2e38eb04c9
Kprobes has a counter 'nmissed', that is used to count the number of times a probe handler was not called. This generally happens when we hit a kprobe while handling another kprobe. However, if one of the probe handlers causes a fault, we are currently incrementing 'nmissed'. The comment in fault handler indicates that this can be used to account faults taken by the probe handlers. But, this has never been the intention as is evident from the comment above 'nmissed' in 'struct kprobe': /*count the number of times this probe was temporarily disarmed */ unsigned long nmissed; Signed-off-by: Naveen N. Rao <naveen.n.rao@linux.vnet.ibm.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Acked-by: Masami Hiramatsu <mhiramat@kernel.org> Link: https://lkml.kernel.org/r/20210601120150.672652-1-naveen.n.rao@linux.vnet.ibm.com
410 lines
9.6 KiB
C
410 lines
9.6 KiB
C
// SPDX-License-Identifier: GPL-2.0+
|
|
|
|
#include <linux/kprobes.h>
|
|
#include <linux/extable.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/stop_machine.h>
|
|
#include <asm/ptrace.h>
|
|
#include <linux/uaccess.h>
|
|
#include <asm/sections.h>
|
|
#include <asm/cacheflush.h>
|
|
|
|
#include "decode-insn.h"
|
|
|
|
DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL;
|
|
DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
|
|
|
|
static void __kprobes
|
|
post_kprobe_handler(struct kprobe_ctlblk *, struct pt_regs *);
|
|
|
|
struct csky_insn_patch {
|
|
kprobe_opcode_t *addr;
|
|
u32 opcode;
|
|
atomic_t cpu_count;
|
|
};
|
|
|
|
static int __kprobes patch_text_cb(void *priv)
|
|
{
|
|
struct csky_insn_patch *param = priv;
|
|
unsigned int addr = (unsigned int)param->addr;
|
|
|
|
if (atomic_inc_return(¶m->cpu_count) == 1) {
|
|
*(u16 *) addr = cpu_to_le16(param->opcode);
|
|
dcache_wb_range(addr, addr + 2);
|
|
atomic_inc(¶m->cpu_count);
|
|
} else {
|
|
while (atomic_read(¶m->cpu_count) <= num_online_cpus())
|
|
cpu_relax();
|
|
}
|
|
|
|
icache_inv_range(addr, addr + 2);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int __kprobes patch_text(kprobe_opcode_t *addr, u32 opcode)
|
|
{
|
|
struct csky_insn_patch param = { addr, opcode, ATOMIC_INIT(0) };
|
|
|
|
return stop_machine_cpuslocked(patch_text_cb, ¶m, cpu_online_mask);
|
|
}
|
|
|
|
static void __kprobes arch_prepare_ss_slot(struct kprobe *p)
|
|
{
|
|
unsigned long offset = is_insn32(p->opcode) ? 4 : 2;
|
|
|
|
p->ainsn.api.restore = (unsigned long)p->addr + offset;
|
|
|
|
patch_text(p->ainsn.api.insn, p->opcode);
|
|
}
|
|
|
|
static void __kprobes arch_prepare_simulate(struct kprobe *p)
|
|
{
|
|
p->ainsn.api.restore = 0;
|
|
}
|
|
|
|
static void __kprobes arch_simulate_insn(struct kprobe *p, struct pt_regs *regs)
|
|
{
|
|
struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
|
|
|
|
if (p->ainsn.api.handler)
|
|
p->ainsn.api.handler((u32)p->opcode, (long)p->addr, regs);
|
|
|
|
post_kprobe_handler(kcb, regs);
|
|
}
|
|
|
|
int __kprobes arch_prepare_kprobe(struct kprobe *p)
|
|
{
|
|
unsigned long probe_addr = (unsigned long)p->addr;
|
|
|
|
if (probe_addr & 0x1) {
|
|
pr_warn("Address not aligned.\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* copy instruction */
|
|
p->opcode = le32_to_cpu(*p->addr);
|
|
|
|
/* decode instruction */
|
|
switch (csky_probe_decode_insn(p->addr, &p->ainsn.api)) {
|
|
case INSN_REJECTED: /* insn not supported */
|
|
return -EINVAL;
|
|
|
|
case INSN_GOOD_NO_SLOT: /* insn need simulation */
|
|
p->ainsn.api.insn = NULL;
|
|
break;
|
|
|
|
case INSN_GOOD: /* instruction uses slot */
|
|
p->ainsn.api.insn = get_insn_slot();
|
|
if (!p->ainsn.api.insn)
|
|
return -ENOMEM;
|
|
break;
|
|
}
|
|
|
|
/* prepare the instruction */
|
|
if (p->ainsn.api.insn)
|
|
arch_prepare_ss_slot(p);
|
|
else
|
|
arch_prepare_simulate(p);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* install breakpoint in text */
|
|
void __kprobes arch_arm_kprobe(struct kprobe *p)
|
|
{
|
|
patch_text(p->addr, USR_BKPT);
|
|
}
|
|
|
|
/* remove breakpoint from text */
|
|
void __kprobes arch_disarm_kprobe(struct kprobe *p)
|
|
{
|
|
patch_text(p->addr, p->opcode);
|
|
}
|
|
|
|
void __kprobes arch_remove_kprobe(struct kprobe *p)
|
|
{
|
|
}
|
|
|
|
static void __kprobes save_previous_kprobe(struct kprobe_ctlblk *kcb)
|
|
{
|
|
kcb->prev_kprobe.kp = kprobe_running();
|
|
kcb->prev_kprobe.status = kcb->kprobe_status;
|
|
}
|
|
|
|
static void __kprobes restore_previous_kprobe(struct kprobe_ctlblk *kcb)
|
|
{
|
|
__this_cpu_write(current_kprobe, kcb->prev_kprobe.kp);
|
|
kcb->kprobe_status = kcb->prev_kprobe.status;
|
|
}
|
|
|
|
static void __kprobes set_current_kprobe(struct kprobe *p)
|
|
{
|
|
__this_cpu_write(current_kprobe, p);
|
|
}
|
|
|
|
/*
|
|
* Interrupts need to be disabled before single-step mode is set, and not
|
|
* reenabled until after single-step mode ends.
|
|
* Without disabling interrupt on local CPU, there is a chance of
|
|
* interrupt occurrence in the period of exception return and start of
|
|
* out-of-line single-step, that result in wrongly single stepping
|
|
* into the interrupt handler.
|
|
*/
|
|
static void __kprobes kprobes_save_local_irqflag(struct kprobe_ctlblk *kcb,
|
|
struct pt_regs *regs)
|
|
{
|
|
kcb->saved_sr = regs->sr;
|
|
regs->sr &= ~BIT(6);
|
|
}
|
|
|
|
static void __kprobes kprobes_restore_local_irqflag(struct kprobe_ctlblk *kcb,
|
|
struct pt_regs *regs)
|
|
{
|
|
regs->sr = kcb->saved_sr;
|
|
}
|
|
|
|
static void __kprobes
|
|
set_ss_context(struct kprobe_ctlblk *kcb, unsigned long addr, struct kprobe *p)
|
|
{
|
|
unsigned long offset = is_insn32(p->opcode) ? 4 : 2;
|
|
|
|
kcb->ss_ctx.ss_pending = true;
|
|
kcb->ss_ctx.match_addr = addr + offset;
|
|
}
|
|
|
|
static void __kprobes clear_ss_context(struct kprobe_ctlblk *kcb)
|
|
{
|
|
kcb->ss_ctx.ss_pending = false;
|
|
kcb->ss_ctx.match_addr = 0;
|
|
}
|
|
|
|
#define TRACE_MODE_SI BIT(14)
|
|
#define TRACE_MODE_MASK ~(0x3 << 14)
|
|
#define TRACE_MODE_RUN 0
|
|
|
|
static void __kprobes setup_singlestep(struct kprobe *p,
|
|
struct pt_regs *regs,
|
|
struct kprobe_ctlblk *kcb, int reenter)
|
|
{
|
|
unsigned long slot;
|
|
|
|
if (reenter) {
|
|
save_previous_kprobe(kcb);
|
|
set_current_kprobe(p);
|
|
kcb->kprobe_status = KPROBE_REENTER;
|
|
} else {
|
|
kcb->kprobe_status = KPROBE_HIT_SS;
|
|
}
|
|
|
|
if (p->ainsn.api.insn) {
|
|
/* prepare for single stepping */
|
|
slot = (unsigned long)p->ainsn.api.insn;
|
|
|
|
set_ss_context(kcb, slot, p); /* mark pending ss */
|
|
|
|
/* IRQs and single stepping do not mix well. */
|
|
kprobes_save_local_irqflag(kcb, regs);
|
|
regs->sr = (regs->sr & TRACE_MODE_MASK) | TRACE_MODE_SI;
|
|
instruction_pointer_set(regs, slot);
|
|
} else {
|
|
/* insn simulation */
|
|
arch_simulate_insn(p, regs);
|
|
}
|
|
}
|
|
|
|
static int __kprobes reenter_kprobe(struct kprobe *p,
|
|
struct pt_regs *regs,
|
|
struct kprobe_ctlblk *kcb)
|
|
{
|
|
switch (kcb->kprobe_status) {
|
|
case KPROBE_HIT_SSDONE:
|
|
case KPROBE_HIT_ACTIVE:
|
|
kprobes_inc_nmissed_count(p);
|
|
setup_singlestep(p, regs, kcb, 1);
|
|
break;
|
|
case KPROBE_HIT_SS:
|
|
case KPROBE_REENTER:
|
|
pr_warn("Unrecoverable kprobe detected.\n");
|
|
dump_kprobe(p);
|
|
BUG();
|
|
break;
|
|
default:
|
|
WARN_ON(1);
|
|
return 0;
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
static void __kprobes
|
|
post_kprobe_handler(struct kprobe_ctlblk *kcb, struct pt_regs *regs)
|
|
{
|
|
struct kprobe *cur = kprobe_running();
|
|
|
|
if (!cur)
|
|
return;
|
|
|
|
/* return addr restore if non-branching insn */
|
|
if (cur->ainsn.api.restore != 0)
|
|
regs->pc = cur->ainsn.api.restore;
|
|
|
|
/* restore back original saved kprobe variables and continue */
|
|
if (kcb->kprobe_status == KPROBE_REENTER) {
|
|
restore_previous_kprobe(kcb);
|
|
return;
|
|
}
|
|
|
|
/* call post handler */
|
|
kcb->kprobe_status = KPROBE_HIT_SSDONE;
|
|
if (cur->post_handler) {
|
|
/* post_handler can hit breakpoint and single step
|
|
* again, so we enable D-flag for recursive exception.
|
|
*/
|
|
cur->post_handler(cur, regs, 0);
|
|
}
|
|
|
|
reset_current_kprobe();
|
|
}
|
|
|
|
int __kprobes kprobe_fault_handler(struct pt_regs *regs, unsigned int trapnr)
|
|
{
|
|
struct kprobe *cur = kprobe_running();
|
|
struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
|
|
|
|
switch (kcb->kprobe_status) {
|
|
case KPROBE_HIT_SS:
|
|
case KPROBE_REENTER:
|
|
/*
|
|
* We are here because the instruction being single
|
|
* stepped caused a page fault. We reset the current
|
|
* kprobe and the ip points back to the probe address
|
|
* and allow the page fault handler to continue as a
|
|
* normal page fault.
|
|
*/
|
|
regs->pc = (unsigned long) cur->addr;
|
|
if (!instruction_pointer(regs))
|
|
BUG();
|
|
|
|
if (kcb->kprobe_status == KPROBE_REENTER)
|
|
restore_previous_kprobe(kcb);
|
|
else
|
|
reset_current_kprobe();
|
|
|
|
break;
|
|
case KPROBE_HIT_ACTIVE:
|
|
case KPROBE_HIT_SSDONE:
|
|
/*
|
|
* In case the user-specified fault handler returned
|
|
* zero, try to fix up.
|
|
*/
|
|
if (fixup_exception(regs))
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
int __kprobes
|
|
kprobe_breakpoint_handler(struct pt_regs *regs)
|
|
{
|
|
struct kprobe *p, *cur_kprobe;
|
|
struct kprobe_ctlblk *kcb;
|
|
unsigned long addr = instruction_pointer(regs);
|
|
|
|
kcb = get_kprobe_ctlblk();
|
|
cur_kprobe = kprobe_running();
|
|
|
|
p = get_kprobe((kprobe_opcode_t *) addr);
|
|
|
|
if (p) {
|
|
if (cur_kprobe) {
|
|
if (reenter_kprobe(p, regs, kcb))
|
|
return 1;
|
|
} else {
|
|
/* Probe hit */
|
|
set_current_kprobe(p);
|
|
kcb->kprobe_status = KPROBE_HIT_ACTIVE;
|
|
|
|
/*
|
|
* If we have no pre-handler or it returned 0, we
|
|
* continue with normal processing. If we have a
|
|
* pre-handler and it returned non-zero, it will
|
|
* modify the execution path and no need to single
|
|
* stepping. Let's just reset current kprobe and exit.
|
|
*
|
|
* pre_handler can hit a breakpoint and can step thru
|
|
* before return.
|
|
*/
|
|
if (!p->pre_handler || !p->pre_handler(p, regs))
|
|
setup_singlestep(p, regs, kcb, 0);
|
|
else
|
|
reset_current_kprobe();
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* The breakpoint instruction was removed right
|
|
* after we hit it. Another cpu has removed
|
|
* either a probepoint or a debugger breakpoint
|
|
* at this address. In either case, no further
|
|
* handling of this interrupt is appropriate.
|
|
* Return back to original instruction, and continue.
|
|
*/
|
|
return 0;
|
|
}
|
|
|
|
int __kprobes
|
|
kprobe_single_step_handler(struct pt_regs *regs)
|
|
{
|
|
struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
|
|
|
|
if ((kcb->ss_ctx.ss_pending)
|
|
&& (kcb->ss_ctx.match_addr == instruction_pointer(regs))) {
|
|
clear_ss_context(kcb); /* clear pending ss */
|
|
|
|
kprobes_restore_local_irqflag(kcb, regs);
|
|
regs->sr = (regs->sr & TRACE_MODE_MASK) | TRACE_MODE_RUN;
|
|
|
|
post_kprobe_handler(kcb, regs);
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Provide a blacklist of symbols identifying ranges which cannot be kprobed.
|
|
* This blacklist is exposed to userspace via debugfs (kprobes/blacklist).
|
|
*/
|
|
int __init arch_populate_kprobe_blacklist(void)
|
|
{
|
|
int ret;
|
|
|
|
ret = kprobe_add_area_blacklist((unsigned long)__irqentry_text_start,
|
|
(unsigned long)__irqentry_text_end);
|
|
return ret;
|
|
}
|
|
|
|
void __kprobes __used *trampoline_probe_handler(struct pt_regs *regs)
|
|
{
|
|
return (void *)kretprobe_trampoline_handler(regs, &kretprobe_trampoline, NULL);
|
|
}
|
|
|
|
void __kprobes arch_prepare_kretprobe(struct kretprobe_instance *ri,
|
|
struct pt_regs *regs)
|
|
{
|
|
ri->ret_addr = (kprobe_opcode_t *)regs->lr;
|
|
ri->fp = NULL;
|
|
regs->lr = (unsigned long) &kretprobe_trampoline;
|
|
}
|
|
|
|
int __kprobes arch_trampoline_kprobe(struct kprobe *p)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
int __init arch_init_kprobes(void)
|
|
{
|
|
return 0;
|
|
}
|