4a0e637738
cycle_last was added to the clocksource to support the TSC validation. We moved that to the core code, so we can get rid of the extra copy. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: John Stultz <john.stultz@linaro.org>
1725 lines
45 KiB
C
1725 lines
45 KiB
C
/*
|
|
* linux/kernel/time/timekeeping.c
|
|
*
|
|
* Kernel timekeeping code and accessor functions
|
|
*
|
|
* This code was moved from linux/kernel/timer.c.
|
|
* Please see that file for copyright and history logs.
|
|
*
|
|
*/
|
|
|
|
#include <linux/timekeeper_internal.h>
|
|
#include <linux/module.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/percpu.h>
|
|
#include <linux/init.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/syscore_ops.h>
|
|
#include <linux/clocksource.h>
|
|
#include <linux/jiffies.h>
|
|
#include <linux/time.h>
|
|
#include <linux/tick.h>
|
|
#include <linux/stop_machine.h>
|
|
#include <linux/pvclock_gtod.h>
|
|
#include <linux/compiler.h>
|
|
|
|
#include "tick-internal.h"
|
|
#include "ntp_internal.h"
|
|
#include "timekeeping_internal.h"
|
|
|
|
#define TK_CLEAR_NTP (1 << 0)
|
|
#define TK_MIRROR (1 << 1)
|
|
#define TK_CLOCK_WAS_SET (1 << 2)
|
|
|
|
/*
|
|
* The most important data for readout fits into a single 64 byte
|
|
* cache line.
|
|
*/
|
|
static struct {
|
|
seqcount_t seq;
|
|
struct timekeeper timekeeper;
|
|
} tk_core ____cacheline_aligned;
|
|
|
|
static DEFINE_RAW_SPINLOCK(timekeeper_lock);
|
|
static struct timekeeper shadow_timekeeper;
|
|
|
|
/* flag for if timekeeping is suspended */
|
|
int __read_mostly timekeeping_suspended;
|
|
|
|
/* Flag for if there is a persistent clock on this platform */
|
|
bool __read_mostly persistent_clock_exist = false;
|
|
|
|
static inline void tk_normalize_xtime(struct timekeeper *tk)
|
|
{
|
|
while (tk->xtime_nsec >= ((u64)NSEC_PER_SEC << tk->shift)) {
|
|
tk->xtime_nsec -= (u64)NSEC_PER_SEC << tk->shift;
|
|
tk->xtime_sec++;
|
|
}
|
|
}
|
|
|
|
static inline struct timespec64 tk_xtime(struct timekeeper *tk)
|
|
{
|
|
struct timespec64 ts;
|
|
|
|
ts.tv_sec = tk->xtime_sec;
|
|
ts.tv_nsec = (long)(tk->xtime_nsec >> tk->shift);
|
|
return ts;
|
|
}
|
|
|
|
static void tk_set_xtime(struct timekeeper *tk, const struct timespec64 *ts)
|
|
{
|
|
tk->xtime_sec = ts->tv_sec;
|
|
tk->xtime_nsec = (u64)ts->tv_nsec << tk->shift;
|
|
}
|
|
|
|
static void tk_xtime_add(struct timekeeper *tk, const struct timespec64 *ts)
|
|
{
|
|
tk->xtime_sec += ts->tv_sec;
|
|
tk->xtime_nsec += (u64)ts->tv_nsec << tk->shift;
|
|
tk_normalize_xtime(tk);
|
|
}
|
|
|
|
static void tk_set_wall_to_mono(struct timekeeper *tk, struct timespec64 wtm)
|
|
{
|
|
struct timespec64 tmp;
|
|
|
|
/*
|
|
* Verify consistency of: offset_real = -wall_to_monotonic
|
|
* before modifying anything
|
|
*/
|
|
set_normalized_timespec64(&tmp, -tk->wall_to_monotonic.tv_sec,
|
|
-tk->wall_to_monotonic.tv_nsec);
|
|
WARN_ON_ONCE(tk->offs_real.tv64 != timespec64_to_ktime(tmp).tv64);
|
|
tk->wall_to_monotonic = wtm;
|
|
set_normalized_timespec64(&tmp, -wtm.tv_sec, -wtm.tv_nsec);
|
|
tk->offs_real = timespec64_to_ktime(tmp);
|
|
tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tk->tai_offset, 0));
|
|
}
|
|
|
|
static inline void tk_update_sleep_time(struct timekeeper *tk, ktime_t delta)
|
|
{
|
|
tk->offs_boot = ktime_add(tk->offs_boot, delta);
|
|
}
|
|
|
|
/**
|
|
* tk_setup_internals - Set up internals to use clocksource clock.
|
|
*
|
|
* @tk: The target timekeeper to setup.
|
|
* @clock: Pointer to clocksource.
|
|
*
|
|
* Calculates a fixed cycle/nsec interval for a given clocksource/adjustment
|
|
* pair and interval request.
|
|
*
|
|
* Unless you're the timekeeping code, you should not be using this!
|
|
*/
|
|
static void tk_setup_internals(struct timekeeper *tk, struct clocksource *clock)
|
|
{
|
|
cycle_t interval;
|
|
u64 tmp, ntpinterval;
|
|
struct clocksource *old_clock;
|
|
|
|
old_clock = tk->clock;
|
|
tk->clock = clock;
|
|
tk->cycle_last = clock->read(clock);
|
|
|
|
/* Do the ns -> cycle conversion first, using original mult */
|
|
tmp = NTP_INTERVAL_LENGTH;
|
|
tmp <<= clock->shift;
|
|
ntpinterval = tmp;
|
|
tmp += clock->mult/2;
|
|
do_div(tmp, clock->mult);
|
|
if (tmp == 0)
|
|
tmp = 1;
|
|
|
|
interval = (cycle_t) tmp;
|
|
tk->cycle_interval = interval;
|
|
|
|
/* Go back from cycles -> shifted ns */
|
|
tk->xtime_interval = (u64) interval * clock->mult;
|
|
tk->xtime_remainder = ntpinterval - tk->xtime_interval;
|
|
tk->raw_interval =
|
|
((u64) interval * clock->mult) >> clock->shift;
|
|
|
|
/* if changing clocks, convert xtime_nsec shift units */
|
|
if (old_clock) {
|
|
int shift_change = clock->shift - old_clock->shift;
|
|
if (shift_change < 0)
|
|
tk->xtime_nsec >>= -shift_change;
|
|
else
|
|
tk->xtime_nsec <<= shift_change;
|
|
}
|
|
tk->shift = clock->shift;
|
|
|
|
tk->ntp_error = 0;
|
|
tk->ntp_error_shift = NTP_SCALE_SHIFT - clock->shift;
|
|
|
|
/*
|
|
* The timekeeper keeps its own mult values for the currently
|
|
* active clocksource. These value will be adjusted via NTP
|
|
* to counteract clock drifting.
|
|
*/
|
|
tk->mult = clock->mult;
|
|
}
|
|
|
|
/* Timekeeper helper functions. */
|
|
|
|
#ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
|
|
static u32 default_arch_gettimeoffset(void) { return 0; }
|
|
u32 (*arch_gettimeoffset)(void) = default_arch_gettimeoffset;
|
|
#else
|
|
static inline u32 arch_gettimeoffset(void) { return 0; }
|
|
#endif
|
|
|
|
static inline s64 timekeeping_get_ns(struct timekeeper *tk)
|
|
{
|
|
cycle_t cycle_now, delta;
|
|
struct clocksource *clock;
|
|
s64 nsec;
|
|
|
|
/* read clocksource: */
|
|
clock = tk->clock;
|
|
cycle_now = clock->read(clock);
|
|
|
|
/* calculate the delta since the last update_wall_time: */
|
|
delta = clocksource_delta(cycle_now, tk->cycle_last, clock->mask);
|
|
|
|
nsec = delta * tk->mult + tk->xtime_nsec;
|
|
nsec >>= tk->shift;
|
|
|
|
/* If arch requires, add in get_arch_timeoffset() */
|
|
return nsec + arch_gettimeoffset();
|
|
}
|
|
|
|
static inline s64 timekeeping_get_ns_raw(struct timekeeper *tk)
|
|
{
|
|
cycle_t cycle_now, delta;
|
|
struct clocksource *clock;
|
|
s64 nsec;
|
|
|
|
/* read clocksource: */
|
|
clock = tk->clock;
|
|
cycle_now = clock->read(clock);
|
|
|
|
/* calculate the delta since the last update_wall_time: */
|
|
delta = clocksource_delta(cycle_now, tk->cycle_last, clock->mask);
|
|
|
|
/* convert delta to nanoseconds. */
|
|
nsec = clocksource_cyc2ns(delta, clock->mult, clock->shift);
|
|
|
|
/* If arch requires, add in get_arch_timeoffset() */
|
|
return nsec + arch_gettimeoffset();
|
|
}
|
|
|
|
#ifdef CONFIG_GENERIC_TIME_VSYSCALL_OLD
|
|
|
|
static inline void update_vsyscall(struct timekeeper *tk)
|
|
{
|
|
struct timespec xt;
|
|
|
|
xt = tk_xtime(tk);
|
|
update_vsyscall_old(&xt, &tk->wall_to_monotonic, tk->clock, tk->mult,
|
|
tk->cycle_last);
|
|
}
|
|
|
|
static inline void old_vsyscall_fixup(struct timekeeper *tk)
|
|
{
|
|
s64 remainder;
|
|
|
|
/*
|
|
* Store only full nanoseconds into xtime_nsec after rounding
|
|
* it up and add the remainder to the error difference.
|
|
* XXX - This is necessary to avoid small 1ns inconsistnecies caused
|
|
* by truncating the remainder in vsyscalls. However, it causes
|
|
* additional work to be done in timekeeping_adjust(). Once
|
|
* the vsyscall implementations are converted to use xtime_nsec
|
|
* (shifted nanoseconds), and CONFIG_GENERIC_TIME_VSYSCALL_OLD
|
|
* users are removed, this can be killed.
|
|
*/
|
|
remainder = tk->xtime_nsec & ((1ULL << tk->shift) - 1);
|
|
tk->xtime_nsec -= remainder;
|
|
tk->xtime_nsec += 1ULL << tk->shift;
|
|
tk->ntp_error += remainder << tk->ntp_error_shift;
|
|
tk->ntp_error -= (1ULL << tk->shift) << tk->ntp_error_shift;
|
|
}
|
|
#else
|
|
#define old_vsyscall_fixup(tk)
|
|
#endif
|
|
|
|
static RAW_NOTIFIER_HEAD(pvclock_gtod_chain);
|
|
|
|
static void update_pvclock_gtod(struct timekeeper *tk, bool was_set)
|
|
{
|
|
raw_notifier_call_chain(&pvclock_gtod_chain, was_set, tk);
|
|
}
|
|
|
|
/**
|
|
* pvclock_gtod_register_notifier - register a pvclock timedata update listener
|
|
*/
|
|
int pvclock_gtod_register_notifier(struct notifier_block *nb)
|
|
{
|
|
struct timekeeper *tk = &tk_core.timekeeper;
|
|
unsigned long flags;
|
|
int ret;
|
|
|
|
raw_spin_lock_irqsave(&timekeeper_lock, flags);
|
|
ret = raw_notifier_chain_register(&pvclock_gtod_chain, nb);
|
|
update_pvclock_gtod(tk, true);
|
|
raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
|
|
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL_GPL(pvclock_gtod_register_notifier);
|
|
|
|
/**
|
|
* pvclock_gtod_unregister_notifier - unregister a pvclock
|
|
* timedata update listener
|
|
*/
|
|
int pvclock_gtod_unregister_notifier(struct notifier_block *nb)
|
|
{
|
|
unsigned long flags;
|
|
int ret;
|
|
|
|
raw_spin_lock_irqsave(&timekeeper_lock, flags);
|
|
ret = raw_notifier_chain_unregister(&pvclock_gtod_chain, nb);
|
|
raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
|
|
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL_GPL(pvclock_gtod_unregister_notifier);
|
|
|
|
/*
|
|
* Update the ktime_t based scalar nsec members of the timekeeper
|
|
*/
|
|
static inline void tk_update_ktime_data(struct timekeeper *tk)
|
|
{
|
|
s64 nsec;
|
|
|
|
/*
|
|
* The xtime based monotonic readout is:
|
|
* nsec = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec + now();
|
|
* The ktime based monotonic readout is:
|
|
* nsec = base_mono + now();
|
|
* ==> base_mono = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec
|
|
*/
|
|
nsec = (s64)(tk->xtime_sec + tk->wall_to_monotonic.tv_sec);
|
|
nsec *= NSEC_PER_SEC;
|
|
nsec += tk->wall_to_monotonic.tv_nsec;
|
|
tk->base_mono = ns_to_ktime(nsec);
|
|
|
|
/* Update the monotonic raw base */
|
|
tk->base_raw = timespec64_to_ktime(tk->raw_time);
|
|
}
|
|
|
|
/* must hold timekeeper_lock */
|
|
static void timekeeping_update(struct timekeeper *tk, unsigned int action)
|
|
{
|
|
if (action & TK_CLEAR_NTP) {
|
|
tk->ntp_error = 0;
|
|
ntp_clear();
|
|
}
|
|
update_vsyscall(tk);
|
|
update_pvclock_gtod(tk, action & TK_CLOCK_WAS_SET);
|
|
|
|
tk_update_ktime_data(tk);
|
|
|
|
if (action & TK_MIRROR)
|
|
memcpy(&shadow_timekeeper, &tk_core.timekeeper,
|
|
sizeof(tk_core.timekeeper));
|
|
}
|
|
|
|
/**
|
|
* timekeeping_forward_now - update clock to the current time
|
|
*
|
|
* Forward the current clock to update its state since the last call to
|
|
* update_wall_time(). This is useful before significant clock changes,
|
|
* as it avoids having to deal with this time offset explicitly.
|
|
*/
|
|
static void timekeeping_forward_now(struct timekeeper *tk)
|
|
{
|
|
cycle_t cycle_now, delta;
|
|
struct clocksource *clock;
|
|
s64 nsec;
|
|
|
|
clock = tk->clock;
|
|
cycle_now = clock->read(clock);
|
|
delta = clocksource_delta(cycle_now, tk->cycle_last, clock->mask);
|
|
tk->cycle_last = cycle_now;
|
|
|
|
tk->xtime_nsec += delta * tk->mult;
|
|
|
|
/* If arch requires, add in get_arch_timeoffset() */
|
|
tk->xtime_nsec += (u64)arch_gettimeoffset() << tk->shift;
|
|
|
|
tk_normalize_xtime(tk);
|
|
|
|
nsec = clocksource_cyc2ns(delta, clock->mult, clock->shift);
|
|
timespec64_add_ns(&tk->raw_time, nsec);
|
|
}
|
|
|
|
/**
|
|
* __getnstimeofday64 - Returns the time of day in a timespec64.
|
|
* @ts: pointer to the timespec to be set
|
|
*
|
|
* Updates the time of day in the timespec.
|
|
* Returns 0 on success, or -ve when suspended (timespec will be undefined).
|
|
*/
|
|
int __getnstimeofday64(struct timespec64 *ts)
|
|
{
|
|
struct timekeeper *tk = &tk_core.timekeeper;
|
|
unsigned long seq;
|
|
s64 nsecs = 0;
|
|
|
|
do {
|
|
seq = read_seqcount_begin(&tk_core.seq);
|
|
|
|
ts->tv_sec = tk->xtime_sec;
|
|
nsecs = timekeeping_get_ns(tk);
|
|
|
|
} while (read_seqcount_retry(&tk_core.seq, seq));
|
|
|
|
ts->tv_nsec = 0;
|
|
timespec64_add_ns(ts, nsecs);
|
|
|
|
/*
|
|
* Do not bail out early, in case there were callers still using
|
|
* the value, even in the face of the WARN_ON.
|
|
*/
|
|
if (unlikely(timekeeping_suspended))
|
|
return -EAGAIN;
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL(__getnstimeofday64);
|
|
|
|
/**
|
|
* getnstimeofday64 - Returns the time of day in a timespec64.
|
|
* @ts: pointer to the timespec to be set
|
|
*
|
|
* Returns the time of day in a timespec (WARN if suspended).
|
|
*/
|
|
void getnstimeofday64(struct timespec64 *ts)
|
|
{
|
|
WARN_ON(__getnstimeofday64(ts));
|
|
}
|
|
EXPORT_SYMBOL(getnstimeofday64);
|
|
|
|
ktime_t ktime_get(void)
|
|
{
|
|
struct timekeeper *tk = &tk_core.timekeeper;
|
|
unsigned int seq;
|
|
ktime_t base;
|
|
s64 nsecs;
|
|
|
|
WARN_ON(timekeeping_suspended);
|
|
|
|
do {
|
|
seq = read_seqcount_begin(&tk_core.seq);
|
|
base = tk->base_mono;
|
|
nsecs = timekeeping_get_ns(tk);
|
|
|
|
} while (read_seqcount_retry(&tk_core.seq, seq));
|
|
|
|
return ktime_add_ns(base, nsecs);
|
|
}
|
|
EXPORT_SYMBOL_GPL(ktime_get);
|
|
|
|
static ktime_t *offsets[TK_OFFS_MAX] = {
|
|
[TK_OFFS_REAL] = &tk_core.timekeeper.offs_real,
|
|
[TK_OFFS_BOOT] = &tk_core.timekeeper.offs_boot,
|
|
[TK_OFFS_TAI] = &tk_core.timekeeper.offs_tai,
|
|
};
|
|
|
|
ktime_t ktime_get_with_offset(enum tk_offsets offs)
|
|
{
|
|
struct timekeeper *tk = &tk_core.timekeeper;
|
|
unsigned int seq;
|
|
ktime_t base, *offset = offsets[offs];
|
|
s64 nsecs;
|
|
|
|
WARN_ON(timekeeping_suspended);
|
|
|
|
do {
|
|
seq = read_seqcount_begin(&tk_core.seq);
|
|
base = ktime_add(tk->base_mono, *offset);
|
|
nsecs = timekeeping_get_ns(tk);
|
|
|
|
} while (read_seqcount_retry(&tk_core.seq, seq));
|
|
|
|
return ktime_add_ns(base, nsecs);
|
|
|
|
}
|
|
EXPORT_SYMBOL_GPL(ktime_get_with_offset);
|
|
|
|
/**
|
|
* ktime_mono_to_any() - convert mononotic time to any other time
|
|
* @tmono: time to convert.
|
|
* @offs: which offset to use
|
|
*/
|
|
ktime_t ktime_mono_to_any(ktime_t tmono, enum tk_offsets offs)
|
|
{
|
|
ktime_t *offset = offsets[offs];
|
|
unsigned long seq;
|
|
ktime_t tconv;
|
|
|
|
do {
|
|
seq = read_seqcount_begin(&tk_core.seq);
|
|
tconv = ktime_add(tmono, *offset);
|
|
} while (read_seqcount_retry(&tk_core.seq, seq));
|
|
|
|
return tconv;
|
|
}
|
|
EXPORT_SYMBOL_GPL(ktime_mono_to_any);
|
|
|
|
/**
|
|
* ktime_get_raw - Returns the raw monotonic time in ktime_t format
|
|
*/
|
|
ktime_t ktime_get_raw(void)
|
|
{
|
|
struct timekeeper *tk = &tk_core.timekeeper;
|
|
unsigned int seq;
|
|
ktime_t base;
|
|
s64 nsecs;
|
|
|
|
do {
|
|
seq = read_seqcount_begin(&tk_core.seq);
|
|
base = tk->base_raw;
|
|
nsecs = timekeeping_get_ns_raw(tk);
|
|
|
|
} while (read_seqcount_retry(&tk_core.seq, seq));
|
|
|
|
return ktime_add_ns(base, nsecs);
|
|
}
|
|
EXPORT_SYMBOL_GPL(ktime_get_raw);
|
|
|
|
/**
|
|
* ktime_get_ts64 - get the monotonic clock in timespec64 format
|
|
* @ts: pointer to timespec variable
|
|
*
|
|
* The function calculates the monotonic clock from the realtime
|
|
* clock and the wall_to_monotonic offset and stores the result
|
|
* in normalized timespec format in the variable pointed to by @ts.
|
|
*/
|
|
void ktime_get_ts64(struct timespec64 *ts)
|
|
{
|
|
struct timekeeper *tk = &tk_core.timekeeper;
|
|
struct timespec64 tomono;
|
|
s64 nsec;
|
|
unsigned int seq;
|
|
|
|
WARN_ON(timekeeping_suspended);
|
|
|
|
do {
|
|
seq = read_seqcount_begin(&tk_core.seq);
|
|
ts->tv_sec = tk->xtime_sec;
|
|
nsec = timekeeping_get_ns(tk);
|
|
tomono = tk->wall_to_monotonic;
|
|
|
|
} while (read_seqcount_retry(&tk_core.seq, seq));
|
|
|
|
ts->tv_sec += tomono.tv_sec;
|
|
ts->tv_nsec = 0;
|
|
timespec64_add_ns(ts, nsec + tomono.tv_nsec);
|
|
}
|
|
EXPORT_SYMBOL_GPL(ktime_get_ts64);
|
|
|
|
#ifdef CONFIG_NTP_PPS
|
|
|
|
/**
|
|
* getnstime_raw_and_real - get day and raw monotonic time in timespec format
|
|
* @ts_raw: pointer to the timespec to be set to raw monotonic time
|
|
* @ts_real: pointer to the timespec to be set to the time of day
|
|
*
|
|
* This function reads both the time of day and raw monotonic time at the
|
|
* same time atomically and stores the resulting timestamps in timespec
|
|
* format.
|
|
*/
|
|
void getnstime_raw_and_real(struct timespec *ts_raw, struct timespec *ts_real)
|
|
{
|
|
struct timekeeper *tk = &tk_core.timekeeper;
|
|
unsigned long seq;
|
|
s64 nsecs_raw, nsecs_real;
|
|
|
|
WARN_ON_ONCE(timekeeping_suspended);
|
|
|
|
do {
|
|
seq = read_seqcount_begin(&tk_core.seq);
|
|
|
|
*ts_raw = timespec64_to_timespec(tk->raw_time);
|
|
ts_real->tv_sec = tk->xtime_sec;
|
|
ts_real->tv_nsec = 0;
|
|
|
|
nsecs_raw = timekeeping_get_ns_raw(tk);
|
|
nsecs_real = timekeeping_get_ns(tk);
|
|
|
|
} while (read_seqcount_retry(&tk_core.seq, seq));
|
|
|
|
timespec_add_ns(ts_raw, nsecs_raw);
|
|
timespec_add_ns(ts_real, nsecs_real);
|
|
}
|
|
EXPORT_SYMBOL(getnstime_raw_and_real);
|
|
|
|
#endif /* CONFIG_NTP_PPS */
|
|
|
|
/**
|
|
* do_gettimeofday - Returns the time of day in a timeval
|
|
* @tv: pointer to the timeval to be set
|
|
*
|
|
* NOTE: Users should be converted to using getnstimeofday()
|
|
*/
|
|
void do_gettimeofday(struct timeval *tv)
|
|
{
|
|
struct timespec64 now;
|
|
|
|
getnstimeofday64(&now);
|
|
tv->tv_sec = now.tv_sec;
|
|
tv->tv_usec = now.tv_nsec/1000;
|
|
}
|
|
EXPORT_SYMBOL(do_gettimeofday);
|
|
|
|
/**
|
|
* do_settimeofday - Sets the time of day
|
|
* @tv: pointer to the timespec variable containing the new time
|
|
*
|
|
* Sets the time of day to the new time and update NTP and notify hrtimers
|
|
*/
|
|
int do_settimeofday(const struct timespec *tv)
|
|
{
|
|
struct timekeeper *tk = &tk_core.timekeeper;
|
|
struct timespec64 ts_delta, xt, tmp;
|
|
unsigned long flags;
|
|
|
|
if (!timespec_valid_strict(tv))
|
|
return -EINVAL;
|
|
|
|
raw_spin_lock_irqsave(&timekeeper_lock, flags);
|
|
write_seqcount_begin(&tk_core.seq);
|
|
|
|
timekeeping_forward_now(tk);
|
|
|
|
xt = tk_xtime(tk);
|
|
ts_delta.tv_sec = tv->tv_sec - xt.tv_sec;
|
|
ts_delta.tv_nsec = tv->tv_nsec - xt.tv_nsec;
|
|
|
|
tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts_delta));
|
|
|
|
tmp = timespec_to_timespec64(*tv);
|
|
tk_set_xtime(tk, &tmp);
|
|
|
|
timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
|
|
|
|
write_seqcount_end(&tk_core.seq);
|
|
raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
|
|
|
|
/* signal hrtimers about time change */
|
|
clock_was_set();
|
|
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL(do_settimeofday);
|
|
|
|
/**
|
|
* timekeeping_inject_offset - Adds or subtracts from the current time.
|
|
* @tv: pointer to the timespec variable containing the offset
|
|
*
|
|
* Adds or subtracts an offset value from the current time.
|
|
*/
|
|
int timekeeping_inject_offset(struct timespec *ts)
|
|
{
|
|
struct timekeeper *tk = &tk_core.timekeeper;
|
|
unsigned long flags;
|
|
struct timespec64 ts64, tmp;
|
|
int ret = 0;
|
|
|
|
if ((unsigned long)ts->tv_nsec >= NSEC_PER_SEC)
|
|
return -EINVAL;
|
|
|
|
ts64 = timespec_to_timespec64(*ts);
|
|
|
|
raw_spin_lock_irqsave(&timekeeper_lock, flags);
|
|
write_seqcount_begin(&tk_core.seq);
|
|
|
|
timekeeping_forward_now(tk);
|
|
|
|
/* Make sure the proposed value is valid */
|
|
tmp = timespec64_add(tk_xtime(tk), ts64);
|
|
if (!timespec64_valid_strict(&tmp)) {
|
|
ret = -EINVAL;
|
|
goto error;
|
|
}
|
|
|
|
tk_xtime_add(tk, &ts64);
|
|
tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts64));
|
|
|
|
error: /* even if we error out, we forwarded the time, so call update */
|
|
timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
|
|
|
|
write_seqcount_end(&tk_core.seq);
|
|
raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
|
|
|
|
/* signal hrtimers about time change */
|
|
clock_was_set();
|
|
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL(timekeeping_inject_offset);
|
|
|
|
|
|
/**
|
|
* timekeeping_get_tai_offset - Returns current TAI offset from UTC
|
|
*
|
|
*/
|
|
s32 timekeeping_get_tai_offset(void)
|
|
{
|
|
struct timekeeper *tk = &tk_core.timekeeper;
|
|
unsigned int seq;
|
|
s32 ret;
|
|
|
|
do {
|
|
seq = read_seqcount_begin(&tk_core.seq);
|
|
ret = tk->tai_offset;
|
|
} while (read_seqcount_retry(&tk_core.seq, seq));
|
|
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* __timekeeping_set_tai_offset - Lock free worker function
|
|
*
|
|
*/
|
|
static void __timekeeping_set_tai_offset(struct timekeeper *tk, s32 tai_offset)
|
|
{
|
|
tk->tai_offset = tai_offset;
|
|
tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tai_offset, 0));
|
|
}
|
|
|
|
/**
|
|
* timekeeping_set_tai_offset - Sets the current TAI offset from UTC
|
|
*
|
|
*/
|
|
void timekeeping_set_tai_offset(s32 tai_offset)
|
|
{
|
|
struct timekeeper *tk = &tk_core.timekeeper;
|
|
unsigned long flags;
|
|
|
|
raw_spin_lock_irqsave(&timekeeper_lock, flags);
|
|
write_seqcount_begin(&tk_core.seq);
|
|
__timekeeping_set_tai_offset(tk, tai_offset);
|
|
timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
|
|
write_seqcount_end(&tk_core.seq);
|
|
raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
|
|
clock_was_set();
|
|
}
|
|
|
|
/**
|
|
* change_clocksource - Swaps clocksources if a new one is available
|
|
*
|
|
* Accumulates current time interval and initializes new clocksource
|
|
*/
|
|
static int change_clocksource(void *data)
|
|
{
|
|
struct timekeeper *tk = &tk_core.timekeeper;
|
|
struct clocksource *new, *old;
|
|
unsigned long flags;
|
|
|
|
new = (struct clocksource *) data;
|
|
|
|
raw_spin_lock_irqsave(&timekeeper_lock, flags);
|
|
write_seqcount_begin(&tk_core.seq);
|
|
|
|
timekeeping_forward_now(tk);
|
|
/*
|
|
* If the cs is in module, get a module reference. Succeeds
|
|
* for built-in code (owner == NULL) as well.
|
|
*/
|
|
if (try_module_get(new->owner)) {
|
|
if (!new->enable || new->enable(new) == 0) {
|
|
old = tk->clock;
|
|
tk_setup_internals(tk, new);
|
|
if (old->disable)
|
|
old->disable(old);
|
|
module_put(old->owner);
|
|
} else {
|
|
module_put(new->owner);
|
|
}
|
|
}
|
|
timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
|
|
|
|
write_seqcount_end(&tk_core.seq);
|
|
raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* timekeeping_notify - Install a new clock source
|
|
* @clock: pointer to the clock source
|
|
*
|
|
* This function is called from clocksource.c after a new, better clock
|
|
* source has been registered. The caller holds the clocksource_mutex.
|
|
*/
|
|
int timekeeping_notify(struct clocksource *clock)
|
|
{
|
|
struct timekeeper *tk = &tk_core.timekeeper;
|
|
|
|
if (tk->clock == clock)
|
|
return 0;
|
|
stop_machine(change_clocksource, clock, NULL);
|
|
tick_clock_notify();
|
|
return tk->clock == clock ? 0 : -1;
|
|
}
|
|
|
|
/**
|
|
* getrawmonotonic - Returns the raw monotonic time in a timespec
|
|
* @ts: pointer to the timespec to be set
|
|
*
|
|
* Returns the raw monotonic time (completely un-modified by ntp)
|
|
*/
|
|
void getrawmonotonic(struct timespec *ts)
|
|
{
|
|
struct timekeeper *tk = &tk_core.timekeeper;
|
|
struct timespec64 ts64;
|
|
unsigned long seq;
|
|
s64 nsecs;
|
|
|
|
do {
|
|
seq = read_seqcount_begin(&tk_core.seq);
|
|
nsecs = timekeeping_get_ns_raw(tk);
|
|
ts64 = tk->raw_time;
|
|
|
|
} while (read_seqcount_retry(&tk_core.seq, seq));
|
|
|
|
timespec64_add_ns(&ts64, nsecs);
|
|
*ts = timespec64_to_timespec(ts64);
|
|
}
|
|
EXPORT_SYMBOL(getrawmonotonic);
|
|
|
|
/**
|
|
* timekeeping_valid_for_hres - Check if timekeeping is suitable for hres
|
|
*/
|
|
int timekeeping_valid_for_hres(void)
|
|
{
|
|
struct timekeeper *tk = &tk_core.timekeeper;
|
|
unsigned long seq;
|
|
int ret;
|
|
|
|
do {
|
|
seq = read_seqcount_begin(&tk_core.seq);
|
|
|
|
ret = tk->clock->flags & CLOCK_SOURCE_VALID_FOR_HRES;
|
|
|
|
} while (read_seqcount_retry(&tk_core.seq, seq));
|
|
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* timekeeping_max_deferment - Returns max time the clocksource can be deferred
|
|
*/
|
|
u64 timekeeping_max_deferment(void)
|
|
{
|
|
struct timekeeper *tk = &tk_core.timekeeper;
|
|
unsigned long seq;
|
|
u64 ret;
|
|
|
|
do {
|
|
seq = read_seqcount_begin(&tk_core.seq);
|
|
|
|
ret = tk->clock->max_idle_ns;
|
|
|
|
} while (read_seqcount_retry(&tk_core.seq, seq));
|
|
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* read_persistent_clock - Return time from the persistent clock.
|
|
*
|
|
* Weak dummy function for arches that do not yet support it.
|
|
* Reads the time from the battery backed persistent clock.
|
|
* Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
|
|
*
|
|
* XXX - Do be sure to remove it once all arches implement it.
|
|
*/
|
|
void __weak read_persistent_clock(struct timespec *ts)
|
|
{
|
|
ts->tv_sec = 0;
|
|
ts->tv_nsec = 0;
|
|
}
|
|
|
|
/**
|
|
* read_boot_clock - Return time of the system start.
|
|
*
|
|
* Weak dummy function for arches that do not yet support it.
|
|
* Function to read the exact time the system has been started.
|
|
* Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
|
|
*
|
|
* XXX - Do be sure to remove it once all arches implement it.
|
|
*/
|
|
void __weak read_boot_clock(struct timespec *ts)
|
|
{
|
|
ts->tv_sec = 0;
|
|
ts->tv_nsec = 0;
|
|
}
|
|
|
|
/*
|
|
* timekeeping_init - Initializes the clocksource and common timekeeping values
|
|
*/
|
|
void __init timekeeping_init(void)
|
|
{
|
|
struct timekeeper *tk = &tk_core.timekeeper;
|
|
struct clocksource *clock;
|
|
unsigned long flags;
|
|
struct timespec64 now, boot, tmp;
|
|
struct timespec ts;
|
|
|
|
read_persistent_clock(&ts);
|
|
now = timespec_to_timespec64(ts);
|
|
if (!timespec64_valid_strict(&now)) {
|
|
pr_warn("WARNING: Persistent clock returned invalid value!\n"
|
|
" Check your CMOS/BIOS settings.\n");
|
|
now.tv_sec = 0;
|
|
now.tv_nsec = 0;
|
|
} else if (now.tv_sec || now.tv_nsec)
|
|
persistent_clock_exist = true;
|
|
|
|
read_boot_clock(&ts);
|
|
boot = timespec_to_timespec64(ts);
|
|
if (!timespec64_valid_strict(&boot)) {
|
|
pr_warn("WARNING: Boot clock returned invalid value!\n"
|
|
" Check your CMOS/BIOS settings.\n");
|
|
boot.tv_sec = 0;
|
|
boot.tv_nsec = 0;
|
|
}
|
|
|
|
raw_spin_lock_irqsave(&timekeeper_lock, flags);
|
|
write_seqcount_begin(&tk_core.seq);
|
|
ntp_init();
|
|
|
|
clock = clocksource_default_clock();
|
|
if (clock->enable)
|
|
clock->enable(clock);
|
|
tk_setup_internals(tk, clock);
|
|
|
|
tk_set_xtime(tk, &now);
|
|
tk->raw_time.tv_sec = 0;
|
|
tk->raw_time.tv_nsec = 0;
|
|
tk->base_raw.tv64 = 0;
|
|
if (boot.tv_sec == 0 && boot.tv_nsec == 0)
|
|
boot = tk_xtime(tk);
|
|
|
|
set_normalized_timespec64(&tmp, -boot.tv_sec, -boot.tv_nsec);
|
|
tk_set_wall_to_mono(tk, tmp);
|
|
|
|
timekeeping_update(tk, TK_MIRROR);
|
|
|
|
write_seqcount_end(&tk_core.seq);
|
|
raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
|
|
}
|
|
|
|
/* time in seconds when suspend began */
|
|
static struct timespec64 timekeeping_suspend_time;
|
|
|
|
/**
|
|
* __timekeeping_inject_sleeptime - Internal function to add sleep interval
|
|
* @delta: pointer to a timespec delta value
|
|
*
|
|
* Takes a timespec offset measuring a suspend interval and properly
|
|
* adds the sleep offset to the timekeeping variables.
|
|
*/
|
|
static void __timekeeping_inject_sleeptime(struct timekeeper *tk,
|
|
struct timespec64 *delta)
|
|
{
|
|
if (!timespec64_valid_strict(delta)) {
|
|
printk_deferred(KERN_WARNING
|
|
"__timekeeping_inject_sleeptime: Invalid "
|
|
"sleep delta value!\n");
|
|
return;
|
|
}
|
|
tk_xtime_add(tk, delta);
|
|
tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, *delta));
|
|
tk_update_sleep_time(tk, timespec64_to_ktime(*delta));
|
|
tk_debug_account_sleep_time(delta);
|
|
}
|
|
|
|
/**
|
|
* timekeeping_inject_sleeptime - Adds suspend interval to timeekeeping values
|
|
* @delta: pointer to a timespec delta value
|
|
*
|
|
* This hook is for architectures that cannot support read_persistent_clock
|
|
* because their RTC/persistent clock is only accessible when irqs are enabled.
|
|
*
|
|
* This function should only be called by rtc_resume(), and allows
|
|
* a suspend offset to be injected into the timekeeping values.
|
|
*/
|
|
void timekeeping_inject_sleeptime(struct timespec *delta)
|
|
{
|
|
struct timekeeper *tk = &tk_core.timekeeper;
|
|
struct timespec64 tmp;
|
|
unsigned long flags;
|
|
|
|
/*
|
|
* Make sure we don't set the clock twice, as timekeeping_resume()
|
|
* already did it
|
|
*/
|
|
if (has_persistent_clock())
|
|
return;
|
|
|
|
raw_spin_lock_irqsave(&timekeeper_lock, flags);
|
|
write_seqcount_begin(&tk_core.seq);
|
|
|
|
timekeeping_forward_now(tk);
|
|
|
|
tmp = timespec_to_timespec64(*delta);
|
|
__timekeeping_inject_sleeptime(tk, &tmp);
|
|
|
|
timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
|
|
|
|
write_seqcount_end(&tk_core.seq);
|
|
raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
|
|
|
|
/* signal hrtimers about time change */
|
|
clock_was_set();
|
|
}
|
|
|
|
/**
|
|
* timekeeping_resume - Resumes the generic timekeeping subsystem.
|
|
*
|
|
* This is for the generic clocksource timekeeping.
|
|
* xtime/wall_to_monotonic/jiffies/etc are
|
|
* still managed by arch specific suspend/resume code.
|
|
*/
|
|
static void timekeeping_resume(void)
|
|
{
|
|
struct timekeeper *tk = &tk_core.timekeeper;
|
|
struct clocksource *clock = tk->clock;
|
|
unsigned long flags;
|
|
struct timespec64 ts_new, ts_delta;
|
|
struct timespec tmp;
|
|
cycle_t cycle_now, cycle_delta;
|
|
bool suspendtime_found = false;
|
|
|
|
read_persistent_clock(&tmp);
|
|
ts_new = timespec_to_timespec64(tmp);
|
|
|
|
clockevents_resume();
|
|
clocksource_resume();
|
|
|
|
raw_spin_lock_irqsave(&timekeeper_lock, flags);
|
|
write_seqcount_begin(&tk_core.seq);
|
|
|
|
/*
|
|
* After system resumes, we need to calculate the suspended time and
|
|
* compensate it for the OS time. There are 3 sources that could be
|
|
* used: Nonstop clocksource during suspend, persistent clock and rtc
|
|
* device.
|
|
*
|
|
* One specific platform may have 1 or 2 or all of them, and the
|
|
* preference will be:
|
|
* suspend-nonstop clocksource -> persistent clock -> rtc
|
|
* The less preferred source will only be tried if there is no better
|
|
* usable source. The rtc part is handled separately in rtc core code.
|
|
*/
|
|
cycle_now = clock->read(clock);
|
|
if ((clock->flags & CLOCK_SOURCE_SUSPEND_NONSTOP) &&
|
|
cycle_now > tk->cycle_last) {
|
|
u64 num, max = ULLONG_MAX;
|
|
u32 mult = clock->mult;
|
|
u32 shift = clock->shift;
|
|
s64 nsec = 0;
|
|
|
|
cycle_delta = clocksource_delta(cycle_now, tk->cycle_last,
|
|
clock->mask);
|
|
|
|
/*
|
|
* "cycle_delta * mutl" may cause 64 bits overflow, if the
|
|
* suspended time is too long. In that case we need do the
|
|
* 64 bits math carefully
|
|
*/
|
|
do_div(max, mult);
|
|
if (cycle_delta > max) {
|
|
num = div64_u64(cycle_delta, max);
|
|
nsec = (((u64) max * mult) >> shift) * num;
|
|
cycle_delta -= num * max;
|
|
}
|
|
nsec += ((u64) cycle_delta * mult) >> shift;
|
|
|
|
ts_delta = ns_to_timespec64(nsec);
|
|
suspendtime_found = true;
|
|
} else if (timespec64_compare(&ts_new, &timekeeping_suspend_time) > 0) {
|
|
ts_delta = timespec64_sub(ts_new, timekeeping_suspend_time);
|
|
suspendtime_found = true;
|
|
}
|
|
|
|
if (suspendtime_found)
|
|
__timekeeping_inject_sleeptime(tk, &ts_delta);
|
|
|
|
/* Re-base the last cycle value */
|
|
tk->cycle_last = cycle_now;
|
|
tk->ntp_error = 0;
|
|
timekeeping_suspended = 0;
|
|
timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
|
|
write_seqcount_end(&tk_core.seq);
|
|
raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
|
|
|
|
touch_softlockup_watchdog();
|
|
|
|
clockevents_notify(CLOCK_EVT_NOTIFY_RESUME, NULL);
|
|
|
|
/* Resume hrtimers */
|
|
hrtimers_resume();
|
|
}
|
|
|
|
static int timekeeping_suspend(void)
|
|
{
|
|
struct timekeeper *tk = &tk_core.timekeeper;
|
|
unsigned long flags;
|
|
struct timespec64 delta, delta_delta;
|
|
static struct timespec64 old_delta;
|
|
struct timespec tmp;
|
|
|
|
read_persistent_clock(&tmp);
|
|
timekeeping_suspend_time = timespec_to_timespec64(tmp);
|
|
|
|
/*
|
|
* On some systems the persistent_clock can not be detected at
|
|
* timekeeping_init by its return value, so if we see a valid
|
|
* value returned, update the persistent_clock_exists flag.
|
|
*/
|
|
if (timekeeping_suspend_time.tv_sec || timekeeping_suspend_time.tv_nsec)
|
|
persistent_clock_exist = true;
|
|
|
|
raw_spin_lock_irqsave(&timekeeper_lock, flags);
|
|
write_seqcount_begin(&tk_core.seq);
|
|
timekeeping_forward_now(tk);
|
|
timekeeping_suspended = 1;
|
|
|
|
/*
|
|
* To avoid drift caused by repeated suspend/resumes,
|
|
* which each can add ~1 second drift error,
|
|
* try to compensate so the difference in system time
|
|
* and persistent_clock time stays close to constant.
|
|
*/
|
|
delta = timespec64_sub(tk_xtime(tk), timekeeping_suspend_time);
|
|
delta_delta = timespec64_sub(delta, old_delta);
|
|
if (abs(delta_delta.tv_sec) >= 2) {
|
|
/*
|
|
* if delta_delta is too large, assume time correction
|
|
* has occured and set old_delta to the current delta.
|
|
*/
|
|
old_delta = delta;
|
|
} else {
|
|
/* Otherwise try to adjust old_system to compensate */
|
|
timekeeping_suspend_time =
|
|
timespec64_add(timekeeping_suspend_time, delta_delta);
|
|
}
|
|
|
|
timekeeping_update(tk, TK_MIRROR);
|
|
write_seqcount_end(&tk_core.seq);
|
|
raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
|
|
|
|
clockevents_notify(CLOCK_EVT_NOTIFY_SUSPEND, NULL);
|
|
clocksource_suspend();
|
|
clockevents_suspend();
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* sysfs resume/suspend bits for timekeeping */
|
|
static struct syscore_ops timekeeping_syscore_ops = {
|
|
.resume = timekeeping_resume,
|
|
.suspend = timekeeping_suspend,
|
|
};
|
|
|
|
static int __init timekeeping_init_ops(void)
|
|
{
|
|
register_syscore_ops(&timekeeping_syscore_ops);
|
|
return 0;
|
|
}
|
|
|
|
device_initcall(timekeeping_init_ops);
|
|
|
|
/*
|
|
* If the error is already larger, we look ahead even further
|
|
* to compensate for late or lost adjustments.
|
|
*/
|
|
static __always_inline int timekeeping_bigadjust(struct timekeeper *tk,
|
|
s64 error, s64 *interval,
|
|
s64 *offset)
|
|
{
|
|
s64 tick_error, i;
|
|
u32 look_ahead, adj;
|
|
s32 error2, mult;
|
|
|
|
/*
|
|
* Use the current error value to determine how much to look ahead.
|
|
* The larger the error the slower we adjust for it to avoid problems
|
|
* with losing too many ticks, otherwise we would overadjust and
|
|
* produce an even larger error. The smaller the adjustment the
|
|
* faster we try to adjust for it, as lost ticks can do less harm
|
|
* here. This is tuned so that an error of about 1 msec is adjusted
|
|
* within about 1 sec (or 2^20 nsec in 2^SHIFT_HZ ticks).
|
|
*/
|
|
error2 = tk->ntp_error >> (NTP_SCALE_SHIFT + 22 - 2 * SHIFT_HZ);
|
|
error2 = abs(error2);
|
|
for (look_ahead = 0; error2 > 0; look_ahead++)
|
|
error2 >>= 2;
|
|
|
|
/*
|
|
* Now calculate the error in (1 << look_ahead) ticks, but first
|
|
* remove the single look ahead already included in the error.
|
|
*/
|
|
tick_error = ntp_tick_length() >> (tk->ntp_error_shift + 1);
|
|
tick_error -= tk->xtime_interval >> 1;
|
|
error = ((error - tick_error) >> look_ahead) + tick_error;
|
|
|
|
/* Finally calculate the adjustment shift value. */
|
|
i = *interval;
|
|
mult = 1;
|
|
if (error < 0) {
|
|
error = -error;
|
|
*interval = -*interval;
|
|
*offset = -*offset;
|
|
mult = -1;
|
|
}
|
|
for (adj = 0; error > i; adj++)
|
|
error >>= 1;
|
|
|
|
*interval <<= adj;
|
|
*offset <<= adj;
|
|
return mult << adj;
|
|
}
|
|
|
|
/*
|
|
* Adjust the multiplier to reduce the error value,
|
|
* this is optimized for the most common adjustments of -1,0,1,
|
|
* for other values we can do a bit more work.
|
|
*/
|
|
static void timekeeping_adjust(struct timekeeper *tk, s64 offset)
|
|
{
|
|
s64 error, interval = tk->cycle_interval;
|
|
int adj;
|
|
|
|
/*
|
|
* The point of this is to check if the error is greater than half
|
|
* an interval.
|
|
*
|
|
* First we shift it down from NTP_SHIFT to clocksource->shifted nsecs.
|
|
*
|
|
* Note we subtract one in the shift, so that error is really error*2.
|
|
* This "saves" dividing(shifting) interval twice, but keeps the
|
|
* (error > interval) comparison as still measuring if error is
|
|
* larger than half an interval.
|
|
*
|
|
* Note: It does not "save" on aggravation when reading the code.
|
|
*/
|
|
error = tk->ntp_error >> (tk->ntp_error_shift - 1);
|
|
if (error > interval) {
|
|
/*
|
|
* We now divide error by 4(via shift), which checks if
|
|
* the error is greater than twice the interval.
|
|
* If it is greater, we need a bigadjust, if its smaller,
|
|
* we can adjust by 1.
|
|
*/
|
|
error >>= 2;
|
|
if (likely(error <= interval))
|
|
adj = 1;
|
|
else
|
|
adj = timekeeping_bigadjust(tk, error, &interval, &offset);
|
|
} else {
|
|
if (error < -interval) {
|
|
/* See comment above, this is just switched for the negative */
|
|
error >>= 2;
|
|
if (likely(error >= -interval)) {
|
|
adj = -1;
|
|
interval = -interval;
|
|
offset = -offset;
|
|
} else {
|
|
adj = timekeeping_bigadjust(tk, error, &interval, &offset);
|
|
}
|
|
} else {
|
|
goto out_adjust;
|
|
}
|
|
}
|
|
|
|
if (unlikely(tk->clock->maxadj &&
|
|
(tk->mult + adj > tk->clock->mult + tk->clock->maxadj))) {
|
|
printk_deferred_once(KERN_WARNING
|
|
"Adjusting %s more than 11%% (%ld vs %ld)\n",
|
|
tk->clock->name, (long)tk->mult + adj,
|
|
(long)tk->clock->mult + tk->clock->maxadj);
|
|
}
|
|
/*
|
|
* So the following can be confusing.
|
|
*
|
|
* To keep things simple, lets assume adj == 1 for now.
|
|
*
|
|
* When adj != 1, remember that the interval and offset values
|
|
* have been appropriately scaled so the math is the same.
|
|
*
|
|
* The basic idea here is that we're increasing the multiplier
|
|
* by one, this causes the xtime_interval to be incremented by
|
|
* one cycle_interval. This is because:
|
|
* xtime_interval = cycle_interval * mult
|
|
* So if mult is being incremented by one:
|
|
* xtime_interval = cycle_interval * (mult + 1)
|
|
* Its the same as:
|
|
* xtime_interval = (cycle_interval * mult) + cycle_interval
|
|
* Which can be shortened to:
|
|
* xtime_interval += cycle_interval
|
|
*
|
|
* So offset stores the non-accumulated cycles. Thus the current
|
|
* time (in shifted nanoseconds) is:
|
|
* now = (offset * adj) + xtime_nsec
|
|
* Now, even though we're adjusting the clock frequency, we have
|
|
* to keep time consistent. In other words, we can't jump back
|
|
* in time, and we also want to avoid jumping forward in time.
|
|
*
|
|
* So given the same offset value, we need the time to be the same
|
|
* both before and after the freq adjustment.
|
|
* now = (offset * adj_1) + xtime_nsec_1
|
|
* now = (offset * adj_2) + xtime_nsec_2
|
|
* So:
|
|
* (offset * adj_1) + xtime_nsec_1 =
|
|
* (offset * adj_2) + xtime_nsec_2
|
|
* And we know:
|
|
* adj_2 = adj_1 + 1
|
|
* So:
|
|
* (offset * adj_1) + xtime_nsec_1 =
|
|
* (offset * (adj_1+1)) + xtime_nsec_2
|
|
* (offset * adj_1) + xtime_nsec_1 =
|
|
* (offset * adj_1) + offset + xtime_nsec_2
|
|
* Canceling the sides:
|
|
* xtime_nsec_1 = offset + xtime_nsec_2
|
|
* Which gives us:
|
|
* xtime_nsec_2 = xtime_nsec_1 - offset
|
|
* Which simplfies to:
|
|
* xtime_nsec -= offset
|
|
*
|
|
* XXX - TODO: Doc ntp_error calculation.
|
|
*/
|
|
tk->mult += adj;
|
|
tk->xtime_interval += interval;
|
|
tk->xtime_nsec -= offset;
|
|
tk->ntp_error -= (interval - offset) << tk->ntp_error_shift;
|
|
|
|
out_adjust:
|
|
/*
|
|
* It may be possible that when we entered this function, xtime_nsec
|
|
* was very small. Further, if we're slightly speeding the clocksource
|
|
* in the code above, its possible the required corrective factor to
|
|
* xtime_nsec could cause it to underflow.
|
|
*
|
|
* Now, since we already accumulated the second, cannot simply roll
|
|
* the accumulated second back, since the NTP subsystem has been
|
|
* notified via second_overflow. So instead we push xtime_nsec forward
|
|
* by the amount we underflowed, and add that amount into the error.
|
|
*
|
|
* We'll correct this error next time through this function, when
|
|
* xtime_nsec is not as small.
|
|
*/
|
|
if (unlikely((s64)tk->xtime_nsec < 0)) {
|
|
s64 neg = -(s64)tk->xtime_nsec;
|
|
tk->xtime_nsec = 0;
|
|
tk->ntp_error += neg << tk->ntp_error_shift;
|
|
}
|
|
|
|
}
|
|
|
|
/**
|
|
* accumulate_nsecs_to_secs - Accumulates nsecs into secs
|
|
*
|
|
* Helper function that accumulates a the nsecs greater then a second
|
|
* from the xtime_nsec field to the xtime_secs field.
|
|
* It also calls into the NTP code to handle leapsecond processing.
|
|
*
|
|
*/
|
|
static inline unsigned int accumulate_nsecs_to_secs(struct timekeeper *tk)
|
|
{
|
|
u64 nsecps = (u64)NSEC_PER_SEC << tk->shift;
|
|
unsigned int clock_set = 0;
|
|
|
|
while (tk->xtime_nsec >= nsecps) {
|
|
int leap;
|
|
|
|
tk->xtime_nsec -= nsecps;
|
|
tk->xtime_sec++;
|
|
|
|
/* Figure out if its a leap sec and apply if needed */
|
|
leap = second_overflow(tk->xtime_sec);
|
|
if (unlikely(leap)) {
|
|
struct timespec64 ts;
|
|
|
|
tk->xtime_sec += leap;
|
|
|
|
ts.tv_sec = leap;
|
|
ts.tv_nsec = 0;
|
|
tk_set_wall_to_mono(tk,
|
|
timespec64_sub(tk->wall_to_monotonic, ts));
|
|
|
|
__timekeeping_set_tai_offset(tk, tk->tai_offset - leap);
|
|
|
|
clock_set = TK_CLOCK_WAS_SET;
|
|
}
|
|
}
|
|
return clock_set;
|
|
}
|
|
|
|
/**
|
|
* logarithmic_accumulation - shifted accumulation of cycles
|
|
*
|
|
* This functions accumulates a shifted interval of cycles into
|
|
* into a shifted interval nanoseconds. Allows for O(log) accumulation
|
|
* loop.
|
|
*
|
|
* Returns the unconsumed cycles.
|
|
*/
|
|
static cycle_t logarithmic_accumulation(struct timekeeper *tk, cycle_t offset,
|
|
u32 shift,
|
|
unsigned int *clock_set)
|
|
{
|
|
cycle_t interval = tk->cycle_interval << shift;
|
|
u64 raw_nsecs;
|
|
|
|
/* If the offset is smaller then a shifted interval, do nothing */
|
|
if (offset < interval)
|
|
return offset;
|
|
|
|
/* Accumulate one shifted interval */
|
|
offset -= interval;
|
|
tk->cycle_last += interval;
|
|
|
|
tk->xtime_nsec += tk->xtime_interval << shift;
|
|
*clock_set |= accumulate_nsecs_to_secs(tk);
|
|
|
|
/* Accumulate raw time */
|
|
raw_nsecs = (u64)tk->raw_interval << shift;
|
|
raw_nsecs += tk->raw_time.tv_nsec;
|
|
if (raw_nsecs >= NSEC_PER_SEC) {
|
|
u64 raw_secs = raw_nsecs;
|
|
raw_nsecs = do_div(raw_secs, NSEC_PER_SEC);
|
|
tk->raw_time.tv_sec += raw_secs;
|
|
}
|
|
tk->raw_time.tv_nsec = raw_nsecs;
|
|
|
|
/* Accumulate error between NTP and clock interval */
|
|
tk->ntp_error += ntp_tick_length() << shift;
|
|
tk->ntp_error -= (tk->xtime_interval + tk->xtime_remainder) <<
|
|
(tk->ntp_error_shift + shift);
|
|
|
|
return offset;
|
|
}
|
|
|
|
/**
|
|
* update_wall_time - Uses the current clocksource to increment the wall time
|
|
*
|
|
*/
|
|
void update_wall_time(void)
|
|
{
|
|
struct clocksource *clock;
|
|
struct timekeeper *real_tk = &tk_core.timekeeper;
|
|
struct timekeeper *tk = &shadow_timekeeper;
|
|
cycle_t offset;
|
|
int shift = 0, maxshift;
|
|
unsigned int clock_set = 0;
|
|
unsigned long flags;
|
|
|
|
raw_spin_lock_irqsave(&timekeeper_lock, flags);
|
|
|
|
/* Make sure we're fully resumed: */
|
|
if (unlikely(timekeeping_suspended))
|
|
goto out;
|
|
|
|
clock = real_tk->clock;
|
|
|
|
#ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
|
|
offset = real_tk->cycle_interval;
|
|
#else
|
|
offset = clocksource_delta(clock->read(clock), tk->cycle_last,
|
|
clock->mask);
|
|
#endif
|
|
|
|
/* Check if there's really nothing to do */
|
|
if (offset < real_tk->cycle_interval)
|
|
goto out;
|
|
|
|
/*
|
|
* With NO_HZ we may have to accumulate many cycle_intervals
|
|
* (think "ticks") worth of time at once. To do this efficiently,
|
|
* we calculate the largest doubling multiple of cycle_intervals
|
|
* that is smaller than the offset. We then accumulate that
|
|
* chunk in one go, and then try to consume the next smaller
|
|
* doubled multiple.
|
|
*/
|
|
shift = ilog2(offset) - ilog2(tk->cycle_interval);
|
|
shift = max(0, shift);
|
|
/* Bound shift to one less than what overflows tick_length */
|
|
maxshift = (64 - (ilog2(ntp_tick_length())+1)) - 1;
|
|
shift = min(shift, maxshift);
|
|
while (offset >= tk->cycle_interval) {
|
|
offset = logarithmic_accumulation(tk, offset, shift,
|
|
&clock_set);
|
|
if (offset < tk->cycle_interval<<shift)
|
|
shift--;
|
|
}
|
|
|
|
/* correct the clock when NTP error is too big */
|
|
timekeeping_adjust(tk, offset);
|
|
|
|
/*
|
|
* XXX This can be killed once everyone converts
|
|
* to the new update_vsyscall.
|
|
*/
|
|
old_vsyscall_fixup(tk);
|
|
|
|
/*
|
|
* Finally, make sure that after the rounding
|
|
* xtime_nsec isn't larger than NSEC_PER_SEC
|
|
*/
|
|
clock_set |= accumulate_nsecs_to_secs(tk);
|
|
|
|
write_seqcount_begin(&tk_core.seq);
|
|
/*
|
|
* Update the real timekeeper.
|
|
*
|
|
* We could avoid this memcpy by switching pointers, but that
|
|
* requires changes to all other timekeeper usage sites as
|
|
* well, i.e. move the timekeeper pointer getter into the
|
|
* spinlocked/seqcount protected sections. And we trade this
|
|
* memcpy under the tk_core.seq against one before we start
|
|
* updating.
|
|
*/
|
|
memcpy(real_tk, tk, sizeof(*tk));
|
|
timekeeping_update(real_tk, clock_set);
|
|
write_seqcount_end(&tk_core.seq);
|
|
out:
|
|
raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
|
|
if (clock_set)
|
|
/* Have to call _delayed version, since in irq context*/
|
|
clock_was_set_delayed();
|
|
}
|
|
|
|
/**
|
|
* getboottime - Return the real time of system boot.
|
|
* @ts: pointer to the timespec to be set
|
|
*
|
|
* Returns the wall-time of boot in a timespec.
|
|
*
|
|
* This is based on the wall_to_monotonic offset and the total suspend
|
|
* time. Calls to settimeofday will affect the value returned (which
|
|
* basically means that however wrong your real time clock is at boot time,
|
|
* you get the right time here).
|
|
*/
|
|
void getboottime(struct timespec *ts)
|
|
{
|
|
struct timekeeper *tk = &tk_core.timekeeper;
|
|
ktime_t t = ktime_sub(tk->offs_real, tk->offs_boot);
|
|
|
|
*ts = ktime_to_timespec(t);
|
|
}
|
|
EXPORT_SYMBOL_GPL(getboottime);
|
|
|
|
unsigned long get_seconds(void)
|
|
{
|
|
struct timekeeper *tk = &tk_core.timekeeper;
|
|
|
|
return tk->xtime_sec;
|
|
}
|
|
EXPORT_SYMBOL(get_seconds);
|
|
|
|
struct timespec __current_kernel_time(void)
|
|
{
|
|
struct timekeeper *tk = &tk_core.timekeeper;
|
|
|
|
return timespec64_to_timespec(tk_xtime(tk));
|
|
}
|
|
|
|
struct timespec current_kernel_time(void)
|
|
{
|
|
struct timekeeper *tk = &tk_core.timekeeper;
|
|
struct timespec64 now;
|
|
unsigned long seq;
|
|
|
|
do {
|
|
seq = read_seqcount_begin(&tk_core.seq);
|
|
|
|
now = tk_xtime(tk);
|
|
} while (read_seqcount_retry(&tk_core.seq, seq));
|
|
|
|
return timespec64_to_timespec(now);
|
|
}
|
|
EXPORT_SYMBOL(current_kernel_time);
|
|
|
|
struct timespec get_monotonic_coarse(void)
|
|
{
|
|
struct timekeeper *tk = &tk_core.timekeeper;
|
|
struct timespec64 now, mono;
|
|
unsigned long seq;
|
|
|
|
do {
|
|
seq = read_seqcount_begin(&tk_core.seq);
|
|
|
|
now = tk_xtime(tk);
|
|
mono = tk->wall_to_monotonic;
|
|
} while (read_seqcount_retry(&tk_core.seq, seq));
|
|
|
|
set_normalized_timespec64(&now, now.tv_sec + mono.tv_sec,
|
|
now.tv_nsec + mono.tv_nsec);
|
|
|
|
return timespec64_to_timespec(now);
|
|
}
|
|
|
|
/*
|
|
* Must hold jiffies_lock
|
|
*/
|
|
void do_timer(unsigned long ticks)
|
|
{
|
|
jiffies_64 += ticks;
|
|
calc_global_load(ticks);
|
|
}
|
|
|
|
/**
|
|
* ktime_get_update_offsets_tick - hrtimer helper
|
|
* @offs_real: pointer to storage for monotonic -> realtime offset
|
|
* @offs_boot: pointer to storage for monotonic -> boottime offset
|
|
* @offs_tai: pointer to storage for monotonic -> clock tai offset
|
|
*
|
|
* Returns monotonic time at last tick and various offsets
|
|
*/
|
|
ktime_t ktime_get_update_offsets_tick(ktime_t *offs_real, ktime_t *offs_boot,
|
|
ktime_t *offs_tai)
|
|
{
|
|
struct timekeeper *tk = &tk_core.timekeeper;
|
|
unsigned int seq;
|
|
ktime_t base;
|
|
u64 nsecs;
|
|
|
|
do {
|
|
seq = read_seqcount_begin(&tk_core.seq);
|
|
|
|
base = tk->base_mono;
|
|
nsecs = tk->xtime_nsec >> tk->shift;
|
|
|
|
*offs_real = tk->offs_real;
|
|
*offs_boot = tk->offs_boot;
|
|
*offs_tai = tk->offs_tai;
|
|
} while (read_seqcount_retry(&tk_core.seq, seq));
|
|
|
|
return ktime_add_ns(base, nsecs);
|
|
}
|
|
|
|
#ifdef CONFIG_HIGH_RES_TIMERS
|
|
/**
|
|
* ktime_get_update_offsets_now - hrtimer helper
|
|
* @offs_real: pointer to storage for monotonic -> realtime offset
|
|
* @offs_boot: pointer to storage for monotonic -> boottime offset
|
|
* @offs_tai: pointer to storage for monotonic -> clock tai offset
|
|
*
|
|
* Returns current monotonic time and updates the offsets
|
|
* Called from hrtimer_interrupt() or retrigger_next_event()
|
|
*/
|
|
ktime_t ktime_get_update_offsets_now(ktime_t *offs_real, ktime_t *offs_boot,
|
|
ktime_t *offs_tai)
|
|
{
|
|
struct timekeeper *tk = &tk_core.timekeeper;
|
|
unsigned int seq;
|
|
ktime_t base;
|
|
u64 nsecs;
|
|
|
|
do {
|
|
seq = read_seqcount_begin(&tk_core.seq);
|
|
|
|
base = tk->base_mono;
|
|
nsecs = timekeeping_get_ns(tk);
|
|
|
|
*offs_real = tk->offs_real;
|
|
*offs_boot = tk->offs_boot;
|
|
*offs_tai = tk->offs_tai;
|
|
} while (read_seqcount_retry(&tk_core.seq, seq));
|
|
|
|
return ktime_add_ns(base, nsecs);
|
|
}
|
|
#endif
|
|
|
|
/**
|
|
* do_adjtimex() - Accessor function to NTP __do_adjtimex function
|
|
*/
|
|
int do_adjtimex(struct timex *txc)
|
|
{
|
|
struct timekeeper *tk = &tk_core.timekeeper;
|
|
unsigned long flags;
|
|
struct timespec64 ts;
|
|
s32 orig_tai, tai;
|
|
int ret;
|
|
|
|
/* Validate the data before disabling interrupts */
|
|
ret = ntp_validate_timex(txc);
|
|
if (ret)
|
|
return ret;
|
|
|
|
if (txc->modes & ADJ_SETOFFSET) {
|
|
struct timespec delta;
|
|
delta.tv_sec = txc->time.tv_sec;
|
|
delta.tv_nsec = txc->time.tv_usec;
|
|
if (!(txc->modes & ADJ_NANO))
|
|
delta.tv_nsec *= 1000;
|
|
ret = timekeeping_inject_offset(&delta);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
|
|
getnstimeofday64(&ts);
|
|
|
|
raw_spin_lock_irqsave(&timekeeper_lock, flags);
|
|
write_seqcount_begin(&tk_core.seq);
|
|
|
|
orig_tai = tai = tk->tai_offset;
|
|
ret = __do_adjtimex(txc, &ts, &tai);
|
|
|
|
if (tai != orig_tai) {
|
|
__timekeeping_set_tai_offset(tk, tai);
|
|
timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
|
|
}
|
|
write_seqcount_end(&tk_core.seq);
|
|
raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
|
|
|
|
if (tai != orig_tai)
|
|
clock_was_set();
|
|
|
|
ntp_notify_cmos_timer();
|
|
|
|
return ret;
|
|
}
|
|
|
|
#ifdef CONFIG_NTP_PPS
|
|
/**
|
|
* hardpps() - Accessor function to NTP __hardpps function
|
|
*/
|
|
void hardpps(const struct timespec *phase_ts, const struct timespec *raw_ts)
|
|
{
|
|
unsigned long flags;
|
|
|
|
raw_spin_lock_irqsave(&timekeeper_lock, flags);
|
|
write_seqcount_begin(&tk_core.seq);
|
|
|
|
__hardpps(phase_ts, raw_ts);
|
|
|
|
write_seqcount_end(&tk_core.seq);
|
|
raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
|
|
}
|
|
EXPORT_SYMBOL(hardpps);
|
|
#endif
|
|
|
|
/**
|
|
* xtime_update() - advances the timekeeping infrastructure
|
|
* @ticks: number of ticks, that have elapsed since the last call.
|
|
*
|
|
* Must be called with interrupts disabled.
|
|
*/
|
|
void xtime_update(unsigned long ticks)
|
|
{
|
|
write_seqlock(&jiffies_lock);
|
|
do_timer(ticks);
|
|
write_sequnlock(&jiffies_lock);
|
|
update_wall_time();
|
|
}
|