linux/drivers/thermal/qcom/tsens-v1.c
Robert Marko f63baced38 thermal/drivers/tsens: Allow configuring min and max trips
IPQ8074 and IPQ6018 dont support negative trip temperatures and support
up to 204 degrees C as the max trip temperature.

So, instead of always setting the -40 as min and 120 degrees C as max
allow it to be configured as part of the features.

Signed-off-by: Robert Marko <robimarko@gmail.com>
Reviewed-by: Bjorn Andersson <bjorn.andersson@linaro.org>
Link: https://lore.kernel.org/r/20220818220245.338396-3-robimarko@gmail.com
Signed-off-by: Daniel Lezcano <daniel.lezcano@linaro.org>
2022-12-14 15:25:40 +01:00

394 lines
13 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (c) 2019, Linaro Limited
*/
#include <linux/bitops.h>
#include <linux/regmap.h>
#include <linux/delay.h>
#include <linux/slab.h>
#include "tsens.h"
/* ----- SROT ------ */
#define SROT_HW_VER_OFF 0x0000
#define SROT_CTRL_OFF 0x0004
/* ----- TM ------ */
#define TM_INT_EN_OFF 0x0000
#define TM_Sn_UPPER_LOWER_STATUS_CTRL_OFF 0x0004
#define TM_Sn_STATUS_OFF 0x0044
#define TM_TRDY_OFF 0x0084
#define TM_HIGH_LOW_INT_STATUS_OFF 0x0088
#define TM_HIGH_LOW_Sn_INT_THRESHOLD_OFF 0x0090
/* eeprom layout data for msm8956/76 (v1) */
#define MSM8976_BASE0_MASK 0xff
#define MSM8976_BASE1_MASK 0xff
#define MSM8976_BASE1_SHIFT 8
#define MSM8976_S0_P1_MASK 0x3f00
#define MSM8976_S1_P1_MASK 0x3f00000
#define MSM8976_S2_P1_MASK 0x3f
#define MSM8976_S3_P1_MASK 0x3f000
#define MSM8976_S4_P1_MASK 0x3f00
#define MSM8976_S5_P1_MASK 0x3f00000
#define MSM8976_S6_P1_MASK 0x3f
#define MSM8976_S7_P1_MASK 0x3f000
#define MSM8976_S8_P1_MASK 0x1f8
#define MSM8976_S9_P1_MASK 0x1f8000
#define MSM8976_S10_P1_MASK 0xf8000000
#define MSM8976_S10_P1_MASK_1 0x1
#define MSM8976_S0_P2_MASK 0xfc000
#define MSM8976_S1_P2_MASK 0xfc000000
#define MSM8976_S2_P2_MASK 0xfc0
#define MSM8976_S3_P2_MASK 0xfc0000
#define MSM8976_S4_P2_MASK 0xfc000
#define MSM8976_S5_P2_MASK 0xfc000000
#define MSM8976_S6_P2_MASK 0xfc0
#define MSM8976_S7_P2_MASK 0xfc0000
#define MSM8976_S8_P2_MASK 0x7e00
#define MSM8976_S9_P2_MASK 0x7e00000
#define MSM8976_S10_P2_MASK 0x7e
#define MSM8976_S0_P1_SHIFT 8
#define MSM8976_S1_P1_SHIFT 20
#define MSM8976_S2_P1_SHIFT 0
#define MSM8976_S3_P1_SHIFT 12
#define MSM8976_S4_P1_SHIFT 8
#define MSM8976_S5_P1_SHIFT 20
#define MSM8976_S6_P1_SHIFT 0
#define MSM8976_S7_P1_SHIFT 12
#define MSM8976_S8_P1_SHIFT 3
#define MSM8976_S9_P1_SHIFT 15
#define MSM8976_S10_P1_SHIFT 27
#define MSM8976_S10_P1_SHIFT_1 0
#define MSM8976_S0_P2_SHIFT 14
#define MSM8976_S1_P2_SHIFT 26
#define MSM8976_S2_P2_SHIFT 6
#define MSM8976_S3_P2_SHIFT 18
#define MSM8976_S4_P2_SHIFT 14
#define MSM8976_S5_P2_SHIFT 26
#define MSM8976_S6_P2_SHIFT 6
#define MSM8976_S7_P2_SHIFT 18
#define MSM8976_S8_P2_SHIFT 9
#define MSM8976_S9_P2_SHIFT 21
#define MSM8976_S10_P2_SHIFT 1
#define MSM8976_CAL_SEL_MASK 0x3
#define MSM8976_CAL_DEGC_PT1 30
#define MSM8976_CAL_DEGC_PT2 120
#define MSM8976_SLOPE_FACTOR 1000
#define MSM8976_SLOPE_DEFAULT 3200
/* eeprom layout data for qcs404/405 (v1) */
#define BASE0_MASK 0x000007f8
#define BASE1_MASK 0x0007f800
#define BASE0_SHIFT 3
#define BASE1_SHIFT 11
#define S0_P1_MASK 0x0000003f
#define S1_P1_MASK 0x0003f000
#define S2_P1_MASK 0x3f000000
#define S3_P1_MASK 0x000003f0
#define S4_P1_MASK 0x003f0000
#define S5_P1_MASK 0x0000003f
#define S6_P1_MASK 0x0003f000
#define S7_P1_MASK 0x3f000000
#define S8_P1_MASK 0x000003f0
#define S9_P1_MASK 0x003f0000
#define S0_P2_MASK 0x00000fc0
#define S1_P2_MASK 0x00fc0000
#define S2_P2_MASK_1_0 0xc0000000
#define S2_P2_MASK_5_2 0x0000000f
#define S3_P2_MASK 0x0000fc00
#define S4_P2_MASK 0x0fc00000
#define S5_P2_MASK 0x00000fc0
#define S6_P2_MASK 0x00fc0000
#define S7_P2_MASK_1_0 0xc0000000
#define S7_P2_MASK_5_2 0x0000000f
#define S8_P2_MASK 0x0000fc00
#define S9_P2_MASK 0x0fc00000
#define S0_P1_SHIFT 0
#define S0_P2_SHIFT 6
#define S1_P1_SHIFT 12
#define S1_P2_SHIFT 18
#define S2_P1_SHIFT 24
#define S2_P2_SHIFT_1_0 30
#define S2_P2_SHIFT_5_2 0
#define S3_P1_SHIFT 4
#define S3_P2_SHIFT 10
#define S4_P1_SHIFT 16
#define S4_P2_SHIFT 22
#define S5_P1_SHIFT 0
#define S5_P2_SHIFT 6
#define S6_P1_SHIFT 12
#define S6_P2_SHIFT 18
#define S7_P1_SHIFT 24
#define S7_P2_SHIFT_1_0 30
#define S7_P2_SHIFT_5_2 0
#define S8_P1_SHIFT 4
#define S8_P2_SHIFT 10
#define S9_P1_SHIFT 16
#define S9_P2_SHIFT 22
#define CAL_SEL_MASK 7
#define CAL_SEL_SHIFT 0
static void compute_intercept_slope_8976(struct tsens_priv *priv,
u32 *p1, u32 *p2, u32 mode)
{
int i;
priv->sensor[0].slope = 3313;
priv->sensor[1].slope = 3275;
priv->sensor[2].slope = 3320;
priv->sensor[3].slope = 3246;
priv->sensor[4].slope = 3279;
priv->sensor[5].slope = 3257;
priv->sensor[6].slope = 3234;
priv->sensor[7].slope = 3269;
priv->sensor[8].slope = 3255;
priv->sensor[9].slope = 3239;
priv->sensor[10].slope = 3286;
for (i = 0; i < priv->num_sensors; i++) {
priv->sensor[i].offset = (p1[i] * MSM8976_SLOPE_FACTOR) -
(MSM8976_CAL_DEGC_PT1 *
priv->sensor[i].slope);
}
}
static int calibrate_v1(struct tsens_priv *priv)
{
u32 base0 = 0, base1 = 0;
u32 p1[10], p2[10];
u32 mode = 0, lsb = 0, msb = 0;
u32 *qfprom_cdata;
int i;
qfprom_cdata = (u32 *)qfprom_read(priv->dev, "calib");
if (IS_ERR(qfprom_cdata))
return PTR_ERR(qfprom_cdata);
mode = (qfprom_cdata[4] & CAL_SEL_MASK) >> CAL_SEL_SHIFT;
dev_dbg(priv->dev, "calibration mode is %d\n", mode);
switch (mode) {
case TWO_PT_CALIB:
base1 = (qfprom_cdata[4] & BASE1_MASK) >> BASE1_SHIFT;
p2[0] = (qfprom_cdata[0] & S0_P2_MASK) >> S0_P2_SHIFT;
p2[1] = (qfprom_cdata[0] & S1_P2_MASK) >> S1_P2_SHIFT;
/* This value is split over two registers, 2 bits and 4 bits */
lsb = (qfprom_cdata[0] & S2_P2_MASK_1_0) >> S2_P2_SHIFT_1_0;
msb = (qfprom_cdata[1] & S2_P2_MASK_5_2) >> S2_P2_SHIFT_5_2;
p2[2] = msb << 2 | lsb;
p2[3] = (qfprom_cdata[1] & S3_P2_MASK) >> S3_P2_SHIFT;
p2[4] = (qfprom_cdata[1] & S4_P2_MASK) >> S4_P2_SHIFT;
p2[5] = (qfprom_cdata[2] & S5_P2_MASK) >> S5_P2_SHIFT;
p2[6] = (qfprom_cdata[2] & S6_P2_MASK) >> S6_P2_SHIFT;
/* This value is split over two registers, 2 bits and 4 bits */
lsb = (qfprom_cdata[2] & S7_P2_MASK_1_0) >> S7_P2_SHIFT_1_0;
msb = (qfprom_cdata[3] & S7_P2_MASK_5_2) >> S7_P2_SHIFT_5_2;
p2[7] = msb << 2 | lsb;
p2[8] = (qfprom_cdata[3] & S8_P2_MASK) >> S8_P2_SHIFT;
p2[9] = (qfprom_cdata[3] & S9_P2_MASK) >> S9_P2_SHIFT;
for (i = 0; i < priv->num_sensors; i++)
p2[i] = ((base1 + p2[i]) << 2);
fallthrough;
case ONE_PT_CALIB2:
base0 = (qfprom_cdata[4] & BASE0_MASK) >> BASE0_SHIFT;
p1[0] = (qfprom_cdata[0] & S0_P1_MASK) >> S0_P1_SHIFT;
p1[1] = (qfprom_cdata[0] & S1_P1_MASK) >> S1_P1_SHIFT;
p1[2] = (qfprom_cdata[0] & S2_P1_MASK) >> S2_P1_SHIFT;
p1[3] = (qfprom_cdata[1] & S3_P1_MASK) >> S3_P1_SHIFT;
p1[4] = (qfprom_cdata[1] & S4_P1_MASK) >> S4_P1_SHIFT;
p1[5] = (qfprom_cdata[2] & S5_P1_MASK) >> S5_P1_SHIFT;
p1[6] = (qfprom_cdata[2] & S6_P1_MASK) >> S6_P1_SHIFT;
p1[7] = (qfprom_cdata[2] & S7_P1_MASK) >> S7_P1_SHIFT;
p1[8] = (qfprom_cdata[3] & S8_P1_MASK) >> S8_P1_SHIFT;
p1[9] = (qfprom_cdata[3] & S9_P1_MASK) >> S9_P1_SHIFT;
for (i = 0; i < priv->num_sensors; i++)
p1[i] = (((base0) + p1[i]) << 2);
break;
default:
for (i = 0; i < priv->num_sensors; i++) {
p1[i] = 500;
p2[i] = 780;
}
break;
}
compute_intercept_slope(priv, p1, p2, mode);
kfree(qfprom_cdata);
return 0;
}
static int calibrate_8976(struct tsens_priv *priv)
{
int base0 = 0, base1 = 0, i;
u32 p1[11], p2[11];
int mode = 0, tmp = 0;
u32 *qfprom_cdata;
qfprom_cdata = (u32 *)qfprom_read(priv->dev, "calib");
if (IS_ERR(qfprom_cdata))
return PTR_ERR(qfprom_cdata);
mode = (qfprom_cdata[4] & MSM8976_CAL_SEL_MASK);
dev_dbg(priv->dev, "calibration mode is %d\n", mode);
switch (mode) {
case TWO_PT_CALIB:
base1 = (qfprom_cdata[2] & MSM8976_BASE1_MASK) >> MSM8976_BASE1_SHIFT;
p2[0] = (qfprom_cdata[0] & MSM8976_S0_P2_MASK) >> MSM8976_S0_P2_SHIFT;
p2[1] = (qfprom_cdata[0] & MSM8976_S1_P2_MASK) >> MSM8976_S1_P2_SHIFT;
p2[2] = (qfprom_cdata[1] & MSM8976_S2_P2_MASK) >> MSM8976_S2_P2_SHIFT;
p2[3] = (qfprom_cdata[1] & MSM8976_S3_P2_MASK) >> MSM8976_S3_P2_SHIFT;
p2[4] = (qfprom_cdata[2] & MSM8976_S4_P2_MASK) >> MSM8976_S4_P2_SHIFT;
p2[5] = (qfprom_cdata[2] & MSM8976_S5_P2_MASK) >> MSM8976_S5_P2_SHIFT;
p2[6] = (qfprom_cdata[3] & MSM8976_S6_P2_MASK) >> MSM8976_S6_P2_SHIFT;
p2[7] = (qfprom_cdata[3] & MSM8976_S7_P2_MASK) >> MSM8976_S7_P2_SHIFT;
p2[8] = (qfprom_cdata[4] & MSM8976_S8_P2_MASK) >> MSM8976_S8_P2_SHIFT;
p2[9] = (qfprom_cdata[4] & MSM8976_S9_P2_MASK) >> MSM8976_S9_P2_SHIFT;
p2[10] = (qfprom_cdata[5] & MSM8976_S10_P2_MASK) >> MSM8976_S10_P2_SHIFT;
for (i = 0; i < priv->num_sensors; i++)
p2[i] = ((base1 + p2[i]) << 2);
fallthrough;
case ONE_PT_CALIB2:
base0 = qfprom_cdata[0] & MSM8976_BASE0_MASK;
p1[0] = (qfprom_cdata[0] & MSM8976_S0_P1_MASK) >> MSM8976_S0_P1_SHIFT;
p1[1] = (qfprom_cdata[0] & MSM8976_S1_P1_MASK) >> MSM8976_S1_P1_SHIFT;
p1[2] = (qfprom_cdata[1] & MSM8976_S2_P1_MASK) >> MSM8976_S2_P1_SHIFT;
p1[3] = (qfprom_cdata[1] & MSM8976_S3_P1_MASK) >> MSM8976_S3_P1_SHIFT;
p1[4] = (qfprom_cdata[2] & MSM8976_S4_P1_MASK) >> MSM8976_S4_P1_SHIFT;
p1[5] = (qfprom_cdata[2] & MSM8976_S5_P1_MASK) >> MSM8976_S5_P1_SHIFT;
p1[6] = (qfprom_cdata[3] & MSM8976_S6_P1_MASK) >> MSM8976_S6_P1_SHIFT;
p1[7] = (qfprom_cdata[3] & MSM8976_S7_P1_MASK) >> MSM8976_S7_P1_SHIFT;
p1[8] = (qfprom_cdata[4] & MSM8976_S8_P1_MASK) >> MSM8976_S8_P1_SHIFT;
p1[9] = (qfprom_cdata[4] & MSM8976_S9_P1_MASK) >> MSM8976_S9_P1_SHIFT;
p1[10] = (qfprom_cdata[4] & MSM8976_S10_P1_MASK) >> MSM8976_S10_P1_SHIFT;
tmp = (qfprom_cdata[5] & MSM8976_S10_P1_MASK_1) << MSM8976_S10_P1_SHIFT_1;
p1[10] |= tmp;
for (i = 0; i < priv->num_sensors; i++)
p1[i] = (((base0) + p1[i]) << 2);
break;
default:
for (i = 0; i < priv->num_sensors; i++) {
p1[i] = 500;
p2[i] = 780;
}
break;
}
compute_intercept_slope_8976(priv, p1, p2, mode);
kfree(qfprom_cdata);
return 0;
}
/* v1.x: msm8956,8976,qcs404,405 */
static struct tsens_features tsens_v1_feat = {
.ver_major = VER_1_X,
.crit_int = 0,
.combo_int = 0,
.adc = 1,
.srot_split = 1,
.max_sensors = 11,
.trip_min_temp = -40000,
.trip_max_temp = 120000,
};
static const struct reg_field tsens_v1_regfields[MAX_REGFIELDS] = {
/* ----- SROT ------ */
/* VERSION */
[VER_MAJOR] = REG_FIELD(SROT_HW_VER_OFF, 28, 31),
[VER_MINOR] = REG_FIELD(SROT_HW_VER_OFF, 16, 27),
[VER_STEP] = REG_FIELD(SROT_HW_VER_OFF, 0, 15),
/* CTRL_OFFSET */
[TSENS_EN] = REG_FIELD(SROT_CTRL_OFF, 0, 0),
[TSENS_SW_RST] = REG_FIELD(SROT_CTRL_OFF, 1, 1),
[SENSOR_EN] = REG_FIELD(SROT_CTRL_OFF, 3, 13),
/* ----- TM ------ */
/* INTERRUPT ENABLE */
[INT_EN] = REG_FIELD(TM_INT_EN_OFF, 0, 0),
/* UPPER/LOWER TEMPERATURE THRESHOLDS */
REG_FIELD_FOR_EACH_SENSOR11(LOW_THRESH, TM_Sn_UPPER_LOWER_STATUS_CTRL_OFF, 0, 9),
REG_FIELD_FOR_EACH_SENSOR11(UP_THRESH, TM_Sn_UPPER_LOWER_STATUS_CTRL_OFF, 10, 19),
/* UPPER/LOWER INTERRUPTS [CLEAR/STATUS] */
REG_FIELD_FOR_EACH_SENSOR11(LOW_INT_CLEAR, TM_Sn_UPPER_LOWER_STATUS_CTRL_OFF, 20, 20),
REG_FIELD_FOR_EACH_SENSOR11(UP_INT_CLEAR, TM_Sn_UPPER_LOWER_STATUS_CTRL_OFF, 21, 21),
[LOW_INT_STATUS_0] = REG_FIELD(TM_HIGH_LOW_INT_STATUS_OFF, 0, 0),
[LOW_INT_STATUS_1] = REG_FIELD(TM_HIGH_LOW_INT_STATUS_OFF, 1, 1),
[LOW_INT_STATUS_2] = REG_FIELD(TM_HIGH_LOW_INT_STATUS_OFF, 2, 2),
[LOW_INT_STATUS_3] = REG_FIELD(TM_HIGH_LOW_INT_STATUS_OFF, 3, 3),
[LOW_INT_STATUS_4] = REG_FIELD(TM_HIGH_LOW_INT_STATUS_OFF, 4, 4),
[LOW_INT_STATUS_5] = REG_FIELD(TM_HIGH_LOW_INT_STATUS_OFF, 5, 5),
[LOW_INT_STATUS_6] = REG_FIELD(TM_HIGH_LOW_INT_STATUS_OFF, 6, 6),
[LOW_INT_STATUS_7] = REG_FIELD(TM_HIGH_LOW_INT_STATUS_OFF, 7, 7),
[UP_INT_STATUS_0] = REG_FIELD(TM_HIGH_LOW_INT_STATUS_OFF, 8, 8),
[UP_INT_STATUS_1] = REG_FIELD(TM_HIGH_LOW_INT_STATUS_OFF, 9, 9),
[UP_INT_STATUS_2] = REG_FIELD(TM_HIGH_LOW_INT_STATUS_OFF, 10, 10),
[UP_INT_STATUS_3] = REG_FIELD(TM_HIGH_LOW_INT_STATUS_OFF, 11, 11),
[UP_INT_STATUS_4] = REG_FIELD(TM_HIGH_LOW_INT_STATUS_OFF, 12, 12),
[UP_INT_STATUS_5] = REG_FIELD(TM_HIGH_LOW_INT_STATUS_OFF, 13, 13),
[UP_INT_STATUS_6] = REG_FIELD(TM_HIGH_LOW_INT_STATUS_OFF, 14, 14),
[UP_INT_STATUS_7] = REG_FIELD(TM_HIGH_LOW_INT_STATUS_OFF, 15, 15),
/* NO CRITICAL INTERRUPT SUPPORT on v1 */
/* Sn_STATUS */
REG_FIELD_FOR_EACH_SENSOR11(LAST_TEMP, TM_Sn_STATUS_OFF, 0, 9),
REG_FIELD_FOR_EACH_SENSOR11(VALID, TM_Sn_STATUS_OFF, 14, 14),
/* xxx_STATUS bits: 1 == threshold violated */
REG_FIELD_FOR_EACH_SENSOR11(MIN_STATUS, TM_Sn_STATUS_OFF, 10, 10),
REG_FIELD_FOR_EACH_SENSOR11(LOWER_STATUS, TM_Sn_STATUS_OFF, 11, 11),
REG_FIELD_FOR_EACH_SENSOR11(UPPER_STATUS, TM_Sn_STATUS_OFF, 12, 12),
/* No CRITICAL field on v1.x */
REG_FIELD_FOR_EACH_SENSOR11(MAX_STATUS, TM_Sn_STATUS_OFF, 13, 13),
/* TRDY: 1=ready, 0=in progress */
[TRDY] = REG_FIELD(TM_TRDY_OFF, 0, 0),
};
static const struct tsens_ops ops_generic_v1 = {
.init = init_common,
.calibrate = calibrate_v1,
.get_temp = get_temp_tsens_valid,
};
struct tsens_plat_data data_tsens_v1 = {
.ops = &ops_generic_v1,
.feat = &tsens_v1_feat,
.fields = tsens_v1_regfields,
};
static const struct tsens_ops ops_8976 = {
.init = init_common,
.calibrate = calibrate_8976,
.get_temp = get_temp_tsens_valid,
};
/* Valid for both MSM8956 and MSM8976. */
struct tsens_plat_data data_8976 = {
.num_sensors = 11,
.ops = &ops_8976,
.hw_ids = (unsigned int[]){0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10},
.feat = &tsens_v1_feat,
.fields = tsens_v1_regfields,
};