Jakub Kicinski 50c6afabfd Merge https://git.kernel.org/pub/scm/linux/kernel/git/bpf/bpf-next
Daniel Borkmann says:

====================
pull-request: bpf-next 2022-04-27

We've added 85 non-merge commits during the last 18 day(s) which contain
a total of 163 files changed, 4499 insertions(+), 1521 deletions(-).

The main changes are:

1) Teach libbpf to enhance BPF verifier log with human-readable and relevant
   information about failed CO-RE relocations, from Andrii Nakryiko.

2) Add typed pointer support in BPF maps and enable it for unreferenced pointers
   (via probe read) and referenced ones that can be passed to in-kernel helpers,
   from Kumar Kartikeya Dwivedi.

3) Improve xsk to break NAPI loop when rx queue gets full to allow for forward
   progress to consume descriptors, from Maciej Fijalkowski & Björn Töpel.

4) Fix a small RCU read-side race in BPF_PROG_RUN routines which dereferenced
   the effective prog array before the rcu_read_lock, from Stanislav Fomichev.

5) Implement BPF atomic operations for RV64 JIT, and add libbpf parsing logic
   for USDT arguments under riscv{32,64}, from Pu Lehui.

6) Implement libbpf parsing of USDT arguments under aarch64, from Alan Maguire.

7) Enable bpftool build for musl and remove nftw with FTW_ACTIONRETVAL usage
   so it can be shipped under Alpine which is musl-based, from Dominique Martinet.

8) Clean up {sk,task,inode} local storage trace RCU handling as they do not
   need to use call_rcu_tasks_trace() barrier, from KP Singh.

9) Improve libbpf API documentation and fix error return handling of various
   API functions, from Grant Seltzer.

10) Enlarge offset check for bpf_skb_{load,store}_bytes() helpers given data
    length of frags + frag_list may surpass old offset limit, from Liu Jian.

11) Various improvements to prog_tests in area of logging, test execution
    and by-name subtest selection, from Mykola Lysenko.

12) Simplify map_btf_id generation for all map types by moving this process
    to build time with help of resolve_btfids infra, from Menglong Dong.

13) Fix a libbpf bug in probing when falling back to legacy bpf_probe_read*()
    helpers; the probing caused always to use old helpers, from Runqing Yang.

14) Add support for ARCompact and ARCv2 platforms for libbpf's PT_REGS
    tracing macros, from Vladimir Isaev.

15) Cleanup BPF selftests to remove old & unneeded rlimit code given kernel
    switched to memcg-based memory accouting a while ago, from Yafang Shao.

16) Refactor of BPF sysctl handlers to move them to BPF core, from Yan Zhu.

17) Fix BPF selftests in two occasions to work around regressions caused by latest
    LLVM to unblock CI until their fixes are worked out, from Yonghong Song.

18) Misc cleanups all over the place, from various others.

* https://git.kernel.org/pub/scm/linux/kernel/git/bpf/bpf-next: (85 commits)
  selftests/bpf: Add libbpf's log fixup logic selftests
  libbpf: Fix up verifier log for unguarded failed CO-RE relos
  libbpf: Simplify bpf_core_parse_spec() signature
  libbpf: Refactor CO-RE relo human description formatting routine
  libbpf: Record subprog-resolved CO-RE relocations unconditionally
  selftests/bpf: Add CO-RE relos and SEC("?...") to linked_funcs selftests
  libbpf: Avoid joining .BTF.ext data with BPF programs by section name
  libbpf: Fix logic for finding matching program for CO-RE relocation
  libbpf: Drop unhelpful "program too large" guess
  libbpf: Fix anonymous type check in CO-RE logic
  bpf: Compute map_btf_id during build time
  selftests/bpf: Add test for strict BTF type check
  selftests/bpf: Add verifier tests for kptr
  selftests/bpf: Add C tests for kptr
  libbpf: Add kptr type tag macros to bpf_helpers.h
  bpf: Make BTF type match stricter for release arguments
  bpf: Teach verifier about kptr_get kfunc helpers
  bpf: Wire up freeing of referenced kptr
  bpf: Populate pairs of btf_id and destructor kfunc in btf
  bpf: Adapt copy_map_value for multiple offset case
  ...
====================

Link: https://lore.kernel.org/r/20220427224758.20976-1-daniel@iogearbox.net
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2022-04-27 17:09:32 -07:00

1030 lines
26 KiB
C

// SPDX-License-Identifier: GPL-2.0
/* Copyright (c) 2019, Intel Corporation. */
#include <linux/bpf_trace.h>
#include <net/xdp_sock_drv.h>
#include <net/xdp.h>
#include "ice.h"
#include "ice_base.h"
#include "ice_type.h"
#include "ice_xsk.h"
#include "ice_txrx.h"
#include "ice_txrx_lib.h"
#include "ice_lib.h"
static struct xdp_buff **ice_xdp_buf(struct ice_rx_ring *rx_ring, u32 idx)
{
return &rx_ring->xdp_buf[idx];
}
/**
* ice_qp_reset_stats - Resets all stats for rings of given index
* @vsi: VSI that contains rings of interest
* @q_idx: ring index in array
*/
static void ice_qp_reset_stats(struct ice_vsi *vsi, u16 q_idx)
{
memset(&vsi->rx_rings[q_idx]->rx_stats, 0,
sizeof(vsi->rx_rings[q_idx]->rx_stats));
memset(&vsi->tx_rings[q_idx]->stats, 0,
sizeof(vsi->tx_rings[q_idx]->stats));
if (ice_is_xdp_ena_vsi(vsi))
memset(&vsi->xdp_rings[q_idx]->stats, 0,
sizeof(vsi->xdp_rings[q_idx]->stats));
}
/**
* ice_qp_clean_rings - Cleans all the rings of a given index
* @vsi: VSI that contains rings of interest
* @q_idx: ring index in array
*/
static void ice_qp_clean_rings(struct ice_vsi *vsi, u16 q_idx)
{
ice_clean_tx_ring(vsi->tx_rings[q_idx]);
if (ice_is_xdp_ena_vsi(vsi)) {
synchronize_rcu();
ice_clean_tx_ring(vsi->xdp_rings[q_idx]);
}
ice_clean_rx_ring(vsi->rx_rings[q_idx]);
}
/**
* ice_qvec_toggle_napi - Enables/disables NAPI for a given q_vector
* @vsi: VSI that has netdev
* @q_vector: q_vector that has NAPI context
* @enable: true for enable, false for disable
*/
static void
ice_qvec_toggle_napi(struct ice_vsi *vsi, struct ice_q_vector *q_vector,
bool enable)
{
if (!vsi->netdev || !q_vector)
return;
if (enable)
napi_enable(&q_vector->napi);
else
napi_disable(&q_vector->napi);
}
/**
* ice_qvec_dis_irq - Mask off queue interrupt generation on given ring
* @vsi: the VSI that contains queue vector being un-configured
* @rx_ring: Rx ring that will have its IRQ disabled
* @q_vector: queue vector
*/
static void
ice_qvec_dis_irq(struct ice_vsi *vsi, struct ice_rx_ring *rx_ring,
struct ice_q_vector *q_vector)
{
struct ice_pf *pf = vsi->back;
struct ice_hw *hw = &pf->hw;
int base = vsi->base_vector;
u16 reg;
u32 val;
/* QINT_TQCTL is being cleared in ice_vsi_stop_tx_ring, so handle
* here only QINT_RQCTL
*/
reg = rx_ring->reg_idx;
val = rd32(hw, QINT_RQCTL(reg));
val &= ~QINT_RQCTL_CAUSE_ENA_M;
wr32(hw, QINT_RQCTL(reg), val);
if (q_vector) {
u16 v_idx = q_vector->v_idx;
wr32(hw, GLINT_DYN_CTL(q_vector->reg_idx), 0);
ice_flush(hw);
synchronize_irq(pf->msix_entries[v_idx + base].vector);
}
}
/**
* ice_qvec_cfg_msix - Enable IRQ for given queue vector
* @vsi: the VSI that contains queue vector
* @q_vector: queue vector
*/
static void
ice_qvec_cfg_msix(struct ice_vsi *vsi, struct ice_q_vector *q_vector)
{
u16 reg_idx = q_vector->reg_idx;
struct ice_pf *pf = vsi->back;
struct ice_hw *hw = &pf->hw;
struct ice_tx_ring *tx_ring;
struct ice_rx_ring *rx_ring;
ice_cfg_itr(hw, q_vector);
ice_for_each_tx_ring(tx_ring, q_vector->tx)
ice_cfg_txq_interrupt(vsi, tx_ring->reg_idx, reg_idx,
q_vector->tx.itr_idx);
ice_for_each_rx_ring(rx_ring, q_vector->rx)
ice_cfg_rxq_interrupt(vsi, rx_ring->reg_idx, reg_idx,
q_vector->rx.itr_idx);
ice_flush(hw);
}
/**
* ice_qvec_ena_irq - Enable IRQ for given queue vector
* @vsi: the VSI that contains queue vector
* @q_vector: queue vector
*/
static void ice_qvec_ena_irq(struct ice_vsi *vsi, struct ice_q_vector *q_vector)
{
struct ice_pf *pf = vsi->back;
struct ice_hw *hw = &pf->hw;
ice_irq_dynamic_ena(hw, vsi, q_vector);
ice_flush(hw);
}
/**
* ice_qp_dis - Disables a queue pair
* @vsi: VSI of interest
* @q_idx: ring index in array
*
* Returns 0 on success, negative on failure.
*/
static int ice_qp_dis(struct ice_vsi *vsi, u16 q_idx)
{
struct ice_txq_meta txq_meta = { };
struct ice_q_vector *q_vector;
struct ice_tx_ring *tx_ring;
struct ice_rx_ring *rx_ring;
int timeout = 50;
int err;
if (q_idx >= vsi->num_rxq || q_idx >= vsi->num_txq)
return -EINVAL;
tx_ring = vsi->tx_rings[q_idx];
rx_ring = vsi->rx_rings[q_idx];
q_vector = rx_ring->q_vector;
while (test_and_set_bit(ICE_CFG_BUSY, vsi->state)) {
timeout--;
if (!timeout)
return -EBUSY;
usleep_range(1000, 2000);
}
netif_tx_stop_queue(netdev_get_tx_queue(vsi->netdev, q_idx));
ice_qvec_dis_irq(vsi, rx_ring, q_vector);
ice_fill_txq_meta(vsi, tx_ring, &txq_meta);
err = ice_vsi_stop_tx_ring(vsi, ICE_NO_RESET, 0, tx_ring, &txq_meta);
if (err)
return err;
if (ice_is_xdp_ena_vsi(vsi)) {
struct ice_tx_ring *xdp_ring = vsi->xdp_rings[q_idx];
memset(&txq_meta, 0, sizeof(txq_meta));
ice_fill_txq_meta(vsi, xdp_ring, &txq_meta);
err = ice_vsi_stop_tx_ring(vsi, ICE_NO_RESET, 0, xdp_ring,
&txq_meta);
if (err)
return err;
}
err = ice_vsi_ctrl_one_rx_ring(vsi, false, q_idx, true);
if (err)
return err;
ice_qvec_toggle_napi(vsi, q_vector, false);
ice_qp_clean_rings(vsi, q_idx);
ice_qp_reset_stats(vsi, q_idx);
return 0;
}
/**
* ice_qp_ena - Enables a queue pair
* @vsi: VSI of interest
* @q_idx: ring index in array
*
* Returns 0 on success, negative on failure.
*/
static int ice_qp_ena(struct ice_vsi *vsi, u16 q_idx)
{
struct ice_aqc_add_tx_qgrp *qg_buf;
struct ice_q_vector *q_vector;
struct ice_tx_ring *tx_ring;
struct ice_rx_ring *rx_ring;
u16 size;
int err;
if (q_idx >= vsi->num_rxq || q_idx >= vsi->num_txq)
return -EINVAL;
size = struct_size(qg_buf, txqs, 1);
qg_buf = kzalloc(size, GFP_KERNEL);
if (!qg_buf)
return -ENOMEM;
qg_buf->num_txqs = 1;
tx_ring = vsi->tx_rings[q_idx];
rx_ring = vsi->rx_rings[q_idx];
q_vector = rx_ring->q_vector;
err = ice_vsi_cfg_txq(vsi, tx_ring, qg_buf);
if (err)
goto free_buf;
if (ice_is_xdp_ena_vsi(vsi)) {
struct ice_tx_ring *xdp_ring = vsi->xdp_rings[q_idx];
memset(qg_buf, 0, size);
qg_buf->num_txqs = 1;
err = ice_vsi_cfg_txq(vsi, xdp_ring, qg_buf);
if (err)
goto free_buf;
ice_set_ring_xdp(xdp_ring);
xdp_ring->xsk_pool = ice_tx_xsk_pool(xdp_ring);
}
err = ice_vsi_cfg_rxq(rx_ring);
if (err)
goto free_buf;
ice_qvec_cfg_msix(vsi, q_vector);
err = ice_vsi_ctrl_one_rx_ring(vsi, true, q_idx, true);
if (err)
goto free_buf;
clear_bit(ICE_CFG_BUSY, vsi->state);
ice_qvec_toggle_napi(vsi, q_vector, true);
ice_qvec_ena_irq(vsi, q_vector);
netif_tx_start_queue(netdev_get_tx_queue(vsi->netdev, q_idx));
free_buf:
kfree(qg_buf);
return err;
}
/**
* ice_xsk_pool_disable - disable a buffer pool region
* @vsi: Current VSI
* @qid: queue ID
*
* Returns 0 on success, negative on failure
*/
static int ice_xsk_pool_disable(struct ice_vsi *vsi, u16 qid)
{
struct xsk_buff_pool *pool = xsk_get_pool_from_qid(vsi->netdev, qid);
if (!pool)
return -EINVAL;
clear_bit(qid, vsi->af_xdp_zc_qps);
xsk_pool_dma_unmap(pool, ICE_RX_DMA_ATTR);
return 0;
}
/**
* ice_xsk_pool_enable - enable a buffer pool region
* @vsi: Current VSI
* @pool: pointer to a requested buffer pool region
* @qid: queue ID
*
* Returns 0 on success, negative on failure
*/
static int
ice_xsk_pool_enable(struct ice_vsi *vsi, struct xsk_buff_pool *pool, u16 qid)
{
int err;
if (vsi->type != ICE_VSI_PF)
return -EINVAL;
if (qid >= vsi->netdev->real_num_rx_queues ||
qid >= vsi->netdev->real_num_tx_queues)
return -EINVAL;
err = xsk_pool_dma_map(pool, ice_pf_to_dev(vsi->back),
ICE_RX_DMA_ATTR);
if (err)
return err;
set_bit(qid, vsi->af_xdp_zc_qps);
return 0;
}
/**
* ice_xsk_pool_setup - enable/disable a buffer pool region depending on its state
* @vsi: Current VSI
* @pool: buffer pool to enable/associate to a ring, NULL to disable
* @qid: queue ID
*
* Returns 0 on success, negative on failure
*/
int ice_xsk_pool_setup(struct ice_vsi *vsi, struct xsk_buff_pool *pool, u16 qid)
{
bool if_running, pool_present = !!pool;
int ret = 0, pool_failure = 0;
if (!is_power_of_2(vsi->rx_rings[qid]->count) ||
!is_power_of_2(vsi->tx_rings[qid]->count)) {
netdev_err(vsi->netdev, "Please align ring sizes to power of 2\n");
pool_failure = -EINVAL;
goto failure;
}
if_running = netif_running(vsi->netdev) && ice_is_xdp_ena_vsi(vsi);
if (if_running) {
ret = ice_qp_dis(vsi, qid);
if (ret) {
netdev_err(vsi->netdev, "ice_qp_dis error = %d\n", ret);
goto xsk_pool_if_up;
}
}
pool_failure = pool_present ? ice_xsk_pool_enable(vsi, pool, qid) :
ice_xsk_pool_disable(vsi, qid);
xsk_pool_if_up:
if (if_running) {
ret = ice_qp_ena(vsi, qid);
if (!ret && pool_present)
napi_schedule(&vsi->xdp_rings[qid]->q_vector->napi);
else if (ret)
netdev_err(vsi->netdev, "ice_qp_ena error = %d\n", ret);
}
failure:
if (pool_failure) {
netdev_err(vsi->netdev, "Could not %sable buffer pool, error = %d\n",
pool_present ? "en" : "dis", pool_failure);
return pool_failure;
}
return ret;
}
/**
* ice_fill_rx_descs - pick buffers from XSK buffer pool and use it
* @pool: XSK Buffer pool to pull the buffers from
* @xdp: SW ring of xdp_buff that will hold the buffers
* @rx_desc: Pointer to Rx descriptors that will be filled
* @count: The number of buffers to allocate
*
* This function allocates a number of Rx buffers from the fill ring
* or the internal recycle mechanism and places them on the Rx ring.
*
* Note that ring wrap should be handled by caller of this function.
*
* Returns the amount of allocated Rx descriptors
*/
static u16 ice_fill_rx_descs(struct xsk_buff_pool *pool, struct xdp_buff **xdp,
union ice_32b_rx_flex_desc *rx_desc, u16 count)
{
dma_addr_t dma;
u16 buffs;
int i;
buffs = xsk_buff_alloc_batch(pool, xdp, count);
for (i = 0; i < buffs; i++) {
dma = xsk_buff_xdp_get_dma(*xdp);
rx_desc->read.pkt_addr = cpu_to_le64(dma);
rx_desc->wb.status_error0 = 0;
rx_desc++;
xdp++;
}
return buffs;
}
/**
* __ice_alloc_rx_bufs_zc - allocate a number of Rx buffers
* @rx_ring: Rx ring
* @count: The number of buffers to allocate
*
* Place the @count of descriptors onto Rx ring. Handle the ring wrap
* for case where space from next_to_use up to the end of ring is less
* than @count. Finally do a tail bump.
*
* Returns true if all allocations were successful, false if any fail.
*/
static bool __ice_alloc_rx_bufs_zc(struct ice_rx_ring *rx_ring, u16 count)
{
u32 nb_buffs_extra = 0, nb_buffs = 0;
union ice_32b_rx_flex_desc *rx_desc;
u16 ntu = rx_ring->next_to_use;
u16 total_count = count;
struct xdp_buff **xdp;
rx_desc = ICE_RX_DESC(rx_ring, ntu);
xdp = ice_xdp_buf(rx_ring, ntu);
if (ntu + count >= rx_ring->count) {
nb_buffs_extra = ice_fill_rx_descs(rx_ring->xsk_pool, xdp,
rx_desc,
rx_ring->count - ntu);
if (nb_buffs_extra != rx_ring->count - ntu) {
ntu += nb_buffs_extra;
goto exit;
}
rx_desc = ICE_RX_DESC(rx_ring, 0);
xdp = ice_xdp_buf(rx_ring, 0);
ntu = 0;
count -= nb_buffs_extra;
ice_release_rx_desc(rx_ring, 0);
}
nb_buffs = ice_fill_rx_descs(rx_ring->xsk_pool, xdp, rx_desc, count);
ntu += nb_buffs;
if (ntu == rx_ring->count)
ntu = 0;
exit:
if (rx_ring->next_to_use != ntu)
ice_release_rx_desc(rx_ring, ntu);
return total_count == (nb_buffs_extra + nb_buffs);
}
/**
* ice_alloc_rx_bufs_zc - allocate a number of Rx buffers
* @rx_ring: Rx ring
* @count: The number of buffers to allocate
*
* Wrapper for internal allocation routine; figure out how many tail
* bumps should take place based on the given threshold
*
* Returns true if all calls to internal alloc routine succeeded
*/
bool ice_alloc_rx_bufs_zc(struct ice_rx_ring *rx_ring, u16 count)
{
u16 rx_thresh = ICE_RING_QUARTER(rx_ring);
u16 batched, leftover, i, tail_bumps;
batched = ALIGN_DOWN(count, rx_thresh);
tail_bumps = batched / rx_thresh;
leftover = count & (rx_thresh - 1);
for (i = 0; i < tail_bumps; i++)
if (!__ice_alloc_rx_bufs_zc(rx_ring, rx_thresh))
return false;
return __ice_alloc_rx_bufs_zc(rx_ring, leftover);
}
/**
* ice_bump_ntc - Bump the next_to_clean counter of an Rx ring
* @rx_ring: Rx ring
*/
static void ice_bump_ntc(struct ice_rx_ring *rx_ring)
{
int ntc = rx_ring->next_to_clean + 1;
ntc = (ntc < rx_ring->count) ? ntc : 0;
rx_ring->next_to_clean = ntc;
prefetch(ICE_RX_DESC(rx_ring, ntc));
}
/**
* ice_construct_skb_zc - Create an sk_buff from zero-copy buffer
* @rx_ring: Rx ring
* @xdp: Pointer to XDP buffer
*
* This function allocates a new skb from a zero-copy Rx buffer.
*
* Returns the skb on success, NULL on failure.
*/
static struct sk_buff *
ice_construct_skb_zc(struct ice_rx_ring *rx_ring, struct xdp_buff *xdp)
{
unsigned int totalsize = xdp->data_end - xdp->data_meta;
unsigned int metasize = xdp->data - xdp->data_meta;
struct sk_buff *skb;
net_prefetch(xdp->data_meta);
skb = __napi_alloc_skb(&rx_ring->q_vector->napi, totalsize,
GFP_ATOMIC | __GFP_NOWARN);
if (unlikely(!skb))
return NULL;
memcpy(__skb_put(skb, totalsize), xdp->data_meta,
ALIGN(totalsize, sizeof(long)));
if (metasize) {
skb_metadata_set(skb, metasize);
__skb_pull(skb, metasize);
}
xsk_buff_free(xdp);
return skb;
}
/**
* ice_run_xdp_zc - Executes an XDP program in zero-copy path
* @rx_ring: Rx ring
* @xdp: xdp_buff used as input to the XDP program
* @xdp_prog: XDP program to run
* @xdp_ring: ring to be used for XDP_TX action
*
* Returns any of ICE_XDP_{PASS, CONSUMED, TX, REDIR}
*/
static int
ice_run_xdp_zc(struct ice_rx_ring *rx_ring, struct xdp_buff *xdp,
struct bpf_prog *xdp_prog, struct ice_tx_ring *xdp_ring)
{
int err, result = ICE_XDP_PASS;
u32 act;
act = bpf_prog_run_xdp(xdp_prog, xdp);
if (likely(act == XDP_REDIRECT)) {
err = xdp_do_redirect(rx_ring->netdev, xdp, xdp_prog);
if (!err)
return ICE_XDP_REDIR;
if (xsk_uses_need_wakeup(rx_ring->xsk_pool) && err == -ENOBUFS)
result = ICE_XDP_EXIT;
else
result = ICE_XDP_CONSUMED;
goto out_failure;
}
switch (act) {
case XDP_PASS:
break;
case XDP_TX:
result = ice_xmit_xdp_buff(xdp, xdp_ring);
if (result == ICE_XDP_CONSUMED)
goto out_failure;
break;
case XDP_DROP:
result = ICE_XDP_CONSUMED;
break;
default:
bpf_warn_invalid_xdp_action(rx_ring->netdev, xdp_prog, act);
fallthrough;
case XDP_ABORTED:
result = ICE_XDP_CONSUMED;
out_failure:
trace_xdp_exception(rx_ring->netdev, xdp_prog, act);
break;
}
return result;
}
/**
* ice_clean_rx_irq_zc - consumes packets from the hardware ring
* @rx_ring: AF_XDP Rx ring
* @budget: NAPI budget
*
* Returns number of processed packets on success, remaining budget on failure.
*/
int ice_clean_rx_irq_zc(struct ice_rx_ring *rx_ring, int budget)
{
unsigned int total_rx_bytes = 0, total_rx_packets = 0;
struct ice_tx_ring *xdp_ring;
unsigned int xdp_xmit = 0;
struct bpf_prog *xdp_prog;
bool failure = false;
int entries_to_alloc;
/* ZC patch is enabled only when XDP program is set,
* so here it can not be NULL
*/
xdp_prog = READ_ONCE(rx_ring->xdp_prog);
xdp_ring = rx_ring->xdp_ring;
while (likely(total_rx_packets < (unsigned int)budget)) {
union ice_32b_rx_flex_desc *rx_desc;
unsigned int size, xdp_res = 0;
struct xdp_buff *xdp;
struct sk_buff *skb;
u16 stat_err_bits;
u16 vlan_tag = 0;
u16 rx_ptype;
rx_desc = ICE_RX_DESC(rx_ring, rx_ring->next_to_clean);
stat_err_bits = BIT(ICE_RX_FLEX_DESC_STATUS0_DD_S);
if (!ice_test_staterr(rx_desc->wb.status_error0, stat_err_bits))
break;
/* This memory barrier is needed to keep us from reading
* any other fields out of the rx_desc until we have
* verified the descriptor has been written back.
*/
dma_rmb();
if (unlikely(rx_ring->next_to_clean == rx_ring->next_to_use))
break;
xdp = *ice_xdp_buf(rx_ring, rx_ring->next_to_clean);
size = le16_to_cpu(rx_desc->wb.pkt_len) &
ICE_RX_FLX_DESC_PKT_LEN_M;
if (!size) {
xdp->data = NULL;
xdp->data_end = NULL;
xdp->data_hard_start = NULL;
xdp->data_meta = NULL;
goto construct_skb;
}
xsk_buff_set_size(xdp, size);
xsk_buff_dma_sync_for_cpu(xdp, rx_ring->xsk_pool);
xdp_res = ice_run_xdp_zc(rx_ring, xdp, xdp_prog, xdp_ring);
if (likely(xdp_res & (ICE_XDP_TX | ICE_XDP_REDIR))) {
xdp_xmit |= xdp_res;
} else if (xdp_res == ICE_XDP_EXIT) {
failure = true;
break;
} else if (xdp_res == ICE_XDP_CONSUMED) {
xsk_buff_free(xdp);
} else if (xdp_res == ICE_XDP_PASS) {
goto construct_skb;
}
total_rx_bytes += size;
total_rx_packets++;
ice_bump_ntc(rx_ring);
continue;
construct_skb:
/* XDP_PASS path */
skb = ice_construct_skb_zc(rx_ring, xdp);
if (!skb) {
rx_ring->rx_stats.alloc_buf_failed++;
break;
}
ice_bump_ntc(rx_ring);
if (eth_skb_pad(skb)) {
skb = NULL;
continue;
}
total_rx_bytes += skb->len;
total_rx_packets++;
vlan_tag = ice_get_vlan_tag_from_rx_desc(rx_desc);
rx_ptype = le16_to_cpu(rx_desc->wb.ptype_flex_flags0) &
ICE_RX_FLEX_DESC_PTYPE_M;
ice_process_skb_fields(rx_ring, rx_desc, skb, rx_ptype);
ice_receive_skb(rx_ring, skb, vlan_tag);
}
entries_to_alloc = ICE_DESC_UNUSED(rx_ring);
if (entries_to_alloc > ICE_RING_QUARTER(rx_ring))
failure |= !ice_alloc_rx_bufs_zc(rx_ring, entries_to_alloc);
ice_finalize_xdp_rx(xdp_ring, xdp_xmit);
ice_update_rx_ring_stats(rx_ring, total_rx_packets, total_rx_bytes);
if (xsk_uses_need_wakeup(rx_ring->xsk_pool)) {
if (failure || rx_ring->next_to_clean == rx_ring->next_to_use)
xsk_set_rx_need_wakeup(rx_ring->xsk_pool);
else
xsk_clear_rx_need_wakeup(rx_ring->xsk_pool);
return (int)total_rx_packets;
}
return failure ? budget : (int)total_rx_packets;
}
/**
* ice_clean_xdp_tx_buf - Free and unmap XDP Tx buffer
* @xdp_ring: XDP Tx ring
* @tx_buf: Tx buffer to clean
*/
static void
ice_clean_xdp_tx_buf(struct ice_tx_ring *xdp_ring, struct ice_tx_buf *tx_buf)
{
xdp_return_frame((struct xdp_frame *)tx_buf->raw_buf);
xdp_ring->xdp_tx_active--;
dma_unmap_single(xdp_ring->dev, dma_unmap_addr(tx_buf, dma),
dma_unmap_len(tx_buf, len), DMA_TO_DEVICE);
dma_unmap_len_set(tx_buf, len, 0);
}
/**
* ice_clean_xdp_irq_zc - Reclaim resources after transmit completes on XDP ring
* @xdp_ring: XDP ring to clean
* @napi_budget: amount of descriptors that NAPI allows us to clean
*
* Returns count of cleaned descriptors
*/
static u16 ice_clean_xdp_irq_zc(struct ice_tx_ring *xdp_ring, int napi_budget)
{
u16 tx_thresh = ICE_RING_QUARTER(xdp_ring);
int budget = napi_budget / tx_thresh;
u16 next_dd = xdp_ring->next_dd;
u16 ntc, cleared_dds = 0;
do {
struct ice_tx_desc *next_dd_desc;
u16 desc_cnt = xdp_ring->count;
struct ice_tx_buf *tx_buf;
u32 xsk_frames;
u16 i;
next_dd_desc = ICE_TX_DESC(xdp_ring, next_dd);
if (!(next_dd_desc->cmd_type_offset_bsz &
cpu_to_le64(ICE_TX_DESC_DTYPE_DESC_DONE)))
break;
cleared_dds++;
xsk_frames = 0;
if (likely(!xdp_ring->xdp_tx_active)) {
xsk_frames = tx_thresh;
goto skip;
}
ntc = xdp_ring->next_to_clean;
for (i = 0; i < tx_thresh; i++) {
tx_buf = &xdp_ring->tx_buf[ntc];
if (tx_buf->raw_buf) {
ice_clean_xdp_tx_buf(xdp_ring, tx_buf);
tx_buf->raw_buf = NULL;
} else {
xsk_frames++;
}
ntc++;
if (ntc >= xdp_ring->count)
ntc = 0;
}
skip:
xdp_ring->next_to_clean += tx_thresh;
if (xdp_ring->next_to_clean >= desc_cnt)
xdp_ring->next_to_clean -= desc_cnt;
if (xsk_frames)
xsk_tx_completed(xdp_ring->xsk_pool, xsk_frames);
next_dd_desc->cmd_type_offset_bsz = 0;
next_dd = next_dd + tx_thresh;
if (next_dd >= desc_cnt)
next_dd = tx_thresh - 1;
} while (--budget);
xdp_ring->next_dd = next_dd;
return cleared_dds * tx_thresh;
}
/**
* ice_xmit_pkt - produce a single HW Tx descriptor out of AF_XDP descriptor
* @xdp_ring: XDP ring to produce the HW Tx descriptor on
* @desc: AF_XDP descriptor to pull the DMA address and length from
* @total_bytes: bytes accumulator that will be used for stats update
*/
static void ice_xmit_pkt(struct ice_tx_ring *xdp_ring, struct xdp_desc *desc,
unsigned int *total_bytes)
{
struct ice_tx_desc *tx_desc;
dma_addr_t dma;
dma = xsk_buff_raw_get_dma(xdp_ring->xsk_pool, desc->addr);
xsk_buff_raw_dma_sync_for_device(xdp_ring->xsk_pool, dma, desc->len);
tx_desc = ICE_TX_DESC(xdp_ring, xdp_ring->next_to_use++);
tx_desc->buf_addr = cpu_to_le64(dma);
tx_desc->cmd_type_offset_bsz = ice_build_ctob(ICE_TX_DESC_CMD_EOP,
0, desc->len, 0);
*total_bytes += desc->len;
}
/**
* ice_xmit_pkt_batch - produce a batch of HW Tx descriptors out of AF_XDP descriptors
* @xdp_ring: XDP ring to produce the HW Tx descriptors on
* @descs: AF_XDP descriptors to pull the DMA addresses and lengths from
* @total_bytes: bytes accumulator that will be used for stats update
*/
static void ice_xmit_pkt_batch(struct ice_tx_ring *xdp_ring, struct xdp_desc *descs,
unsigned int *total_bytes)
{
u16 tx_thresh = ICE_RING_QUARTER(xdp_ring);
u16 ntu = xdp_ring->next_to_use;
struct ice_tx_desc *tx_desc;
u32 i;
loop_unrolled_for(i = 0; i < PKTS_PER_BATCH; i++) {
dma_addr_t dma;
dma = xsk_buff_raw_get_dma(xdp_ring->xsk_pool, descs[i].addr);
xsk_buff_raw_dma_sync_for_device(xdp_ring->xsk_pool, dma, descs[i].len);
tx_desc = ICE_TX_DESC(xdp_ring, ntu++);
tx_desc->buf_addr = cpu_to_le64(dma);
tx_desc->cmd_type_offset_bsz = ice_build_ctob(ICE_TX_DESC_CMD_EOP,
0, descs[i].len, 0);
*total_bytes += descs[i].len;
}
xdp_ring->next_to_use = ntu;
if (xdp_ring->next_to_use > xdp_ring->next_rs) {
tx_desc = ICE_TX_DESC(xdp_ring, xdp_ring->next_rs);
tx_desc->cmd_type_offset_bsz |=
cpu_to_le64(ICE_TX_DESC_CMD_RS << ICE_TXD_QW1_CMD_S);
xdp_ring->next_rs += tx_thresh;
}
}
/**
* ice_fill_tx_hw_ring - produce the number of Tx descriptors onto ring
* @xdp_ring: XDP ring to produce the HW Tx descriptors on
* @descs: AF_XDP descriptors to pull the DMA addresses and lengths from
* @nb_pkts: count of packets to be send
* @total_bytes: bytes accumulator that will be used for stats update
*/
static void ice_fill_tx_hw_ring(struct ice_tx_ring *xdp_ring, struct xdp_desc *descs,
u32 nb_pkts, unsigned int *total_bytes)
{
u16 tx_thresh = ICE_RING_QUARTER(xdp_ring);
u32 batched, leftover, i;
batched = ALIGN_DOWN(nb_pkts, PKTS_PER_BATCH);
leftover = nb_pkts & (PKTS_PER_BATCH - 1);
for (i = 0; i < batched; i += PKTS_PER_BATCH)
ice_xmit_pkt_batch(xdp_ring, &descs[i], total_bytes);
for (; i < batched + leftover; i++)
ice_xmit_pkt(xdp_ring, &descs[i], total_bytes);
if (xdp_ring->next_to_use > xdp_ring->next_rs) {
struct ice_tx_desc *tx_desc;
tx_desc = ICE_TX_DESC(xdp_ring, xdp_ring->next_rs);
tx_desc->cmd_type_offset_bsz |=
cpu_to_le64(ICE_TX_DESC_CMD_RS << ICE_TXD_QW1_CMD_S);
xdp_ring->next_rs += tx_thresh;
}
}
/**
* ice_xmit_zc - take entries from XSK Tx ring and place them onto HW Tx ring
* @xdp_ring: XDP ring to produce the HW Tx descriptors on
* @budget: number of free descriptors on HW Tx ring that can be used
* @napi_budget: amount of descriptors that NAPI allows us to clean
*
* Returns true if there is no more work that needs to be done, false otherwise
*/
bool ice_xmit_zc(struct ice_tx_ring *xdp_ring, u32 budget, int napi_budget)
{
struct xdp_desc *descs = xdp_ring->xsk_pool->tx_descs;
u16 tx_thresh = ICE_RING_QUARTER(xdp_ring);
u32 nb_pkts, nb_processed = 0;
unsigned int total_bytes = 0;
if (budget < tx_thresh)
budget += ice_clean_xdp_irq_zc(xdp_ring, napi_budget);
nb_pkts = xsk_tx_peek_release_desc_batch(xdp_ring->xsk_pool, budget);
if (!nb_pkts)
return true;
if (xdp_ring->next_to_use + nb_pkts >= xdp_ring->count) {
struct ice_tx_desc *tx_desc;
nb_processed = xdp_ring->count - xdp_ring->next_to_use;
ice_fill_tx_hw_ring(xdp_ring, descs, nb_processed, &total_bytes);
tx_desc = ICE_TX_DESC(xdp_ring, xdp_ring->next_rs);
tx_desc->cmd_type_offset_bsz |=
cpu_to_le64(ICE_TX_DESC_CMD_RS << ICE_TXD_QW1_CMD_S);
xdp_ring->next_rs = tx_thresh - 1;
xdp_ring->next_to_use = 0;
}
ice_fill_tx_hw_ring(xdp_ring, &descs[nb_processed], nb_pkts - nb_processed,
&total_bytes);
ice_xdp_ring_update_tail(xdp_ring);
ice_update_tx_ring_stats(xdp_ring, nb_pkts, total_bytes);
if (xsk_uses_need_wakeup(xdp_ring->xsk_pool))
xsk_set_tx_need_wakeup(xdp_ring->xsk_pool);
return nb_pkts < budget;
}
/**
* ice_xsk_wakeup - Implements ndo_xsk_wakeup
* @netdev: net_device
* @queue_id: queue to wake up
* @flags: ignored in our case, since we have Rx and Tx in the same NAPI
*
* Returns negative on error, zero otherwise.
*/
int
ice_xsk_wakeup(struct net_device *netdev, u32 queue_id,
u32 __always_unused flags)
{
struct ice_netdev_priv *np = netdev_priv(netdev);
struct ice_q_vector *q_vector;
struct ice_vsi *vsi = np->vsi;
struct ice_tx_ring *ring;
if (test_bit(ICE_VSI_DOWN, vsi->state))
return -ENETDOWN;
if (!ice_is_xdp_ena_vsi(vsi))
return -EINVAL;
if (queue_id >= vsi->num_txq)
return -EINVAL;
if (!vsi->xdp_rings[queue_id]->xsk_pool)
return -EINVAL;
ring = vsi->xdp_rings[queue_id];
/* The idea here is that if NAPI is running, mark a miss, so
* it will run again. If not, trigger an interrupt and
* schedule the NAPI from interrupt context. If NAPI would be
* scheduled here, the interrupt affinity would not be
* honored.
*/
q_vector = ring->q_vector;
if (!napi_if_scheduled_mark_missed(&q_vector->napi))
ice_trigger_sw_intr(&vsi->back->hw, q_vector);
return 0;
}
/**
* ice_xsk_any_rx_ring_ena - Checks if Rx rings have AF_XDP buff pool attached
* @vsi: VSI to be checked
*
* Returns true if any of the Rx rings has an AF_XDP buff pool attached
*/
bool ice_xsk_any_rx_ring_ena(struct ice_vsi *vsi)
{
int i;
ice_for_each_rxq(vsi, i) {
if (xsk_get_pool_from_qid(vsi->netdev, i))
return true;
}
return false;
}
/**
* ice_xsk_clean_rx_ring - clean buffer pool queues connected to a given Rx ring
* @rx_ring: ring to be cleaned
*/
void ice_xsk_clean_rx_ring(struct ice_rx_ring *rx_ring)
{
u16 count_mask = rx_ring->count - 1;
u16 ntc = rx_ring->next_to_clean;
u16 ntu = rx_ring->next_to_use;
for ( ; ntc != ntu; ntc = (ntc + 1) & count_mask) {
struct xdp_buff *xdp = *ice_xdp_buf(rx_ring, ntc);
xsk_buff_free(xdp);
}
}
/**
* ice_xsk_clean_xdp_ring - Clean the XDP Tx ring and its buffer pool queues
* @xdp_ring: XDP_Tx ring
*/
void ice_xsk_clean_xdp_ring(struct ice_tx_ring *xdp_ring)
{
u16 ntc = xdp_ring->next_to_clean, ntu = xdp_ring->next_to_use;
u32 xsk_frames = 0;
while (ntc != ntu) {
struct ice_tx_buf *tx_buf = &xdp_ring->tx_buf[ntc];
if (tx_buf->raw_buf)
ice_clean_xdp_tx_buf(xdp_ring, tx_buf);
else
xsk_frames++;
tx_buf->raw_buf = NULL;
ntc++;
if (ntc >= xdp_ring->count)
ntc = 0;
}
if (xsk_frames)
xsk_tx_completed(xdp_ring->xsk_pool, xsk_frames);
}