (uptime >= CRNG_RESEED_INTERVAL / HZ * 2)
|
|
WRITE_ONCE(early_boot, false);
|
|
else
|
|
interval = max_t(unsigned int, 5 * HZ,
|
|
(unsigned int)uptime / 2 * HZ);
|
|
}
|
|
return time_after(jiffies, READ_ONCE(base_crng.birth) + interval);
|
|
}
|
|
|
|
/*
|
|
* This function returns a ChaCha state that you may use for generating
|
|
* random data. It also returns up to 32 bytes on its own of random data
|
|
* that may be used; random_data_len may not be greater than 32.
|
|
*/
|
|
static void crng_make_state(u32 chacha_state[CHACHA_STATE_WORDS],
|
|
u8 *random_data, size_t random_data_len)
|
|
{
|
|
unsigned long flags;
|
|
struct crng *crng;
|
|
|
|
BUG_ON(random_data_len > 32);
|
|
|
|
/*
|
|
* For the fast path, we check whether we're ready, unlocked first, and
|
|
* then re-check once locked later. In the case where we're really not
|
|
* ready, we do fast key erasure with the base_crng directly, because
|
|
* this is what crng_pre_init_inject() mutates during early init.
|
|
*/
|
|
if (!crng_ready()) {
|
|
bool ready;
|
|
|
|
spin_lock_irqsave(&base_crng.lock, flags);
|
|
ready = crng_ready();
|
|
if (!ready)
|
|
crng_fast_key_erasure(base_crng.key, chacha_state,
|
|
random_data, random_data_len);
|
|
spin_unlock_irqrestore(&base_crng.lock, flags);
|
|
if (!ready)
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* If the base_crng is old enough, we try to reseed, which in turn
|
|
* bumps the generation counter that we check below.
|
|
*/
|
|
if (unlikely(crng_has_old_seed()))
|
|
crng_reseed(false);
|
|
|
|
local_lock_irqsave(&crngs.lock, flags);
|
|
crng = raw_cpu_ptr(&crngs);
|
|
|
|
/*
|
|
* If our per-cpu crng is older than the base_crng, then it means
|
|
* somebody reseeded the base_crng. In that case, we do fast key
|
|
* erasure on the base_crng, and use its output as the new key
|
|
* for our per-cpu crng. This brings us up to date with base_crng.
|
|
*/
|
|
if (unlikely(crng->generation != READ_ONCE(base_crng.generation))) {
|
|
spin_lock(&base_crng.lock);
|
|
crng_fast_key_erasure(base_crng.key, chacha_state,
|
|
crng->key, sizeof(crng->key));
|
|
crng->generation = base_crng.generation;
|
|
spin_unlock(&base_crng.lock);
|
|
}
|
|
|
|
/*
|
|
* Finally, when we've made it this far, our per-cpu crng has an up
|
|
* to date key, and we can do fast key erasure with it to produce
|
|
* some random data and a ChaCha state for the caller. All other
|
|
* branches of this function are "unlikely", so most of the time we
|
|
* should wind up here immediately.
|
|
*/
|
|
crng_fast_key_erasure(crng->key, chacha_state, random_data, random_data_len);
|
|
local_unlock_irqrestore(&crngs.lock, flags);
|
|
}
|
|
|
|
/*
|
|
* This function is for crng_init == 0 only. It loads entropy directly
|
|
* into the crng's key, without going through the input pool. It is,
|
|
* generally speaking, not very safe, but we use this only at early
|
|
* boot time when it's better to have something there rather than
|
|
* nothing.
|
|
*
|
|
* If account is set, then the crng_init_cnt counter is incremented.
|
|
* This shouldn't be set by functions like add_device_randomness(),
|
|
* where we can't trust the buffer passed to it is guaranteed to be
|
|
* unpredictable (so it might not have any entropy at all).
|
|
*/
|
|
static void crng_pre_init_inject(const void *input, size_t len, bool account)
|
|
{
|
|
static int crng_init_cnt = 0;
|
|
struct blake2s_state hash;
|
|
unsigned long flags;
|
|
|
|
blake2s_init(&hash, sizeof(base_crng.key));
|
|
|
|
spin_lock_irqsave(&base_crng.lock, flags);
|
|
if (crng_init != 0) {
|
|
spin_unlock_irqrestore(&base_crng.lock, flags);
|
|
return;
|
|
}
|
|
|
|
blake2s_update(&hash, base_crng.key, sizeof(base_crng.key));
|
|
blake2s_update(&hash, input, len);
|
|
blake2s_final(&hash, base_crng.key);
|
|
|
|
if (account) {
|
|
crng_init_cnt += min_t(size_t, len, CRNG_INIT_CNT_THRESH - crng_init_cnt);
|
|
if (crng_init_cnt >= CRNG_INIT_CNT_THRESH) {
|
|
++base_crng.generation;
|
|
crng_init = 1;
|
|
}
|
|
}
|
|
|
|
spin_unlock_irqrestore(&base_crng.lock, flags);
|
|
|
|
if (crng_init == 1)
|
|
pr_notice("fast init done\n");
|
|
}
|
|
|
|
static void _get_random_bytes(void *buf, size_t nbytes)
|
|
{
|
|
u32 chacha_state[CHACHA_STATE_WORDS];
|
|
u8 tmp[CHACHA_BLOCK_SIZE];
|
|
size_t len;
|
|
|
|
if (!nbytes)
|
|
return;
|
|
|
|
len = min_t(size_t, 32, nbytes);
|
|
crng_make_state(chacha_state, buf, len);
|
|
nbytes -= len;
|
|
buf += len;
|
|
|
|
while (nbytes) {
|
|
if (nbytes < CHACHA_BLOCK_SIZE) {
|
|
chacha20_block(chacha_state, tmp);
|
|
memcpy(buf, tmp, nbytes);
|
|
memzero_explicit(tmp, sizeof(tmp));
|
|
break;
|
|
}
|
|
|
|
chacha20_block(chacha_state, buf);
|
|
if (unlikely(chacha_state[12] == 0))
|
|
++chacha_state[13];
|
|
nbytes -= CHACHA_BLOCK_SIZE;
|
|
buf += CHACHA_BLOCK_SIZE;
|
|
}
|
|
|
|
memzero_explicit(chacha_state, sizeof(chacha_state));
|
|
}
|
|
|
|
/*
|
|
* This function is the exported kernel interface. It returns some
|
|
* number of good random numbers, suitable for key generation, seeding
|
|
* TCP sequence numbers, etc. It does not rely on the hardware random
|
|
* number generator. For random bytes direct from the hardware RNG
|
|
* (when available), use get_random_bytes_arch(). In order to ensure
|
|
* that the randomness provided by this function is okay, the function
|
|
* wait_for_random_bytes() should be called and return 0 at least once
|
|
* at any point prior.
|
|
*/
|
|
void get_random_bytes(void *buf, size_t nbytes)
|
|
{
|
|
static void *previous;
|
|
|
|
warn_unseeded_randomness(&previous);
|
|
_get_random_bytes(buf, nbytes);
|
|
}
|
|
EXPORT_SYMBOL(get_random_bytes);
|
|
|
|
static ssize_t get_random_bytes_user(void __user *buf, size_t nbytes)
|
|
{
|
|
bool large_request = nbytes > 256;
|
|
ssize_t ret = 0;
|
|
size_t len;
|
|
u32 chacha_state[CHACHA_STATE_WORDS];
|
|
u8 output[CHACHA_BLOCK_SIZE];
|
|
|
|
if (!nbytes)
|
|
return 0;
|
|
|
|
len = min_t(size_t, 32, nbytes);
|
|
crng_make_state(chacha_state, output, len);
|
|
|
|
if (copy_to_user(buf, output, len))
|
|
return -EFAULT;
|
|
nbytes -= len;
|
|
buf += len;
|
|
ret += len;
|
|
|
|
while (nbytes) {
|
|
if (large_request && need_resched()) {
|
|
if (signal_pending(current))
|
|
break;
|
|
schedule();
|
|
}
|
|
|
|
chacha20_block(chacha_state, output);
|
|
if (unlikely(chacha_state[12] == 0))
|
|
++chacha_state[13];
|
|
|
|
len = min_t(size_t, nbytes, CHACHA_BLOCK_SIZE);
|
|
if (copy_to_user(buf, output, len)) {
|
|
ret = -EFAULT;
|
|
break;
|
|
}
|
|
|
|
nbytes -= len;
|
|
buf += len;
|
|
ret += len;
|
|
}
|
|
|
|
memzero_explicit(chacha_state, sizeof(chacha_state));
|
|
memzero_explicit(output, sizeof(output));
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Batched entropy returns random integers. The quality of the random
|
|
* number is good as /dev/urandom. In order to ensure that the randomness
|
|
* provided by this function is okay, the function wait_for_random_bytes()
|
|
* should be called and return 0 at least once at any point prior.
|
|
*/
|
|
struct batched_entropy {
|
|
union {
|
|
/*
|
|
* We make this 1.5x a ChaCha block, so that we get the
|
|
* remaining 32 bytes from fast key erasure, plus one full
|
|
* block from the detached ChaCha state. We can increase
|
|
* the size of this later if needed so long as we keep the
|
|
* formula of (integer_blocks + 0.5) * CHACHA_BLOCK_SIZE.
|
|
*/
|
|
u64 entropy_u64[CHACHA_BLOCK_SIZE * 3 / (2 * sizeof(u64))];
|
|
u32 entropy_u32[CHACHA_BLOCK_SIZE * 3 / (2 * sizeof(u32))];
|
|
};
|
|
local_lock_t lock;
|
|
unsigned long generation;
|
|
unsigned int position;
|
|
};
|
|
|
|
|
|
static DEFINE_PER_CPU(struct batched_entropy, batched_entropy_u64) = {
|
|
.lock = INIT_LOCAL_LOCK(batched_entropy_u64.lock),
|
|
.position = UINT_MAX
|
|
};
|
|
|
|
u64 get_random_u64(void)
|
|
{
|
|
u64 ret;
|
|
unsigned long flags;
|
|
struct batched_entropy *batch;
|
|
static void *previous;
|
|
unsigned long next_gen;
|
|
|
|
warn_unseeded_randomness(&previous);
|
|
|
|
local_lock_irqsave(&batched_entropy_u64.lock, flags);
|
|
batch = raw_cpu_ptr(&batched_entropy_u64);
|
|
|
|
next_gen = READ_ONCE(base_crng.generation);
|
|
if (batch->position >= ARRAY_SIZE(batch->entropy_u64) ||
|
|
next_gen != batch->generation) {
|
|
_get_random_bytes(batch->entropy_u64, sizeof(batch->entropy_u64));
|
|
batch->position = 0;
|
|
batch->generation = next_gen;
|
|
}
|
|
|
|
ret = batch->entropy_u64[batch->position];
|
|
batch->entropy_u64[batch->position] = 0;
|
|
++batch->position;
|
|
local_unlock_irqrestore(&batched_entropy_u64.lock, flags);
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL(get_random_u64);
|
|
|
|
static DEFINE_PER_CPU(struct batched_entropy, batched_entropy_u32) = {
|
|
.lock = INIT_LOCAL_LOCK(batched_entropy_u32.lock),
|
|
.position = UINT_MAX
|
|
};
|
|
|
|
u32 get_random_u32(void)
|
|
{
|
|
u32 ret;
|
|
unsigned long flags;
|
|
struct batched_entropy *batch;
|
|
static void *previous;
|
|
unsigned long next_gen;
|
|
|
|
warn_unseeded_randomness(&previous);
|
|
|
|
local_lock_irqsave(&batched_entropy_u32.lock, flags);
|
|
batch = raw_cpu_ptr(&batched_entropy_u32);
|
|
|
|
next_gen = READ_ONCE(base_crng.generation);
|
|
if (batch->position >= ARRAY_SIZE(batch->entropy_u32) ||
|
|
next_gen != batch->generation) {
|
|
_get_random_bytes(batch->entropy_u32, sizeof(batch->entropy_u32));
|
|
batch->position = 0;
|
|
batch->generation = next_gen;
|
|
}
|
|
|
|
ret = batch->entropy_u32[batch->position];
|
|
batch->entropy_u32[batch->position] = 0;
|
|
++batch->position;
|
|
local_unlock_irqrestore(&batched_entropy_u32.lock, flags);
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL(get_random_u32);
|
|
|
|
#ifdef CONFIG_SMP
|
|
/*
|
|
* This function is called when the CPU is coming up, with entry
|
|
* CPUHP_RANDOM_PREPARE, which comes before CPUHP_WORKQUEUE_PREP.
|
|
*/
|
|
int random_prepare_cpu(unsigned int cpu)
|
|
{
|
|
/*
|
|
* When the cpu comes back online, immediately invalidate both
|
|
* the per-cpu crng and all batches, so that we serve fresh
|
|
* randomness.
|
|
*/
|
|
per_cpu_ptr(&crngs, cpu)->generation = ULONG_MAX;
|
|
per_cpu_ptr(&batched_entropy_u32, cpu)->position = UINT_MAX;
|
|
per_cpu_ptr(&batched_entropy_u64, cpu)->position = UINT_MAX;
|
|
return 0;
|
|
}
|
|
#endif
|
|
|
|
/**
|
|
* randomize_page - Generate a random, page aligned address
|
|
* @start: The smallest acceptable address the caller will take.
|
|
* @range: The size of the area, starting at @start, within which the
|
|
* random address must fall.
|
|
*
|
|
* If @start + @range would overflow, @range is capped.
|
|
*
|
|
* NOTE: Historical use of randomize_range, which this replaces, presumed that
|
|
* @start was already page aligned. We now align it regardless.
|
|
*
|
|
* Return: A page aligned address within [start, start + range). On error,
|
|
* @start is returned.
|
|
*/
|
|
unsigned long randomize_page(unsigned long start, unsigned long range)
|
|
{
|
|
if (!PAGE_ALIGNED(start)) {
|
|
range -= PAGE_ALIGN(start) - start;
|
|
start = PAGE_ALIGN(start);
|
|
}
|
|
|
|
if (start > ULONG_MAX - range)
|
|
range = ULONG_MAX - start;
|
|
|
|
range >>= PAGE_SHIFT;
|
|
|
|
if (range == 0)
|
|
return start;
|
|
|
|
return start + (get_random_long() % range << PAGE_SHIFT);
|
|
}
|
|
|
|
/*
|
|
* This function will use the architecture-specific hardware random
|
|
* number generator if it is available. It is not recommended for
|
|
* use. Use get_random_bytes() instead. It returns the number of
|
|
* bytes filled in.
|
|
*/
|
|
size_t __must_check get_random_bytes_arch(void *buf, size_t nbytes)
|
|
{
|
|
size_t left = nbytes;
|
|
u8 *p = buf;
|
|
|
|
while (left) {
|
|
unsigned long v;
|
|
size_t chunk = min_t(size_t, left, sizeof(unsigned long));
|
|
|
|
if (!arch_get_random_long(&v))
|
|
break;
|
|
|
|
memcpy(p, &v, chunk);
|
|
p += chunk;
|
|
left -= chunk;
|
|
}
|
|
|
|
return nbytes - left;
|
|
}
|
|
EXPORT_SYMBOL(get_random_bytes_arch);
|
|
|
|
|
|
/**********************************************************************
|
|
*
|
|
* Entropy accumulation and extraction routines.
|
|
*
|
|
* Callers may add entropy via:
|
|
*
|
|
* static void mix_pool_bytes(const void *in, size_t nbytes)
|
|
*
|
|
* After which, if added entropy should be credited:
|
|
*
|
|
* static void credit_entropy_bits(size_t nbits)
|
|
*
|
|
* Finally, extract entropy via these two, with the latter one
|
|
* setting the entropy count to zero and extracting only if there
|
|
* is POOL_MIN_BITS entropy credited prior or force is true:
|
|
*
|
|
* static void extract_entropy(void *buf, size_t nbytes)
|
|
* static bool drain_entropy(void *buf, size_t nbytes, bool force)
|
|
*
|
|
**********************************************************************/
|
|
|
|
enum {
|
|
POOL_BITS = BLAKE2S_HASH_SIZE * 8,
|
|
POOL_MIN_BITS = POOL_BITS /* No point in settling for less. */
|
|
};
|
|
|
|
/* For notifying userspace should write into /dev/random. */
|
|
static DECLARE_WAIT_QUEUE_HEAD(random_write_wait);
|
|
|
|
static struct {
|
|
struct blake2s_state hash;
|
|
spinlock_t lock;
|
|
unsigned int entropy_count;
|
|
} input_pool = {
|
|
.hash.h = { BLAKE2S_IV0 ^ (0x01010000 | BLAKE2S_HASH_SIZE),
|
|
BLAKE2S_IV1, BLAKE2S_IV2, BLAKE2S_IV3, BLAKE2S_IV4,
|
|
BLAKE2S_IV5, BLAKE2S_IV6, BLAKE2S_IV7 },
|
|
.hash.outlen = BLAKE2S_HASH_SIZE,
|
|
.lock = __SPIN_LOCK_UNLOCKED(input_pool.lock),
|
|
};
|
|
|
|
static void _mix_pool_bytes(const void *in, size_t nbytes)
|
|
{
|
|
blake2s_update(&input_pool.hash, in, nbytes);
|
|
}
|
|
|
|
/*
|
|
* This function adds bytes into the entropy "pool". It does not
|
|
* update the entropy estimate. The caller should call
|
|
* credit_entropy_bits if this is appropriate.
|
|
*/
|
|
static void mix_pool_bytes(const void *in, size_t nbytes)
|
|
{
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&input_pool.lock, flags);
|
|
_mix_pool_bytes(in, nbytes);
|
|
spin_unlock_irqrestore(&input_pool.lock, flags);
|
|
}
|
|
|
|
static void credit_entropy_bits(size_t nbits)
|
|
{
|
|
unsigned int entropy_count, orig, add;
|
|
|
|
if (!nbits)
|
|
return;
|
|
|
|
add = min_t(size_t, nbits, POOL_BITS);
|
|
|
|
do {
|
|
orig = READ_ONCE(input_pool.entropy_count);
|
|
entropy_count = min_t(unsigned int, POOL_BITS, orig + add);
|
|
} while (cmpxchg(&input_pool.entropy_count, orig, entropy_count) != orig);
|
|
|
|
if (!crng_ready() && entropy_count >= POOL_MIN_BITS)
|
|
crng_reseed(false);
|
|
}
|
|
|
|
/*
|
|
* This is an HKDF-like construction for using the hashed collected entropy
|
|
* as a PRF key, that's then expanded block-by-block.
|
|
*/
|
|
static void extract_entropy(void *buf, size_t nbytes)
|
|
{
|
|
unsigned long flags;
|
|
u8 seed[BLAKE2S_HASH_SIZE], next_key[BLAKE2S_HASH_SIZE];
|
|
struct {
|
|
unsigned long rdseed[32 / sizeof(long)];
|
|
size_t counter;
|
|
} block;
|
|
size_t i;
|
|
|
|
for (i = 0; i < ARRAY_SIZE(block.rdseed); ++i) {
|
|
if (!arch_get_random_seed_long(&block.rdseed[i]) &&
|
|
!arch_get_random_long(&block.rdseed[i]))
|
|
block.rdseed[i] = random_get_entropy();
|
|
}
|
|
|
|
spin_lock_irqsave(&input_pool.lock, flags);
|
|
|
|
/* seed = HASHPRF(last_key, entropy_input) */
|
|
blake2s_final(&input_pool.hash, seed);
|
|
|
|
/* next_key = HASHPRF(seed, RDSEED || 0) */
|
|
block.counter = 0;
|
|
blake2s(next_key, (u8 *)&block, seed, sizeof(next_key), sizeof(block), sizeof(seed));
|
|
blake2s_init_key(&input_pool.hash, BLAKE2S_HASH_SIZE, next_key, sizeof(next_key));
|
|
|
|
spin_unlock_irqrestore(&input_pool.lock, flags);
|
|
memzero_explicit(next_key, sizeof(next_key));
|
|
|
|
while (nbytes) {
|
|
i = min_t(size_t, nbytes, BLAKE2S_HASH_SIZE);
|
|
/* output = HASHPRF(seed, RDSEED || ++counter) */
|
|
++block.counter;
|
|
blake2s(buf, (u8 *)&block, seed, i, sizeof(block), sizeof(seed));
|
|
nbytes -= i;
|
|
buf += i;
|
|
}
|
|
|
|
memzero_explicit(seed, sizeof(seed));
|
|
memzero_explicit(&block, sizeof(block));
|
|
}
|
|
|
|
/*
|
|
* First we make sure we have POOL_MIN_BITS of entropy in the pool unless force
|
|
* is true, and then we set the entropy count to zero (but don't actually touch
|
|
* any data). Only then can we extract a new key with extract_entropy().
|
|
*/
|
|
static bool drain_entropy(void *buf, size_t nbytes, bool force)
|
|
{
|
|
unsigned int entropy_count;
|
|
do {
|
|
entropy_count = READ_ONCE(input_pool.entropy_count);
|
|
if (!force && entropy_count < POOL_MIN_BITS)
|
|
return false;
|
|
} while (cmpxchg(&input_pool.entropy_count, entropy_count, 0) != entropy_count);
|
|
extract_entropy(buf, nbytes);
|
|
wake_up_interruptible(&random_write_wait);
|
|
kill_fasync(&fasync, SIGIO, POLL_OUT);
|
|
return true;
|
|
}
|
|
|
|
|
|
/**********************************************************************
|
|
*
|
|
* Entropy collection routines.
|
|
*
|
|
* The following exported functions are used for pushing entropy into
|
|
* the above entropy accumulation routines:
|
|
*
|
|
* void add_device_randomness(const void *buf, size_t size);
|
|
* void add_input_randomness(unsigned int type, unsigned int code,
|
|
* unsigned int value);
|
|
* void add_disk_randomness(struct gendisk *disk);
|
|
* void add_hwgenerator_randomness(const void *buffer, size_t count,
|
|
* size_t entropy);
|
|
* void add_bootloader_randomness(const void *buf, size_t size);
|
|
* void add_vmfork_randomness(const void *unique_vm_id, size_t size);
|
|
* void add_interrupt_randomness(int irq);
|
|
*
|
|
* add_device_randomness() adds data to the input pool that
|
|
* is likely to differ between two devices (or possibly even per boot).
|
|
* This would be things like MAC addresses or serial numbers, or the
|
|
* read-out of the RTC. This does *not* credit any actual entropy to
|
|
* the pool, but it initializes the pool to different values for devices
|
|
* that might otherwise be identical and have very little entropy
|
|
* available to them (particularly common in the embedded world).
|
|
*
|
|
* add_input_randomness() uses the input layer interrupt timing, as well
|
|
* as the event type information from the hardware.
|
|
*
|
|
* add_disk_randomness() uses what amounts to the seek time of block
|
|
* layer request events, on a per-disk_devt basis, as input to the
|
|
* entropy pool. Note that high-speed solid state drives with very low
|
|
* seek times do not make for good sources of entropy, as their seek
|
|
* times are usually fairly consistent.
|
|
*
|
|
* The above two routines try to estimate how many bits of entropy
|
|
* to credit. They do this by keeping track of the first and second
|
|
* order deltas of the event timings.
|
|
*
|
|
* add_hwgenerator_randomness() is for true hardware RNGs, and will credit
|
|
* entropy as specified by the caller. If the entropy pool is full it will
|
|
* block until more entropy is needed.
|
|
*
|
|
* add_bootloader_randomness() is the same as add_hwgenerator_randomness() or
|
|
* add_device_randomness(), depending on whether or not the configuration
|
|
* option CONFIG_RANDOM_TRUST_BOOTLOADER is set.
|
|
*
|
|
* add_vmfork_randomness() adds a unique (but not necessarily secret) ID
|
|
* representing the current instance of a VM to the pool, without crediting,
|
|
* and then force-reseeds the crng so that it takes effect immediately.
|
|
*
|
|
* add_interrupt_randomness() uses the interrupt timing as random
|
|
* inputs to the entropy pool. Using the cycle counters and the irq source
|
|
* as inputs, it feeds the input pool roughly once a second or after 64
|
|
* interrupts, crediting 1 bit of entropy for whichever comes first.
|
|
*
|
|
**********************************************************************/
|
|
|
|
static bool trust_cpu __ro_after_init = IS_ENABLED(CONFIG_RANDOM_TRUST_CPU);
|
|
static bool trust_bootloader __ro_after_init = IS_ENABLED(CONFIG_RANDOM_TRUST_BOOTLOADER);
|
|
static int __init parse_trust_cpu(char *arg)
|
|
{
|
|
return kstrtobool(arg, &trust_cpu);
|
|
}
|
|
static int __init parse_trust_bootloader(char *arg)
|
|
{
|
|
return kstrtobool(arg, &trust_bootloader);
|
|
}
|
|
early_param("random.trust_cpu", parse_trust_cpu);
|
|
early_param("random.trust_bootloader", parse_trust_bootloader);
|
|
|
|
/*
|
|
* The first collection of entropy occurs at system boot while interrupts
|
|
* are still turned off. Here we push in RDSEED, a timestamp, and utsname().
|
|
* Depending on the above configuration knob, RDSEED may be considered
|
|
* sufficient for initialization. Note that much earlier setup may already
|
|
* have pushed entropy into the input pool by the time we get here.
|
|
*/
|
|
int __init rand_initialize(void)
|
|
{
|
|
size_t i;
|
|
ktime_t now = ktime_get_real();
|
|
bool arch_init = true;
|
|
unsigned long rv;
|
|
|
|
#if defined(LATENT_ENTROPY_PLUGIN)
|
|
static const u8 compiletime_seed[BLAKE2S_BLOCK_SIZE] __initconst __latent_entropy;
|
|
_mix_pool_bytes(compiletime_seed, sizeof(compiletime_seed));
|
|
#endif
|
|
|
|
for (i = 0; i < BLAKE2S_BLOCK_SIZE; i += sizeof(rv)) {
|
|
if (!arch_get_random_seed_long_early(&rv) &&
|
|
!arch_get_random_long_early(&rv)) {
|
|
rv = random_get_entropy();
|
|
arch_init = false;
|
|
}
|
|
_mix_pool_bytes(&rv, sizeof(rv));
|
|
}
|
|
_mix_pool_bytes(&now, sizeof(now));
|
|
_mix_pool_bytes(utsname(), sizeof(*(utsname())));
|
|
|
|
extract_entropy(base_crng.key, sizeof(base_crng.key));
|
|
++base_crng.generation;
|
|
|
|
if (arch_init && trust_cpu && !crng_ready()) {
|
|
crng_init = 2;
|
|
pr_notice("crng init done (trusting CPU's manufacturer)\n");
|
|
}
|
|
|
|
if (ratelimit_disable) {
|
|
urandom_warning.interval = 0;
|
|
unseeded_warning.interval = 0;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Add device- or boot-specific data to the input pool to help
|
|
* initialize it.
|
|
*
|
|
* None of this adds any entropy; it is meant to avoid the problem of
|
|
* the entropy pool having similar initial state across largely
|
|
* identical devices.
|
|
*/
|
|
void add_device_randomness(const void *buf, size_t size)
|
|
{
|
|
cycles_t cycles = random_get_entropy();
|
|
unsigned long flags, now = jiffies;
|
|
|
|
if (crng_init == 0 && size)
|
|
crng_pre_init_inject(buf, size, false);
|
|
|
|
spin_lock_irqsave(&input_pool.lock, flags);
|
|
_mix_pool_bytes(&cycles, sizeof(cycles));
|
|
_mix_pool_bytes(&now, sizeof(now));
|
|
_mix_pool_bytes(buf, size);
|
|
spin_unlock_irqrestore(&input_pool.lock, flags);
|
|
}
|
|
EXPORT_SYMBOL(add_device_randomness);
|
|
|
|
/* There is one of these per entropy source */
|
|
struct timer_rand_state {
|
|
unsigned long last_time;
|
|
long last_delta, last_delta2;
|
|
};
|
|
|
|
/*
|
|
* This function adds entropy to the entropy "pool" by using timing
|
|
* delays. It uses the timer_rand_state structure to make an estimate
|
|
* of how many bits of entropy this call has added to the pool.
|
|
*
|
|
* The number "num" is also added to the pool - it should somehow describe
|
|
* the type of event which just happened. This is currently 0-255 for
|
|
* keyboard scan codes, and 256 upwards for interrupts.
|
|
*/
|
|
static void add_timer_randomness(struct timer_rand_state *state, unsigned int num)
|
|
{
|
|
cycles_t cycles = random_get_entropy();
|
|
unsigned long flags, now = jiffies;
|
|
long delta, delta2, delta3;
|
|
|
|
spin_lock_irqsave(&input_pool.lock, flags);
|
|
_mix_pool_bytes(&cycles, sizeof(cycles));
|
|
_mix_pool_bytes(&now, sizeof(now));
|
|
_mix_pool_bytes(&num, sizeof(num));
|
|
spin_unlock_irqrestore(&input_pool.lock, flags);
|
|
|
|
/*
|
|
* Calculate number of bits of randomness we probably added.
|
|
* We take into account the first, second and third-order deltas
|
|
* in order to make our estimate.
|
|
*/
|
|
delta = now - READ_ONCE(state->last_time);
|
|
WRITE_ONCE(state->last_time, now);
|
|
|
|
delta2 = delta - READ_ONCE(state->last_delta);
|
|
WRITE_ONCE(state->last_delta, delta);
|
|
|
|
delta3 = delta2 - READ_ONCE(state->last_delta2);
|
|
WRITE_ONCE(state->last_delta2, delta2);
|
|
|
|
if (delta < 0)
|
|
delta = -delta;
|
|
if (delta2 < 0)
|
|
delta2 = -delta2;
|
|
if (delta3 < 0)
|
|
delta3 = -delta3;
|
|
if (delta > delta2)
|
|
delta = delta2;
|
|
if (delta > delta3)
|
|
delta = delta3;
|
|
|
|
/*
|
|
* delta is now minimum absolute delta.
|
|
* Round down by 1 bit on general principles,
|
|
* and limit entropy estimate to 12 bits.
|
|
*/
|
|
credit_entropy_bits(min_t(unsigned int, fls(delta >> 1), 11));
|
|
}
|
|
|
|
void add_input_randomness(unsigned int type, unsigned int code,
|
|
unsigned int value)
|
|
{
|
|
static unsigned char last_value;
|
|
static struct timer_rand_state input_timer_state = { INITIAL_JIFFIES };
|
|
|
|
/* Ignore autorepeat and the like. */
|
|
if (value == last_value)
|
|
return;
|
|
|
|
last_value = value;
|
|
add_timer_randomness(&input_timer_state,
|
|
(type << 4) ^ code ^ (code >> 4) ^ value);
|
|
}
|
|
EXPORT_SYMBOL_GPL(add_input_randomness);
|
|
|
|
#ifdef CONFIG_BLOCK
|
|
void add_disk_randomness(struct gendisk *disk)
|
|
{
|
|
if (!disk || !disk->random)
|
|
return;
|
|
/* First major is 1, so we get >= 0x200 here. */
|
|
add_timer_randomness(disk->random, 0x100 + disk_devt(disk));
|
|
}
|
|
EXPORT_SYMBOL_GPL(add_disk_randomness);
|
|
|
|
void rand_initialize_disk(struct gendisk *disk)
|
|
{
|
|
struct timer_rand_state *state;
|
|
|
|
/*
|
|
* If kzalloc returns null, we just won't use that entropy
|
|
* source.
|
|
*/
|
|
state = kzalloc(sizeof(struct timer_rand_state), GFP_KERNEL);
|
|
if (state) {
|
|
state->last_time = INITIAL_JIFFIES;
|
|
disk->random = state;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Interface for in-kernel drivers of true hardware RNGs.
|
|
* Those devices may produce endless random bits and will be throttled
|
|
* when our pool is full.
|
|
*/
|
|
void add_hwgenerator_randomness(const void *buffer, size_t count,
|
|
size_t entropy)
|
|
{
|
|
if (unlikely(crng_init == 0 && entropy < POOL_MIN_BITS)) {
|
|
crng_pre_init_inject(buffer, count, true);
|
|
mix_pool_bytes(buffer, count);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Throttle writing if we're above the trickle threshold.
|
|
* We'll be woken up again once below POOL_MIN_BITS, when
|
|
* the calling thread is about to terminate, or once
|
|
* CRNG_RESEED_INTERVAL has elapsed.
|
|
*/
|
|
wait_event_interruptible_timeout(random_write_wait,
|
|
!system_wq || kthread_should_stop() ||
|
|
input_pool.entropy_count < POOL_MIN_BITS,
|
|
CRNG_RESEED_INTERVAL);
|
|
mix_pool_bytes(buffer, count);
|
|
credit_entropy_bits(entropy);
|
|
}
|
|
EXPORT_SYMBOL_GPL(add_hwgenerator_randomness);
|
|
|
|
/*
|
|
* Handle random seed passed by bootloader.
|
|
* If the seed is trustworthy, it would be regarded as hardware RNGs. Otherwise
|
|
* it would be regarded as device data.
|
|
* The decision is controlled by CONFIG_RANDOM_TRUST_BOOTLOADER.
|
|
*/
|
|
void add_bootloader_randomness(const void *buf, size_t size)
|
|
{
|
|
if (trust_bootloader)
|
|
add_hwgenerator_randomness(buf, size, size * 8);
|
|
else
|
|
add_device_randomness(buf, size);
|
|
}
|
|
EXPORT_SYMBOL_GPL(add_bootloader_randomness);
|
|
|
|
#if IS_ENABLED(CONFIG_VMGENID)
|
|
static BLOCKING_NOTIFIER_HEAD(vmfork_chain);
|
|
|
|
/*
|
|
* Handle a new unique VM ID, which is unique, not secret, so we
|
|
* don't credit it, but we do immediately force a reseed after so
|
|
* that it's used by the crng posthaste.
|
|
*/
|
|
void add_vmfork_randomness(const void *unique_vm_id, size_t size)
|
|
{
|
|
add_device_randomness(unique_vm_id, size);
|
|
if (crng_ready()) {
|
|
crng_reseed(true);
|
|
pr_notice("crng reseeded due to virtual machine fork\n");
|
|
}
|
|
blocking_notifier_call_chain(&vmfork_chain, 0, NULL);
|
|
}
|
|
#if IS_MODULE(CONFIG_VMGENID)
|
|
EXPORT_SYMBOL_GPL(add_vmfork_randomness);
|
|
#endif
|
|
|
|
int register_random_vmfork_notifier(struct notifier_block *nb)
|
|
{
|
|
return blocking_notifier_chain_register(&vmfork_chain, nb);
|
|
}
|
|
EXPORT_SYMBOL_GPL(register_random_vmfork_notifier);
|
|
|
|
int unregister_random_vmfork_notifier(struct notifier_block *nb)
|
|
{
|
|
return blocking_notifier_chain_unregister(&vmfork_chain, nb);
|
|
}
|
|
EXPORT_SYMBOL_GPL(unregister_random_vmfork_notifier);
|
|
#endif
|
|
|
|
struct fast_pool {
|
|
struct work_struct mix;
|
|
unsigned long pool[4];
|
|
unsigned long last;
|
|
unsigned int count;
|
|
u16 reg_idx;
|
|
};
|
|
|
|
static DEFINE_PER_CPU(struct fast_pool, irq_randomness) = {
|
|
#ifdef CONFIG_64BIT
|
|
/* SipHash constants */
|
|
.pool = { 0x736f6d6570736575UL, 0x646f72616e646f6dUL,
|
|
0x6c7967656e657261UL, 0x7465646279746573UL }
|
|
#else
|
|
/* HalfSipHash constants */
|
|
.pool = { 0, 0, 0x6c796765U, 0x74656462U }
|
|
#endif
|
|
};
|
|
|
|
/*
|
|
* This is [Half]SipHash-1-x, starting from an empty key. Because
|
|
* the key is fixed, it assumes that its inputs are non-malicious,
|
|
* and therefore this has no security on its own. s represents the
|
|
* 128 or 256-bit SipHash state, while v represents a 128-bit input.
|
|
*/
|
|
static void fast_mix(unsigned long s[4], const unsigned long *v)
|
|
{
|
|
size_t i;
|
|
|
|
for (i = 0; i < 16 / sizeof(long); ++i) {
|
|
s[3] ^= v[i];
|
|
#ifdef CONFIG_64BIT
|
|
s[0] += s[1]; s[1] = rol64(s[1], 13); s[1] ^= s[0]; s[0] = rol64(s[0], 32);
|
|
s[2] += s[3]; s[3] = rol64(s[3], 16); s[3] ^= s[2];
|
|
s[0] += s[3]; s[3] = rol64(s[3], 21); s[3] ^= s[0];
|
|
s[2] += s[1]; s[1] = rol64(s[1], 17); s[1] ^= s[2]; s[2] = rol64(s[2], 32);
|
|
#else
|
|
s[0] += s[1]; s[1] = rol32(s[1], 5); s[1] ^= s[0]; s[0] = rol32(s[0], 16);
|
|
s[2] += s[3]; s[3] = rol32(s[3], 8); s[3] ^= s[2];
|
|
s[0] += s[3]; s[3] = rol32(s[3], 7); s[3] ^= s[0];
|
|
s[2] += s[1]; s[1] = rol32(s[1], 13); s[1] ^= s[2]; s[2] = rol32(s[2], 16);
|
|
#endif
|
|
s[0] ^= v[i];
|
|
}
|
|
}
|
|
|
|
#ifdef CONFIG_SMP
|
|
/*
|
|
* This function is called when the CPU has just come online, with
|
|
* entry CPUHP_AP_RANDOM_ONLINE, just after CPUHP_AP_WORKQUEUE_ONLINE.
|
|
*/
|
|
int random_online_cpu(unsigned int cpu)
|
|
{
|
|
/*
|
|
* During CPU shutdown and before CPU onlining, add_interrupt_
|
|
* randomness() may schedule mix_interrupt_randomness(), and
|
|
* set the MIX_INFLIGHT flag. However, because the worker can
|
|
* be scheduled on a different CPU during this period, that
|
|
* flag will never be cleared. For that reason, we zero out
|
|
* the flag here, which runs just after workqueues are onlined
|
|
* for the CPU again. This also has the effect of setting the
|
|
* irq randomness count to zero so that new accumulated irqs
|
|
* are fresh.
|
|
*/
|
|
per_cpu_ptr(&irq_randomness, cpu)->count = 0;
|
|
return 0;
|
|
}
|
|
#endif
|
|
|
|
static unsigned long get_reg(struct fast_pool *f, struct pt_regs *regs)
|
|
{
|
|
unsigned long *ptr = (unsigned long *)regs;
|
|
unsigned int idx;
|
|
|
|
if (regs == NULL)
|
|
return 0;
|
|
idx = READ_ONCE(f->reg_idx);
|
|
if (idx >= sizeof(struct pt_regs) / sizeof(unsigned long))
|
|
idx = 0;
|
|
ptr += idx++;
|
|
WRITE_ONCE(f->reg_idx, idx);
|
|
return *ptr;
|
|
}
|
|
|
|
static void mix_interrupt_randomness(struct work_struct *work)
|
|
{
|
|
struct fast_pool *fast_pool = container_of(work, struct fast_pool, mix);
|
|
/*
|
|
* The size of the copied stack pool is explicitly 16 bytes so that we
|
|
* tax mix_pool_byte()'s compression function the same amount on all
|
|
* platforms. This means on 64-bit we copy half the pool into this,
|
|
* while on 32-bit we copy all of it. The entropy is supposed to be
|
|
* sufficiently dispersed between bits that in the sponge-like
|
|
* half case, on average we don't wind up "losing" some.
|
|
*/
|
|
u8 pool[16];
|
|
|
|
/* Check to see if we're running on the wrong CPU due to hotplug. */
|
|
local_irq_disable();
|
|
if (fast_pool != this_cpu_ptr(&irq_randomness)) {
|
|
local_irq_enable();
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Copy the pool to the stack so that the mixer always has a
|
|
* consistent view, before we reenable irqs again.
|
|
*/
|
|
memcpy(pool, fast_pool->pool, sizeof(pool));
|
|
fast_pool->count = 0;
|
|
fast_pool->last = jiffies;
|
|
local_irq_enable();
|
|
|
|
if (unlikely(crng_init == 0)) {
|
|
crng_pre_init_inject(pool, sizeof(pool), true);
|
|
mix_pool_bytes(pool, sizeof(pool));
|
|
} else {
|
|
mix_pool_bytes(pool, sizeof(pool));
|
|
credit_entropy_bits(1);
|
|
}
|
|
|
|
memzero_explicit(pool, sizeof(pool));
|
|
}
|
|
|
|
void add_interrupt_randomness(int irq)
|
|
{
|
|
enum { MIX_INFLIGHT = 1U << 31 };
|
|
cycles_t cycles = random_get_entropy();
|
|
unsigned long now = jiffies;
|
|
struct fast_pool *fast_pool = this_cpu_ptr(&irq_randomness);
|
|
struct pt_regs *regs = get_irq_regs();
|
|
unsigned int new_count;
|
|
union {
|
|
u32 u32[4];
|
|
u64 u64[2];
|
|
unsigned long longs[16 / sizeof(long)];
|
|
} irq_data;
|
|
|
|
if (cycles == 0)
|
|
cycles = get_reg(fast_pool, regs);
|
|
|
|
if (sizeof(cycles) == 8)
|
|
irq_data.u64[0] = cycles ^ rol64(now, 32) ^ irq;
|
|
else {
|
|
irq_data.u32[0] = cycles ^ irq;
|
|
irq_data.u32[1] = now;
|
|
}
|
|
|
|
if (sizeof(unsigned long) == 8)
|
|
irq_data.u64[1] = regs ? instruction_pointer(regs) : _RET_IP_;
|
|
else {
|
|
irq_data.u32[2] = regs ? instruction_pointer(regs) : _RET_IP_;
|
|
irq_data.u32[3] = get_reg(fast_pool, regs);
|
|
}
|
|
|
|
fast_mix(fast_pool->pool, irq_data.longs);
|
|
new_count = ++fast_pool->count;
|
|
|
|
if (new_count & MIX_INFLIGHT)
|
|
return;
|
|
|
|
if (new_count < 64 && (!time_after(now, fast_pool->last + HZ) ||
|
|
unlikely(crng_init == 0)))
|
|
return;
|
|
|
|
if (unlikely(!fast_pool->mix.func))
|
|
INIT_WORK(&fast_pool->mix, mix_interrupt_randomness);
|
|
fast_pool->count |= MIX_INFLIGHT;
|
|
queue_work_on(raw_smp_processor_id(), system_highpri_wq, &fast_pool->mix);
|
|
}
|
|
EXPORT_SYMBOL_GPL(add_interrupt_randomness);
|
|
|
|
/*
|
|
* Each time the timer fires, we expect that we got an unpredictable
|
|
* jump in the cycle counter. Even if the timer is running on another
|
|
* CPU, the timer activity will be touching the stack of the CPU that is
|
|
* generating entropy..
|
|
*
|
|
* Note that we don't re-arm the timer in the timer itself - we are
|
|
* happy to be scheduled away, since that just makes the load more
|
|
* complex, but we do not want the timer to keep ticking unless the
|
|
* entropy loop is running.
|
|
*
|
|
* So the re-arming always happens in the entropy loop itself.
|
|
*/
|
|
static void entropy_timer(struct timer_list *t)
|
|
{
|
|
credit_entropy_bits(1);
|
|
}
|
|
|
|
/*
|
|
* If we have an actual cycle counter, see if we can
|
|
* generate enough entropy with timing noise
|
|
*/
|
|
static void try_to_generate_entropy(void)
|
|
{
|
|
struct {
|
|
cycles_t cycles;
|
|
struct timer_list timer;
|
|
} stack;
|
|
|
|
stack.cycles = random_get_entropy();
|
|
|
|
/* Slow counter - or none. Don't even bother */
|
|
if (stack.cycles == random_get_entropy())
|
|
return;
|
|
|
|
timer_setup_on_stack(&stack.timer, entropy_timer, 0);
|
|
while (!crng_ready() && !signal_pending(current)) {
|
|
if (!timer_pending(&stack.timer))
|
|
mod_timer(&stack.timer, jiffies + 1);
|
|
mix_pool_bytes(&stack.cycles, sizeof(stack.cycles));
|
|
schedule();
|
|
stack.cycles = random_get_entropy();
|
|
}
|
|
|
|
del_timer_sync(&stack.timer);
|
|
destroy_timer_on_stack(&stack.timer);
|
|
mix_pool_bytes(&stack.cycles, sizeof(stack.cycles));
|
|
}
|
|
|
|
|
|
/**********************************************************************
|
|
*
|
|
* Userspace reader/writer interfaces.
|
|
*
|
|
* getrandom(2) is the primary modern interface into the RNG and should
|
|
* be used in preference to anything else.
|
|
*
|
|
* Reading from /dev/random has the same functionality as calling
|
|
* getrandom(2) with flags=0. In earlier versions, however, it had
|
|
* vastly different semantics and should therefore be avoided, to
|
|
* prevent backwards compatibility issues.
|
|
*
|
|
* Reading from /dev/urandom has the same functionality as calling
|
|
* getrandom(2) with flags=GRND_INSECURE. Because it does not block
|
|
* waiting for the RNG to be ready, it should not be used.
|
|
*
|
|
* Writing to either /dev/random or /dev/urandom adds entropy to
|
|
* the input pool but does not credit it.
|
|
*
|
|
* Polling on /dev/random indicates when the RNG is initialized, on
|
|
* the read side, and when it wants new entropy, on the write side.
|
|
*
|
|
* Both /dev/random and /dev/urandom have the same set of ioctls for
|
|
* adding entropy, getting the entropy count, zeroing the count, and
|
|
* reseeding the crng.
|
|
*
|
|
**********************************************************************/
|
|
|
|
SYSCALL_DEFINE3(getrandom, char __user *, buf, size_t, count, unsigned int,
|
|
flags)
|
|
{
|
|
if (flags & ~(GRND_NONBLOCK | GRND_RANDOM | GRND_INSECURE))
|
|
return -EINVAL;
|
|
|
|
/*
|
|
* Requesting insecure and blocking randomness at the same time makes
|
|
* no sense.
|
|
*/
|
|
if ((flags & (GRND_INSECURE | GRND_RANDOM)) == (GRND_INSECURE | GRND_RANDOM))
|
|
return -EINVAL;
|
|
|
|
if (count > INT_MAX)
|
|
count = INT_MAX;
|
|
|
|
if (!(flags & GRND_INSECURE) && !crng_ready()) {
|
|
int ret;
|
|
|
|
if (flags & GRND_NONBLOCK)
|
|
return -EAGAIN;
|
|
ret = wait_for_random_bytes();
|
|
if (unlikely(ret))
|
|
return ret;
|
|
}
|
|
return get_random_bytes_user(buf, count);
|
|
}
|
|
|
|
static __poll_t random_poll(struct file *file, poll_table *wait)
|
|
{
|
|
__poll_t mask;
|
|
|
|
poll_wait(file, &crng_init_wait, wait);
|
|
poll_wait(file, &random_write_wait, wait);
|
|
mask = 0;
|
|
if (crng_ready())
|
|
mask |= EPOLLIN | EPOLLRDNORM;
|
|
if (input_pool.entropy_count < POOL_MIN_BITS)
|
|
mask |= EPOLLOUT | EPOLLWRNORM;
|
|
return mask;
|
|
}
|
|
|
|
static int write_pool(const char __user *ubuf, size_t count)
|
|
{
|
|
size_t len;
|
|
int ret = 0;
|
|
u8 block[BLAKE2S_BLOCK_SIZE];
|
|
|
|
while (count) {
|
|
len = min(count, sizeof(block));
|
|
if (copy_from_user(block, ubuf, len)) {
|
|
ret = -EFAULT;
|
|
goto out;
|
|
}
|
|
count -= len;
|
|
ubuf += len;
|
|
mix_pool_bytes(block, len);
|
|
cond_resched();
|
|
}
|
|
|
|
out:
|
|
memzero_explicit(block, sizeof(block));
|
|
return ret;
|
|
}
|
|
|
|
static ssize_t random_write(struct file *file, const char __user *buffer,
|
|
size_t count, loff_t *ppos)
|
|
{
|
|
int ret;
|
|
|
|
ret = write_pool(buffer, count);
|
|
if (ret)
|
|
return ret;
|
|
|
|
return (ssize_t)count;
|
|
}
|
|
|
|
static ssize_t urandom_read(struct file *file, char __user *buf, size_t nbytes,
|
|
loff_t *ppos)
|
|
{
|
|
static int maxwarn = 10;
|
|
|
|
/*
|
|
* Opportunistically attempt to initialize the RNG on platforms that
|
|
* have fast cycle counters, but don't (for now) require it to succeed.
|
|
*/
|
|
if (!crng_ready())
|
|
try_to_generate_entropy();
|
|
|
|
if (!crng_ready() && maxwarn > 0) {
|
|
maxwarn--;
|
|
if (__ratelimit(&urandom_warning))
|
|
pr_notice("%s: uninitialized urandom read (%zd bytes read)\n",
|
|
current->comm, nbytes);
|
|
}
|
|
|
|
return get_random_bytes_user(buf, nbytes);
|
|
}
|
|
|
|
static ssize_t random_read(struct file *file, char __user *buf, size_t nbytes,
|
|
loff_t *ppos)
|
|
{
|
|
int ret;
|
|
|
|
ret = wait_for_random_bytes();
|
|
if (ret != 0)
|
|
return ret;
|
|
return get_random_bytes_user(buf, nbytes);
|
|
}
|
|
|
|
static long random_ioctl(struct file *f, unsigned int cmd, unsigned long arg)
|
|
{
|
|
int size, ent_count;
|
|
int __user *p = (int __user *)arg;
|
|
int retval;
|
|
|
|
switch (cmd) {
|
|
case RNDGETENTCNT:
|
|
/* Inherently racy, no point locking. */
|
|
if (put_user(input_pool.entropy_count, p))
|
|
return -EFAULT;
|
|
return 0;
|
|
case RNDADDTOENTCNT:
|
|
if (!capable(CAP_SYS_ADMIN))
|
|
return -EPERM;
|
|
if (get_user(ent_count, p))
|
|
return -EFAULT;
|
|
if (ent_count < 0)
|
|
return -EINVAL;
|
|
credit_entropy_bits(ent_count);
|
|
return 0;
|
|
case RNDADDENTROPY:
|
|
if (!capable(CAP_SYS_ADMIN))
|
|
return -EPERM;
|
|
if (get_user(ent_count, p++))
|
|
return -EFAULT;
|
|
if (ent_count < 0)
|
|
return -EINVAL;
|
|
if (get_user(size, p++))
|
|
return -EFAULT;
|
|
retval = write_pool((const char __user *)p, size);
|
|
if (retval < 0)
|
|
return retval;
|
|
credit_entropy_bits(ent_count);
|
|
return 0;
|
|
case RNDZAPENTCNT:
|
|
case RNDCLEARPOOL:
|
|
/*
|
|
* Clear the entropy pool counters. We no longer clear
|
|
* the entropy pool, as that's silly.
|
|
*/
|
|
if (!capable(CAP_SYS_ADMIN))
|
|
return -EPERM;
|
|
if (xchg(&input_pool.entropy_count, 0) >= POOL_MIN_BITS) {
|
|
wake_up_interruptible(&random_write_wait);
|
|
kill_fasync(&fasync, SIGIO, POLL_OUT);
|
|
}
|
|
return 0;
|
|
case RNDRESEEDCRNG:
|
|
if (!capable(CAP_SYS_ADMIN))
|
|
return -EPERM;
|
|
if (!crng_ready())
|
|
return -ENODATA;
|
|
crng_reseed(false);
|
|
return 0;
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
}
|
|
|
|
static int random_fasync(int fd, struct file *filp, int on)
|
|
{
|
|
return fasync_helper(fd, filp, on, &fasync);
|
|
}
|
|
|
|
const struct file_operations random_fops = {
|
|
.read = random_read,
|
|
.write = random_write,
|
|
.poll = random_poll,
|
|
.unlocked_ioctl = random_ioctl,
|
|
.compat_ioctl = compat_ptr_ioctl,
|
|
.fasync = random_fasync,
|
|
.llseek = noop_llseek,
|
|
};
|
|
|
|
const struct file_operations urandom_fops = {
|
|
.read = urandom_read,
|
|
.write = random_write,
|
|
.unlocked_ioctl = random_ioctl,
|
|
.compat_ioctl = compat_ptr_ioctl,
|
|
.fasync = random_fasync,
|
|
.llseek = noop_llseek,
|
|
};
|
|
|
|
|
|
/********************************************************************
|
|
*
|
|
* Sysctl interface.
|
|
*
|
|
* These are partly unused legacy knobs with dummy values to not break
|
|
* userspace and partly still useful things. They are usually accessible
|
|
* in /proc/sys/kernel/random/ and are as follows:
|
|
*
|
|
* - boot_id - a UUID representing the current boot.
|
|
*
|
|
* - uuid - a random UUID, different each time the file is read.
|
|
*
|
|
* - poolsize - the number of bits of entropy that the input pool can
|
|
* hold, tied to the POOL_BITS constant.
|
|
*
|
|
* - entropy_avail - the number of bits of entropy currently in the
|
|
* input pool. Always <= poolsize.
|
|
*
|
|
* - write_wakeup_threshold - the amount of entropy in the input pool
|
|
* below which write polls to /dev/random will unblock, requesting
|
|
* more entropy, tied to the POOL_MIN_BITS constant. It is writable
|
|
* to avoid breaking old userspaces, but writing to it does not
|
|
* change any behavior of the RNG.
|
|
*
|
|
* - urandom_min_reseed_secs - fixed to the value CRNG_RESEED_INTERVAL.
|
|
* It is writable to avoid breaking old userspaces, but writing
|
|
* to it does not change any behavior of the RNG.
|
|
*
|
|
********************************************************************/
|
|
|
|
#ifdef CONFIG_SYSCTL
|
|
|
|
#include <linux/sysctl.h>
|
|
|
|
static int sysctl_random_min_urandom_seed = CRNG_RESEED_INTERVAL / HZ;
|
|
static int sysctl_random_write_wakeup_bits = POOL_MIN_BITS;
|
|
static int sysctl_poolsize = POOL_BITS;
|
|
static u8 sysctl_bootid[UUID_SIZE];
|
|
|
|
/*
|
|
* This function is used to return both the bootid UUID, and random
|
|
* UUID. The difference is in whether table->data is NULL; if it is,
|
|
* then a new UUID is generated and returned to the user.
|
|
*/
|
|
static int proc_do_uuid(struct ctl_table *table, int write, void *buffer,
|
|
size_t *lenp, loff_t *ppos)
|
|
{
|
|
u8 tmp_uuid[UUID_SIZE], *uuid;
|
|
char uuid_string[UUID_STRING_LEN + 1];
|
|
struct ctl_table fake_table = {
|
|
.data = uuid_string,
|
|
.maxlen = UUID_STRING_LEN
|
|
};
|
|
|
|
if (write)
|
|
return -EPERM;
|
|
|
|
uuid = table->data;
|
|
if (!uuid) {
|
|
uuid = tmp_uuid;
|
|
generate_random_uuid(uuid);
|
|
} else {
|
|
static DEFINE_SPINLOCK(bootid_spinlock);
|
|
|
|
spin_lock(&bootid_spinlock);
|
|
if (!uuid[8])
|
|
generate_random_uuid(uuid);
|
|
spin_unlock(&bootid_spinlock);
|
|
}
|
|
|
|
snprintf(uuid_string, sizeof(uuid_string), "%pU", uuid);
|
|
return proc_dostring(&fake_table, 0, buffer, lenp, ppos);
|
|
}
|
|
|
|
/* The same as proc_dointvec, but writes don't change anything. */
|
|
static int proc_do_rointvec(struct ctl_table *table, int write, void *buffer,
|
|
size_t *lenp, loff_t *ppos)
|
|
{
|
|
return write ? 0 : proc_dointvec(table, 0, buffer, lenp, ppos);
|
|
}
|
|
|
|
static struct ctl_table random_table[] = {
|
|
{
|
|
.procname = "poolsize",
|
|
.data = &sysctl_poolsize,
|
|
.maxlen = sizeof(int),
|
|
.mode = 0444,
|
|
.proc_handler = proc_dointvec,
|
|
},
|
|
{
|
|
.procname = "entropy_avail",
|
|
.data = &input_pool.entropy_count,
|
|
.maxlen = sizeof(int),
|
|
.mode = 0444,
|
|
.proc_handler = proc_dointvec,
|
|
},
|
|
{
|
|
.procname = "write_wakeup_threshold",
|
|
.data = &sysctl_random_write_wakeup_bits,
|
|
.maxlen = sizeof(int),
|
|
.mode = 0644,
|
|
.proc_handler = proc_do_rointvec,
|
|
},
|
|
{
|
|
.procname = "urandom_min_reseed_secs",
|
|
.data = &sysctl_random_min_urandom_seed,
|
|
.maxlen = sizeof(int),
|
|
.mode = 0644,
|
|
.proc_handler = proc_do_rointvec,
|
|
},
|
|
{
|
|
.procname = "boot_id",
|
|
.data = &sysctl_bootid,
|
|
.mode = 0444,
|
|
.proc_handler = proc_do_uuid,
|
|
},
|
|
{
|
|
.procname = "uuid",
|
|
.mode = 0444,
|
|
.proc_handler = proc_do_uuid,
|
|
},
|
|
{ }
|
|
};
|
|
|
|
/*
|
|
* rand_initialize() is called before sysctl_init(),
|
|
* so we cannot call register_sysctl_init() in rand_initialize()
|
|
*/
|
|
static int __init random_sysctls_init(void)
|
|
{
|
|
register_sysctl_init("kernel/random", random_table);
|
|
return 0;
|
|
}
|
|
device_initcall(random_sysctls_init);
|
|
#endif
|