linux/drivers/gpu/drm/vc4/vc4_hdmi.c
Maxime Ripard 1e9974c758
drm/vc4: hdmi: Create destroy state implementation
Even though we were rolling our own custom state for the vc4 HDMI
controller driver, we were still using the generic helper to destroy
that state.

It was mostly working since the underlying state is the first member of
our state so the pointers are probably equal in all relevant cases, but
it's still fragile so let's fix this properly.

Reviewed-by: Dave Stevenson <dave.stevenson@raspberrypi.com>
Signed-off-by: Maxime Ripard <mripard@kernel.org>
Link: https://patchwork.freedesktop.org/patch/msgid/20231207-kms-hdmi-connector-state-v5-18-6538e19d634d@kernel.org
2023-12-13 16:19:01 +01:00

3892 lines
107 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright (C) 2015 Broadcom
* Copyright (c) 2014 The Linux Foundation. All rights reserved.
* Copyright (C) 2013 Red Hat
* Author: Rob Clark <robdclark@gmail.com>
*/
/**
* DOC: VC4 Falcon HDMI module
*
* The HDMI core has a state machine and a PHY. On BCM2835, most of
* the unit operates off of the HSM clock from CPRMAN. It also
* internally uses the PLLH_PIX clock for the PHY.
*
* HDMI infoframes are kept within a small packet ram, where each
* packet can be individually enabled for including in a frame.
*
* HDMI audio is implemented entirely within the HDMI IP block. A
* register in the HDMI encoder takes SPDIF frames from the DMA engine
* and transfers them over an internal MAI (multi-channel audio
* interconnect) bus to the encoder side for insertion into the video
* blank regions.
*
* The driver's HDMI encoder does not yet support power management.
* The HDMI encoder's power domain and the HSM/pixel clocks are kept
* continuously running, and only the HDMI logic and packet ram are
* powered off/on at disable/enable time.
*
* The driver does not yet support CEC control, though the HDMI
* encoder block has CEC support.
*/
#include <drm/display/drm_hdmi_helper.h>
#include <drm/display/drm_scdc_helper.h>
#include <drm/drm_atomic_helper.h>
#include <drm/drm_drv.h>
#include <drm/drm_probe_helper.h>
#include <drm/drm_simple_kms_helper.h>
#include <linux/clk.h>
#include <linux/component.h>
#include <linux/gpio/consumer.h>
#include <linux/i2c.h>
#include <linux/of.h>
#include <linux/of_address.h>
#include <linux/pm_runtime.h>
#include <linux/rational.h>
#include <linux/reset.h>
#include <sound/dmaengine_pcm.h>
#include <sound/hdmi-codec.h>
#include <sound/pcm_drm_eld.h>
#include <sound/pcm_params.h>
#include <sound/soc.h>
#include "media/cec.h"
#include "vc4_drv.h"
#include "vc4_hdmi.h"
#include "vc4_hdmi_regs.h"
#include "vc4_regs.h"
#define VC5_HDMI_HORZA_HFP_SHIFT 16
#define VC5_HDMI_HORZA_HFP_MASK VC4_MASK(28, 16)
#define VC5_HDMI_HORZA_VPOS BIT(15)
#define VC5_HDMI_HORZA_HPOS BIT(14)
#define VC5_HDMI_HORZA_HAP_SHIFT 0
#define VC5_HDMI_HORZA_HAP_MASK VC4_MASK(13, 0)
#define VC5_HDMI_HORZB_HBP_SHIFT 16
#define VC5_HDMI_HORZB_HBP_MASK VC4_MASK(26, 16)
#define VC5_HDMI_HORZB_HSP_SHIFT 0
#define VC5_HDMI_HORZB_HSP_MASK VC4_MASK(10, 0)
#define VC5_HDMI_VERTA_VSP_SHIFT 24
#define VC5_HDMI_VERTA_VSP_MASK VC4_MASK(28, 24)
#define VC5_HDMI_VERTA_VFP_SHIFT 16
#define VC5_HDMI_VERTA_VFP_MASK VC4_MASK(22, 16)
#define VC5_HDMI_VERTA_VAL_SHIFT 0
#define VC5_HDMI_VERTA_VAL_MASK VC4_MASK(12, 0)
#define VC5_HDMI_VERTB_VSPO_SHIFT 16
#define VC5_HDMI_VERTB_VSPO_MASK VC4_MASK(29, 16)
#define VC4_HDMI_MISC_CONTROL_PIXEL_REP_SHIFT 0
#define VC4_HDMI_MISC_CONTROL_PIXEL_REP_MASK VC4_MASK(3, 0)
#define VC5_HDMI_MISC_CONTROL_PIXEL_REP_SHIFT 0
#define VC5_HDMI_MISC_CONTROL_PIXEL_REP_MASK VC4_MASK(3, 0)
#define VC5_HDMI_SCRAMBLER_CTL_ENABLE BIT(0)
#define VC5_HDMI_DEEP_COLOR_CONFIG_1_INIT_PACK_PHASE_SHIFT 8
#define VC5_HDMI_DEEP_COLOR_CONFIG_1_INIT_PACK_PHASE_MASK VC4_MASK(10, 8)
#define VC5_HDMI_DEEP_COLOR_CONFIG_1_COLOR_DEPTH_SHIFT 0
#define VC5_HDMI_DEEP_COLOR_CONFIG_1_COLOR_DEPTH_MASK VC4_MASK(3, 0)
#define VC5_HDMI_GCP_CONFIG_GCP_ENABLE BIT(31)
#define VC5_HDMI_GCP_WORD_1_GCP_SUBPACKET_BYTE_1_SHIFT 8
#define VC5_HDMI_GCP_WORD_1_GCP_SUBPACKET_BYTE_1_MASK VC4_MASK(15, 8)
#define VC5_HDMI_GCP_WORD_1_GCP_SUBPACKET_BYTE_0_MASK VC4_MASK(7, 0)
#define VC5_HDMI_GCP_WORD_1_GCP_SUBPACKET_BYTE_0_SET_AVMUTE BIT(0)
#define VC5_HDMI_GCP_WORD_1_GCP_SUBPACKET_BYTE_0_CLEAR_AVMUTE BIT(4)
# define VC4_HD_M_SW_RST BIT(2)
# define VC4_HD_M_ENABLE BIT(0)
#define HSM_MIN_CLOCK_FREQ 120000000
#define CEC_CLOCK_FREQ 40000
#define HDMI_14_MAX_TMDS_CLK (340 * 1000 * 1000)
static const char * const output_format_str[] = {
[VC4_HDMI_OUTPUT_RGB] = "RGB",
[VC4_HDMI_OUTPUT_YUV420] = "YUV 4:2:0",
[VC4_HDMI_OUTPUT_YUV422] = "YUV 4:2:2",
[VC4_HDMI_OUTPUT_YUV444] = "YUV 4:4:4",
};
static const char *vc4_hdmi_output_fmt_str(enum vc4_hdmi_output_format fmt)
{
if (fmt >= ARRAY_SIZE(output_format_str))
return "invalid";
return output_format_str[fmt];
}
static unsigned long long
vc4_hdmi_encoder_compute_mode_clock(const struct drm_display_mode *mode,
unsigned int bpc, enum vc4_hdmi_output_format fmt);
static bool vc4_hdmi_supports_scrambling(struct vc4_hdmi *vc4_hdmi)
{
struct drm_display_info *display = &vc4_hdmi->connector.display_info;
lockdep_assert_held(&vc4_hdmi->mutex);
if (!display->is_hdmi)
return false;
if (!display->hdmi.scdc.supported ||
!display->hdmi.scdc.scrambling.supported)
return false;
return true;
}
static bool vc4_hdmi_mode_needs_scrambling(const struct drm_display_mode *mode,
unsigned int bpc,
enum vc4_hdmi_output_format fmt)
{
unsigned long long clock = vc4_hdmi_encoder_compute_mode_clock(mode, bpc, fmt);
return clock > HDMI_14_MAX_TMDS_CLK;
}
static bool vc4_hdmi_is_full_range(struct vc4_hdmi *vc4_hdmi,
struct vc4_hdmi_connector_state *vc4_state)
{
const struct drm_display_mode *mode = &vc4_hdmi->saved_adjusted_mode;
struct drm_display_info *display = &vc4_hdmi->connector.display_info;
if (vc4_state->broadcast_rgb == VC4_HDMI_BROADCAST_RGB_LIMITED)
return false;
else if (vc4_state->broadcast_rgb == VC4_HDMI_BROADCAST_RGB_FULL)
return true;
return !display->is_hdmi ||
drm_default_rgb_quant_range(mode) == HDMI_QUANTIZATION_RANGE_FULL;
}
static int vc4_hdmi_debugfs_regs(struct seq_file *m, void *unused)
{
struct drm_debugfs_entry *entry = m->private;
struct vc4_hdmi *vc4_hdmi = entry->file.data;
struct drm_device *drm = vc4_hdmi->connector.dev;
struct drm_printer p = drm_seq_file_printer(m);
int idx;
if (!drm_dev_enter(drm, &idx))
return -ENODEV;
drm_print_regset32(&p, &vc4_hdmi->hdmi_regset);
drm_print_regset32(&p, &vc4_hdmi->hd_regset);
drm_print_regset32(&p, &vc4_hdmi->cec_regset);
drm_print_regset32(&p, &vc4_hdmi->csc_regset);
drm_print_regset32(&p, &vc4_hdmi->dvp_regset);
drm_print_regset32(&p, &vc4_hdmi->phy_regset);
drm_print_regset32(&p, &vc4_hdmi->ram_regset);
drm_print_regset32(&p, &vc4_hdmi->rm_regset);
drm_dev_exit(idx);
return 0;
}
static void vc4_hdmi_reset(struct vc4_hdmi *vc4_hdmi)
{
struct drm_device *drm = vc4_hdmi->connector.dev;
unsigned long flags;
int idx;
/*
* We can be called by our bind callback, when the
* connector->dev pointer might not be initialised yet.
*/
if (drm && !drm_dev_enter(drm, &idx))
return;
spin_lock_irqsave(&vc4_hdmi->hw_lock, flags);
HDMI_WRITE(HDMI_M_CTL, VC4_HD_M_SW_RST);
udelay(1);
HDMI_WRITE(HDMI_M_CTL, 0);
HDMI_WRITE(HDMI_M_CTL, VC4_HD_M_ENABLE);
HDMI_WRITE(HDMI_SW_RESET_CONTROL,
VC4_HDMI_SW_RESET_HDMI |
VC4_HDMI_SW_RESET_FORMAT_DETECT);
HDMI_WRITE(HDMI_SW_RESET_CONTROL, 0);
spin_unlock_irqrestore(&vc4_hdmi->hw_lock, flags);
if (drm)
drm_dev_exit(idx);
}
static void vc5_hdmi_reset(struct vc4_hdmi *vc4_hdmi)
{
struct drm_device *drm = vc4_hdmi->connector.dev;
unsigned long flags;
int idx;
/*
* We can be called by our bind callback, when the
* connector->dev pointer might not be initialised yet.
*/
if (drm && !drm_dev_enter(drm, &idx))
return;
reset_control_reset(vc4_hdmi->reset);
spin_lock_irqsave(&vc4_hdmi->hw_lock, flags);
HDMI_WRITE(HDMI_DVP_CTL, 0);
HDMI_WRITE(HDMI_CLOCK_STOP,
HDMI_READ(HDMI_CLOCK_STOP) | VC4_DVP_HT_CLOCK_STOP_PIXEL);
spin_unlock_irqrestore(&vc4_hdmi->hw_lock, flags);
if (drm)
drm_dev_exit(idx);
}
#ifdef CONFIG_DRM_VC4_HDMI_CEC
static void vc4_hdmi_cec_update_clk_div(struct vc4_hdmi *vc4_hdmi)
{
struct drm_device *drm = vc4_hdmi->connector.dev;
unsigned long cec_rate;
unsigned long flags;
u16 clk_cnt;
u32 value;
int idx;
/*
* This function is called by our runtime_resume implementation
* and thus at bind time, when we haven't registered our
* connector yet and thus don't have a pointer to the DRM
* device.
*/
if (drm && !drm_dev_enter(drm, &idx))
return;
cec_rate = clk_get_rate(vc4_hdmi->cec_clock);
spin_lock_irqsave(&vc4_hdmi->hw_lock, flags);
value = HDMI_READ(HDMI_CEC_CNTRL_1);
value &= ~VC4_HDMI_CEC_DIV_CLK_CNT_MASK;
/*
* Set the clock divider: the hsm_clock rate and this divider
* setting will give a 40 kHz CEC clock.
*/
clk_cnt = cec_rate / CEC_CLOCK_FREQ;
value |= clk_cnt << VC4_HDMI_CEC_DIV_CLK_CNT_SHIFT;
HDMI_WRITE(HDMI_CEC_CNTRL_1, value);
spin_unlock_irqrestore(&vc4_hdmi->hw_lock, flags);
if (drm)
drm_dev_exit(idx);
}
#else
static void vc4_hdmi_cec_update_clk_div(struct vc4_hdmi *vc4_hdmi) {}
#endif
static int reset_pipe(struct drm_crtc *crtc,
struct drm_modeset_acquire_ctx *ctx)
{
struct drm_atomic_state *state;
struct drm_crtc_state *crtc_state;
int ret;
state = drm_atomic_state_alloc(crtc->dev);
if (!state)
return -ENOMEM;
state->acquire_ctx = ctx;
crtc_state = drm_atomic_get_crtc_state(state, crtc);
if (IS_ERR(crtc_state)) {
ret = PTR_ERR(crtc_state);
goto out;
}
crtc_state->connectors_changed = true;
ret = drm_atomic_commit(state);
out:
drm_atomic_state_put(state);
return ret;
}
static int vc4_hdmi_reset_link(struct drm_connector *connector,
struct drm_modeset_acquire_ctx *ctx)
{
struct drm_device *drm;
struct vc4_hdmi *vc4_hdmi;
struct drm_connector_state *conn_state;
struct drm_crtc_state *crtc_state;
struct drm_crtc *crtc;
bool scrambling_needed;
u8 config;
int ret;
if (!connector)
return 0;
drm = connector->dev;
ret = drm_modeset_lock(&drm->mode_config.connection_mutex, ctx);
if (ret)
return ret;
conn_state = connector->state;
crtc = conn_state->crtc;
if (!crtc)
return 0;
ret = drm_modeset_lock(&crtc->mutex, ctx);
if (ret)
return ret;
crtc_state = crtc->state;
if (!crtc_state->active)
return 0;
vc4_hdmi = connector_to_vc4_hdmi(connector);
mutex_lock(&vc4_hdmi->mutex);
if (!vc4_hdmi_supports_scrambling(vc4_hdmi)) {
mutex_unlock(&vc4_hdmi->mutex);
return 0;
}
scrambling_needed = vc4_hdmi_mode_needs_scrambling(&vc4_hdmi->saved_adjusted_mode,
vc4_hdmi->output_bpc,
vc4_hdmi->output_format);
if (!scrambling_needed) {
mutex_unlock(&vc4_hdmi->mutex);
return 0;
}
if (conn_state->commit &&
!try_wait_for_completion(&conn_state->commit->hw_done)) {
mutex_unlock(&vc4_hdmi->mutex);
return 0;
}
ret = drm_scdc_readb(connector->ddc, SCDC_TMDS_CONFIG, &config);
if (ret < 0) {
drm_err(drm, "Failed to read TMDS config: %d\n", ret);
mutex_unlock(&vc4_hdmi->mutex);
return 0;
}
if (!!(config & SCDC_SCRAMBLING_ENABLE) == scrambling_needed) {
mutex_unlock(&vc4_hdmi->mutex);
return 0;
}
mutex_unlock(&vc4_hdmi->mutex);
/*
* HDMI 2.0 says that one should not send scrambled data
* prior to configuring the sink scrambling, and that
* TMDS clock/data transmission should be suspended when
* changing the TMDS clock rate in the sink. So let's
* just do a full modeset here, even though some sinks
* would be perfectly happy if were to just reconfigure
* the SCDC settings on the fly.
*/
return reset_pipe(crtc, ctx);
}
static void vc4_hdmi_handle_hotplug(struct vc4_hdmi *vc4_hdmi,
struct drm_modeset_acquire_ctx *ctx,
enum drm_connector_status status)
{
struct drm_connector *connector = &vc4_hdmi->connector;
struct edid *edid;
int ret;
/*
* NOTE: This function should really be called with
* vc4_hdmi->mutex held, but doing so results in reentrancy
* issues since cec_s_phys_addr_from_edid might call
* .adap_enable, which leads to that funtion being called with
* our mutex held.
*
* A similar situation occurs with vc4_hdmi_reset_link() that
* will call into our KMS hooks if the scrambling was enabled.
*
* Concurrency isn't an issue at the moment since we don't share
* any state with any of the other frameworks so we can ignore
* the lock for now.
*/
if (status == connector_status_disconnected) {
cec_phys_addr_invalidate(vc4_hdmi->cec_adap);
return;
}
edid = drm_get_edid(connector, vc4_hdmi->ddc);
if (!edid)
return;
cec_s_phys_addr_from_edid(vc4_hdmi->cec_adap, edid);
kfree(edid);
for (;;) {
ret = vc4_hdmi_reset_link(connector, ctx);
if (ret == -EDEADLK) {
drm_modeset_backoff(ctx);
continue;
}
break;
}
}
static int vc4_hdmi_connector_detect_ctx(struct drm_connector *connector,
struct drm_modeset_acquire_ctx *ctx,
bool force)
{
struct vc4_hdmi *vc4_hdmi = connector_to_vc4_hdmi(connector);
enum drm_connector_status status = connector_status_disconnected;
/*
* NOTE: This function should really take vc4_hdmi->mutex, but
* doing so results in reentrancy issues since
* vc4_hdmi_handle_hotplug() can call into other functions that
* would take the mutex while it's held here.
*
* Concurrency isn't an issue at the moment since we don't share
* any state with any of the other frameworks so we can ignore
* the lock for now.
*/
WARN_ON(pm_runtime_resume_and_get(&vc4_hdmi->pdev->dev));
if (vc4_hdmi->hpd_gpio) {
if (gpiod_get_value_cansleep(vc4_hdmi->hpd_gpio))
status = connector_status_connected;
} else {
if (vc4_hdmi->variant->hp_detect &&
vc4_hdmi->variant->hp_detect(vc4_hdmi))
status = connector_status_connected;
}
vc4_hdmi_handle_hotplug(vc4_hdmi, ctx, status);
pm_runtime_put(&vc4_hdmi->pdev->dev);
return status;
}
static int vc4_hdmi_connector_get_modes(struct drm_connector *connector)
{
struct vc4_hdmi *vc4_hdmi = connector_to_vc4_hdmi(connector);
struct vc4_dev *vc4 = to_vc4_dev(connector->dev);
int ret = 0;
struct edid *edid;
/*
* NOTE: This function should really take vc4_hdmi->mutex, but
* doing so results in reentrancy issues since
* cec_s_phys_addr_from_edid might call .adap_enable, which
* leads to that funtion being called with our mutex held.
*
* Concurrency isn't an issue at the moment since we don't share
* any state with any of the other frameworks so we can ignore
* the lock for now.
*/
edid = drm_get_edid(connector, vc4_hdmi->ddc);
cec_s_phys_addr_from_edid(vc4_hdmi->cec_adap, edid);
if (!edid)
return -ENODEV;
drm_connector_update_edid_property(connector, edid);
ret = drm_add_edid_modes(connector, edid);
kfree(edid);
if (!vc4->hvs->vc5_hdmi_enable_hdmi_20) {
struct drm_device *drm = connector->dev;
const struct drm_display_mode *mode;
list_for_each_entry(mode, &connector->probed_modes, head) {
if (vc4_hdmi_mode_needs_scrambling(mode, 8, VC4_HDMI_OUTPUT_RGB)) {
drm_warn_once(drm, "The core clock cannot reach frequencies high enough to support 4k @ 60Hz.");
drm_warn_once(drm, "Please change your config.txt file to add hdmi_enable_4kp60.");
}
}
}
return ret;
}
static int vc4_hdmi_connector_atomic_check(struct drm_connector *connector,
struct drm_atomic_state *state)
{
struct drm_connector_state *old_state =
drm_atomic_get_old_connector_state(state, connector);
struct vc4_hdmi_connector_state *old_vc4_state =
conn_state_to_vc4_hdmi_conn_state(old_state);
struct drm_connector_state *new_state =
drm_atomic_get_new_connector_state(state, connector);
struct vc4_hdmi_connector_state *new_vc4_state =
conn_state_to_vc4_hdmi_conn_state(new_state);
struct drm_crtc *crtc = new_state->crtc;
if (!crtc)
return 0;
if (old_state->tv.margins.left != new_state->tv.margins.left ||
old_state->tv.margins.right != new_state->tv.margins.right ||
old_state->tv.margins.top != new_state->tv.margins.top ||
old_state->tv.margins.bottom != new_state->tv.margins.bottom) {
struct drm_crtc_state *crtc_state;
int ret;
crtc_state = drm_atomic_get_crtc_state(state, crtc);
if (IS_ERR(crtc_state))
return PTR_ERR(crtc_state);
/*
* Strictly speaking, we should be calling
* drm_atomic_helper_check_planes() after our call to
* drm_atomic_add_affected_planes(). However, the
* connector atomic_check is called as part of
* drm_atomic_helper_check_modeset() that already
* happens before a call to
* drm_atomic_helper_check_planes() in
* drm_atomic_helper_check().
*/
ret = drm_atomic_add_affected_planes(state, crtc);
if (ret)
return ret;
}
if (old_state->colorspace != new_state->colorspace ||
old_vc4_state->broadcast_rgb != new_vc4_state->broadcast_rgb ||
!drm_connector_atomic_hdr_metadata_equal(old_state, new_state)) {
struct drm_crtc_state *crtc_state;
crtc_state = drm_atomic_get_crtc_state(state, crtc);
if (IS_ERR(crtc_state))
return PTR_ERR(crtc_state);
crtc_state->mode_changed = true;
}
return 0;
}
static int vc4_hdmi_connector_get_property(struct drm_connector *connector,
const struct drm_connector_state *state,
struct drm_property *property,
uint64_t *val)
{
struct drm_device *drm = connector->dev;
struct vc4_hdmi *vc4_hdmi =
connector_to_vc4_hdmi(connector);
const struct vc4_hdmi_connector_state *vc4_conn_state =
conn_state_to_vc4_hdmi_conn_state(state);
if (property == vc4_hdmi->broadcast_rgb_property) {
*val = vc4_conn_state->broadcast_rgb;
} else {
drm_dbg(drm, "Unknown property [PROP:%d:%s]\n",
property->base.id, property->name);
return -EINVAL;
}
return 0;
}
static int vc4_hdmi_connector_set_property(struct drm_connector *connector,
struct drm_connector_state *state,
struct drm_property *property,
uint64_t val)
{
struct drm_device *drm = connector->dev;
struct vc4_hdmi *vc4_hdmi =
connector_to_vc4_hdmi(connector);
struct vc4_hdmi_connector_state *vc4_conn_state =
conn_state_to_vc4_hdmi_conn_state(state);
if (property == vc4_hdmi->broadcast_rgb_property) {
vc4_conn_state->broadcast_rgb = val;
return 0;
}
drm_dbg(drm, "Unknown property [PROP:%d:%s]\n",
property->base.id, property->name);
return -EINVAL;
}
static void vc4_hdmi_connector_reset(struct drm_connector *connector)
{
struct vc4_hdmi_connector_state *old_state =
conn_state_to_vc4_hdmi_conn_state(connector->state);
struct vc4_hdmi_connector_state *new_state =
kzalloc(sizeof(*new_state), GFP_KERNEL);
if (connector->state)
__drm_atomic_helper_connector_destroy_state(connector->state);
kfree(old_state);
__drm_atomic_helper_connector_reset(connector, &new_state->base);
if (!new_state)
return;
new_state->base.max_bpc = 8;
new_state->base.max_requested_bpc = 8;
new_state->output_format = VC4_HDMI_OUTPUT_RGB;
new_state->broadcast_rgb = VC4_HDMI_BROADCAST_RGB_AUTO;
drm_atomic_helper_connector_tv_margins_reset(connector);
}
static struct drm_connector_state *
vc4_hdmi_connector_duplicate_state(struct drm_connector *connector)
{
struct drm_connector_state *conn_state = connector->state;
struct vc4_hdmi_connector_state *vc4_state = conn_state_to_vc4_hdmi_conn_state(conn_state);
struct vc4_hdmi_connector_state *new_state;
new_state = kzalloc(sizeof(*new_state), GFP_KERNEL);
if (!new_state)
return NULL;
new_state->tmds_char_rate = vc4_state->tmds_char_rate;
new_state->output_bpc = vc4_state->output_bpc;
new_state->output_format = vc4_state->output_format;
new_state->broadcast_rgb = vc4_state->broadcast_rgb;
__drm_atomic_helper_connector_duplicate_state(connector, &new_state->base);
return &new_state->base;
}
static void vc4_hdmi_connector_destroy_state(struct drm_connector *connector,
struct drm_connector_state *state)
{
struct vc4_hdmi_connector_state *vc4_state =
conn_state_to_vc4_hdmi_conn_state(state);
__drm_atomic_helper_connector_destroy_state(state);
kfree(vc4_state);
}
static const struct drm_connector_funcs vc4_hdmi_connector_funcs = {
.fill_modes = drm_helper_probe_single_connector_modes,
.reset = vc4_hdmi_connector_reset,
.atomic_duplicate_state = vc4_hdmi_connector_duplicate_state,
.atomic_destroy_state = vc4_hdmi_connector_destroy_state,
.atomic_get_property = vc4_hdmi_connector_get_property,
.atomic_set_property = vc4_hdmi_connector_set_property,
};
static const struct drm_connector_helper_funcs vc4_hdmi_connector_helper_funcs = {
.detect_ctx = vc4_hdmi_connector_detect_ctx,
.get_modes = vc4_hdmi_connector_get_modes,
.atomic_check = vc4_hdmi_connector_atomic_check,
};
static const struct drm_prop_enum_list broadcast_rgb_names[] = {
{ VC4_HDMI_BROADCAST_RGB_AUTO, "Automatic" },
{ VC4_HDMI_BROADCAST_RGB_FULL, "Full" },
{ VC4_HDMI_BROADCAST_RGB_LIMITED, "Limited 16:235" },
};
static void
vc4_hdmi_attach_broadcast_rgb_property(struct drm_device *dev,
struct vc4_hdmi *vc4_hdmi)
{
struct drm_property *prop = vc4_hdmi->broadcast_rgb_property;
if (!prop) {
prop = drm_property_create_enum(dev, DRM_MODE_PROP_ENUM,
"Broadcast RGB",
broadcast_rgb_names,
ARRAY_SIZE(broadcast_rgb_names));
if (!prop)
return;
vc4_hdmi->broadcast_rgb_property = prop;
}
drm_object_attach_property(&vc4_hdmi->connector.base, prop,
VC4_HDMI_BROADCAST_RGB_AUTO);
}
static int vc4_hdmi_connector_init(struct drm_device *dev,
struct vc4_hdmi *vc4_hdmi)
{
struct drm_connector *connector = &vc4_hdmi->connector;
struct drm_encoder *encoder = &vc4_hdmi->encoder.base;
int ret;
ret = drmm_connector_init(dev, connector,
&vc4_hdmi_connector_funcs,
DRM_MODE_CONNECTOR_HDMIA,
vc4_hdmi->ddc);
if (ret)
return ret;
drm_connector_helper_add(connector, &vc4_hdmi_connector_helper_funcs);
/*
* Some of the properties below require access to state, like bpc.
* Allocate some default initial connector state with our reset helper.
*/
if (connector->funcs->reset)
connector->funcs->reset(connector);
/* Create and attach TV margin props to this connector. */
ret = drm_mode_create_tv_margin_properties(dev);
if (ret)
return ret;
ret = drm_mode_create_hdmi_colorspace_property(connector, 0);
if (ret)
return ret;
drm_connector_attach_colorspace_property(connector);
drm_connector_attach_tv_margin_properties(connector);
drm_connector_attach_max_bpc_property(connector, 8, 12);
connector->polled = (DRM_CONNECTOR_POLL_CONNECT |
DRM_CONNECTOR_POLL_DISCONNECT);
connector->interlace_allowed = 1;
connector->doublescan_allowed = 0;
connector->stereo_allowed = 1;
if (vc4_hdmi->variant->supports_hdr)
drm_connector_attach_hdr_output_metadata_property(connector);
vc4_hdmi_attach_broadcast_rgb_property(dev, vc4_hdmi);
drm_connector_attach_encoder(connector, encoder);
return 0;
}
static int vc4_hdmi_stop_packet(struct drm_encoder *encoder,
enum hdmi_infoframe_type type,
bool poll)
{
struct vc4_hdmi *vc4_hdmi = encoder_to_vc4_hdmi(encoder);
struct drm_device *drm = vc4_hdmi->connector.dev;
u32 packet_id = type - 0x80;
unsigned long flags;
int ret = 0;
int idx;
if (!drm_dev_enter(drm, &idx))
return -ENODEV;
spin_lock_irqsave(&vc4_hdmi->hw_lock, flags);
HDMI_WRITE(HDMI_RAM_PACKET_CONFIG,
HDMI_READ(HDMI_RAM_PACKET_CONFIG) & ~BIT(packet_id));
spin_unlock_irqrestore(&vc4_hdmi->hw_lock, flags);
if (poll) {
ret = wait_for(!(HDMI_READ(HDMI_RAM_PACKET_STATUS) &
BIT(packet_id)), 100);
}
drm_dev_exit(idx);
return ret;
}
static void vc4_hdmi_write_infoframe(struct drm_encoder *encoder,
union hdmi_infoframe *frame)
{
struct vc4_hdmi *vc4_hdmi = encoder_to_vc4_hdmi(encoder);
struct drm_device *drm = vc4_hdmi->connector.dev;
u32 packet_id = frame->any.type - 0x80;
const struct vc4_hdmi_register *ram_packet_start =
&vc4_hdmi->variant->registers[HDMI_RAM_PACKET_START];
u32 packet_reg = ram_packet_start->offset + VC4_HDMI_PACKET_STRIDE * packet_id;
u32 packet_reg_next = ram_packet_start->offset +
VC4_HDMI_PACKET_STRIDE * (packet_id + 1);
void __iomem *base = __vc4_hdmi_get_field_base(vc4_hdmi,
ram_packet_start->reg);
uint8_t buffer[VC4_HDMI_PACKET_STRIDE] = {};
unsigned long flags;
ssize_t len, i;
int ret;
int idx;
if (!drm_dev_enter(drm, &idx))
return;
WARN_ONCE(!(HDMI_READ(HDMI_RAM_PACKET_CONFIG) &
VC4_HDMI_RAM_PACKET_ENABLE),
"Packet RAM has to be on to store the packet.");
len = hdmi_infoframe_pack(frame, buffer, sizeof(buffer));
if (len < 0)
goto out;
ret = vc4_hdmi_stop_packet(encoder, frame->any.type, true);
if (ret) {
DRM_ERROR("Failed to wait for infoframe to go idle: %d\n", ret);
goto out;
}
spin_lock_irqsave(&vc4_hdmi->hw_lock, flags);
for (i = 0; i < len; i += 7) {
writel(buffer[i + 0] << 0 |
buffer[i + 1] << 8 |
buffer[i + 2] << 16,
base + packet_reg);
packet_reg += 4;
writel(buffer[i + 3] << 0 |
buffer[i + 4] << 8 |
buffer[i + 5] << 16 |
buffer[i + 6] << 24,
base + packet_reg);
packet_reg += 4;
}
/*
* clear remainder of packet ram as it's included in the
* infoframe and triggers a checksum error on hdmi analyser
*/
for (; packet_reg < packet_reg_next; packet_reg += 4)
writel(0, base + packet_reg);
HDMI_WRITE(HDMI_RAM_PACKET_CONFIG,
HDMI_READ(HDMI_RAM_PACKET_CONFIG) | BIT(packet_id));
spin_unlock_irqrestore(&vc4_hdmi->hw_lock, flags);
ret = wait_for((HDMI_READ(HDMI_RAM_PACKET_STATUS) &
BIT(packet_id)), 100);
if (ret)
DRM_ERROR("Failed to wait for infoframe to start: %d\n", ret);
out:
drm_dev_exit(idx);
}
static void vc4_hdmi_avi_infoframe_colorspace(struct hdmi_avi_infoframe *frame,
enum vc4_hdmi_output_format fmt)
{
switch (fmt) {
case VC4_HDMI_OUTPUT_RGB:
frame->colorspace = HDMI_COLORSPACE_RGB;
break;
case VC4_HDMI_OUTPUT_YUV420:
frame->colorspace = HDMI_COLORSPACE_YUV420;
break;
case VC4_HDMI_OUTPUT_YUV422:
frame->colorspace = HDMI_COLORSPACE_YUV422;
break;
case VC4_HDMI_OUTPUT_YUV444:
frame->colorspace = HDMI_COLORSPACE_YUV444;
break;
default:
break;
}
}
static void vc4_hdmi_set_avi_infoframe(struct drm_encoder *encoder)
{
struct vc4_hdmi *vc4_hdmi = encoder_to_vc4_hdmi(encoder);
struct drm_connector *connector = &vc4_hdmi->connector;
struct drm_connector_state *cstate = connector->state;
struct vc4_hdmi_connector_state *vc4_state =
conn_state_to_vc4_hdmi_conn_state(cstate);
const struct drm_display_mode *mode = &vc4_hdmi->saved_adjusted_mode;
union hdmi_infoframe frame;
int ret;
lockdep_assert_held(&vc4_hdmi->mutex);
ret = drm_hdmi_avi_infoframe_from_display_mode(&frame.avi,
connector, mode);
if (ret < 0) {
DRM_ERROR("couldn't fill AVI infoframe\n");
return;
}
drm_hdmi_avi_infoframe_quant_range(&frame.avi,
connector, mode,
vc4_hdmi_is_full_range(vc4_hdmi, vc4_state) ?
HDMI_QUANTIZATION_RANGE_FULL :
HDMI_QUANTIZATION_RANGE_LIMITED);
drm_hdmi_avi_infoframe_colorimetry(&frame.avi, cstate);
vc4_hdmi_avi_infoframe_colorspace(&frame.avi, vc4_state->output_format);
drm_hdmi_avi_infoframe_bars(&frame.avi, cstate);
vc4_hdmi_write_infoframe(encoder, &frame);
}
static void vc4_hdmi_set_spd_infoframe(struct drm_encoder *encoder)
{
union hdmi_infoframe frame;
int ret;
ret = hdmi_spd_infoframe_init(&frame.spd, "Broadcom", "Videocore");
if (ret < 0) {
DRM_ERROR("couldn't fill SPD infoframe\n");
return;
}
frame.spd.sdi = HDMI_SPD_SDI_PC;
vc4_hdmi_write_infoframe(encoder, &frame);
}
static void vc4_hdmi_set_audio_infoframe(struct drm_encoder *encoder)
{
struct vc4_hdmi *vc4_hdmi = encoder_to_vc4_hdmi(encoder);
struct hdmi_audio_infoframe *audio = &vc4_hdmi->audio.infoframe;
union hdmi_infoframe frame;
memcpy(&frame.audio, audio, sizeof(*audio));
if (vc4_hdmi->packet_ram_enabled)
vc4_hdmi_write_infoframe(encoder, &frame);
}
static void vc4_hdmi_set_hdr_infoframe(struct drm_encoder *encoder)
{
struct vc4_hdmi *vc4_hdmi = encoder_to_vc4_hdmi(encoder);
struct drm_connector *connector = &vc4_hdmi->connector;
struct drm_connector_state *conn_state = connector->state;
union hdmi_infoframe frame;
lockdep_assert_held(&vc4_hdmi->mutex);
if (!vc4_hdmi->variant->supports_hdr)
return;
if (!conn_state->hdr_output_metadata)
return;
if (drm_hdmi_infoframe_set_hdr_metadata(&frame.drm, conn_state))
return;
vc4_hdmi_write_infoframe(encoder, &frame);
}
static void vc4_hdmi_set_infoframes(struct drm_encoder *encoder)
{
struct vc4_hdmi *vc4_hdmi = encoder_to_vc4_hdmi(encoder);
lockdep_assert_held(&vc4_hdmi->mutex);
vc4_hdmi_set_avi_infoframe(encoder);
vc4_hdmi_set_spd_infoframe(encoder);
/*
* If audio was streaming, then we need to reenabled the audio
* infoframe here during encoder_enable.
*/
if (vc4_hdmi->audio.streaming)
vc4_hdmi_set_audio_infoframe(encoder);
vc4_hdmi_set_hdr_infoframe(encoder);
}
#define SCRAMBLING_POLLING_DELAY_MS 1000
static void vc4_hdmi_enable_scrambling(struct drm_encoder *encoder)
{
struct vc4_hdmi *vc4_hdmi = encoder_to_vc4_hdmi(encoder);
struct drm_connector *connector = &vc4_hdmi->connector;
struct drm_device *drm = connector->dev;
const struct drm_display_mode *mode = &vc4_hdmi->saved_adjusted_mode;
unsigned long flags;
int idx;
lockdep_assert_held(&vc4_hdmi->mutex);
if (!vc4_hdmi_supports_scrambling(vc4_hdmi))
return;
if (!vc4_hdmi_mode_needs_scrambling(mode,
vc4_hdmi->output_bpc,
vc4_hdmi->output_format))
return;
if (!drm_dev_enter(drm, &idx))
return;
drm_scdc_set_high_tmds_clock_ratio(connector, true);
drm_scdc_set_scrambling(connector, true);
spin_lock_irqsave(&vc4_hdmi->hw_lock, flags);
HDMI_WRITE(HDMI_SCRAMBLER_CTL, HDMI_READ(HDMI_SCRAMBLER_CTL) |
VC5_HDMI_SCRAMBLER_CTL_ENABLE);
spin_unlock_irqrestore(&vc4_hdmi->hw_lock, flags);
drm_dev_exit(idx);
vc4_hdmi->scdc_enabled = true;
queue_delayed_work(system_wq, &vc4_hdmi->scrambling_work,
msecs_to_jiffies(SCRAMBLING_POLLING_DELAY_MS));
}
static void vc4_hdmi_disable_scrambling(struct drm_encoder *encoder)
{
struct vc4_hdmi *vc4_hdmi = encoder_to_vc4_hdmi(encoder);
struct drm_connector *connector = &vc4_hdmi->connector;
struct drm_device *drm = connector->dev;
unsigned long flags;
int idx;
lockdep_assert_held(&vc4_hdmi->mutex);
if (!vc4_hdmi->scdc_enabled)
return;
vc4_hdmi->scdc_enabled = false;
if (delayed_work_pending(&vc4_hdmi->scrambling_work))
cancel_delayed_work_sync(&vc4_hdmi->scrambling_work);
if (!drm_dev_enter(drm, &idx))
return;
spin_lock_irqsave(&vc4_hdmi->hw_lock, flags);
HDMI_WRITE(HDMI_SCRAMBLER_CTL, HDMI_READ(HDMI_SCRAMBLER_CTL) &
~VC5_HDMI_SCRAMBLER_CTL_ENABLE);
spin_unlock_irqrestore(&vc4_hdmi->hw_lock, flags);
drm_scdc_set_scrambling(connector, false);
drm_scdc_set_high_tmds_clock_ratio(connector, false);
drm_dev_exit(idx);
}
static void vc4_hdmi_scrambling_wq(struct work_struct *work)
{
struct vc4_hdmi *vc4_hdmi = container_of(to_delayed_work(work),
struct vc4_hdmi,
scrambling_work);
struct drm_connector *connector = &vc4_hdmi->connector;
if (drm_scdc_get_scrambling_status(connector))
return;
drm_scdc_set_high_tmds_clock_ratio(connector, true);
drm_scdc_set_scrambling(connector, true);
queue_delayed_work(system_wq, &vc4_hdmi->scrambling_work,
msecs_to_jiffies(SCRAMBLING_POLLING_DELAY_MS));
}
static void vc4_hdmi_encoder_post_crtc_disable(struct drm_encoder *encoder,
struct drm_atomic_state *state)
{
struct vc4_hdmi *vc4_hdmi = encoder_to_vc4_hdmi(encoder);
struct drm_device *drm = vc4_hdmi->connector.dev;
unsigned long flags;
int idx;
mutex_lock(&vc4_hdmi->mutex);
vc4_hdmi->packet_ram_enabled = false;
if (!drm_dev_enter(drm, &idx))
goto out;
spin_lock_irqsave(&vc4_hdmi->hw_lock, flags);
HDMI_WRITE(HDMI_RAM_PACKET_CONFIG, 0);
HDMI_WRITE(HDMI_VID_CTL, HDMI_READ(HDMI_VID_CTL) | VC4_HD_VID_CTL_CLRRGB);
spin_unlock_irqrestore(&vc4_hdmi->hw_lock, flags);
mdelay(1);
spin_lock_irqsave(&vc4_hdmi->hw_lock, flags);
HDMI_WRITE(HDMI_VID_CTL,
HDMI_READ(HDMI_VID_CTL) & ~VC4_HD_VID_CTL_ENABLE);
spin_unlock_irqrestore(&vc4_hdmi->hw_lock, flags);
vc4_hdmi_disable_scrambling(encoder);
drm_dev_exit(idx);
out:
mutex_unlock(&vc4_hdmi->mutex);
}
static void vc4_hdmi_encoder_post_crtc_powerdown(struct drm_encoder *encoder,
struct drm_atomic_state *state)
{
struct vc4_hdmi *vc4_hdmi = encoder_to_vc4_hdmi(encoder);
struct drm_device *drm = vc4_hdmi->connector.dev;
unsigned long flags;
int ret;
int idx;
mutex_lock(&vc4_hdmi->mutex);
if (!drm_dev_enter(drm, &idx))
goto out;
spin_lock_irqsave(&vc4_hdmi->hw_lock, flags);
HDMI_WRITE(HDMI_VID_CTL,
HDMI_READ(HDMI_VID_CTL) | VC4_HD_VID_CTL_BLANKPIX);
spin_unlock_irqrestore(&vc4_hdmi->hw_lock, flags);
if (vc4_hdmi->variant->phy_disable)
vc4_hdmi->variant->phy_disable(vc4_hdmi);
clk_disable_unprepare(vc4_hdmi->pixel_bvb_clock);
clk_disable_unprepare(vc4_hdmi->pixel_clock);
ret = pm_runtime_put(&vc4_hdmi->pdev->dev);
if (ret < 0)
DRM_ERROR("Failed to release power domain: %d\n", ret);
drm_dev_exit(idx);
out:
mutex_unlock(&vc4_hdmi->mutex);
}
static void vc4_hdmi_csc_setup(struct vc4_hdmi *vc4_hdmi,
struct drm_connector_state *state,
const struct drm_display_mode *mode)
{
struct vc4_hdmi_connector_state *vc4_state =
conn_state_to_vc4_hdmi_conn_state(state);
struct drm_device *drm = vc4_hdmi->connector.dev;
unsigned long flags;
u32 csc_ctl;
int idx;
if (!drm_dev_enter(drm, &idx))
return;
spin_lock_irqsave(&vc4_hdmi->hw_lock, flags);
csc_ctl = VC4_SET_FIELD(VC4_HD_CSC_CTL_ORDER_BGR,
VC4_HD_CSC_CTL_ORDER);
if (!vc4_hdmi_is_full_range(vc4_hdmi, vc4_state)) {
/* CEA VICs other than #1 requre limited range RGB
* output unless overridden by an AVI infoframe.
* Apply a colorspace conversion to squash 0-255 down
* to 16-235. The matrix here is:
*
* [ 0 0 0.8594 16]
* [ 0 0.8594 0 16]
* [ 0.8594 0 0 16]
* [ 0 0 0 1]
*/
csc_ctl |= VC4_HD_CSC_CTL_ENABLE;
csc_ctl |= VC4_HD_CSC_CTL_RGB2YCC;
csc_ctl |= VC4_SET_FIELD(VC4_HD_CSC_CTL_MODE_CUSTOM,
VC4_HD_CSC_CTL_MODE);
HDMI_WRITE(HDMI_CSC_12_11, (0x000 << 16) | 0x000);
HDMI_WRITE(HDMI_CSC_14_13, (0x100 << 16) | 0x6e0);
HDMI_WRITE(HDMI_CSC_22_21, (0x6e0 << 16) | 0x000);
HDMI_WRITE(HDMI_CSC_24_23, (0x100 << 16) | 0x000);
HDMI_WRITE(HDMI_CSC_32_31, (0x000 << 16) | 0x6e0);
HDMI_WRITE(HDMI_CSC_34_33, (0x100 << 16) | 0x000);
}
/* The RGB order applies even when CSC is disabled. */
HDMI_WRITE(HDMI_CSC_CTL, csc_ctl);
spin_unlock_irqrestore(&vc4_hdmi->hw_lock, flags);
drm_dev_exit(idx);
}
/*
* Matrices for (internal) RGB to RGB output.
*
* Matrices are signed 2p13 fixed point, with signed 9p6 offsets
*/
static const u16 vc5_hdmi_csc_full_rgb_to_rgb[2][3][4] = {
{
/*
* Full range - unity
*
* [ 1 0 0 0]
* [ 0 1 0 0]
* [ 0 0 1 0]
*/
{ 0x2000, 0x0000, 0x0000, 0x0000 },
{ 0x0000, 0x2000, 0x0000, 0x0000 },
{ 0x0000, 0x0000, 0x2000, 0x0000 },
},
{
/*
* Limited range
*
* CEA VICs other than #1 require limited range RGB
* output unless overridden by an AVI infoframe. Apply a
* colorspace conversion to squash 0-255 down to 16-235.
* The matrix here is:
*
* [ 0.8594 0 0 16]
* [ 0 0.8594 0 16]
* [ 0 0 0.8594 16]
*/
{ 0x1b80, 0x0000, 0x0000, 0x0400 },
{ 0x0000, 0x1b80, 0x0000, 0x0400 },
{ 0x0000, 0x0000, 0x1b80, 0x0400 },
},
};
/*
* Conversion between Full Range RGB and YUV using the BT.601 Colorspace
*
* Matrices are signed 2p13 fixed point, with signed 9p6 offsets
*/
static const u16 vc5_hdmi_csc_full_rgb_to_yuv_bt601[2][3][4] = {
{
/*
* Full Range
*
* [ 0.299000 0.587000 0.114000 0 ]
* [ -0.168736 -0.331264 0.500000 128 ]
* [ 0.500000 -0.418688 -0.081312 128 ]
*/
{ 0x0991, 0x12c9, 0x03a6, 0x0000 },
{ 0xfa9b, 0xf567, 0x1000, 0x2000 },
{ 0x1000, 0xf29b, 0xfd67, 0x2000 },
},
{
/* Limited Range
*
* [ 0.255785 0.502160 0.097523 16 ]
* [ -0.147644 -0.289856 0.437500 128 ]
* [ 0.437500 -0.366352 -0.071148 128 ]
*/
{ 0x082f, 0x1012, 0x031f, 0x0400 },
{ 0xfb48, 0xf6ba, 0x0e00, 0x2000 },
{ 0x0e00, 0xf448, 0xfdba, 0x2000 },
},
};
/*
* Conversion between Full Range RGB and YUV using the BT.709 Colorspace
*
* Matrices are signed 2p13 fixed point, with signed 9p6 offsets
*/
static const u16 vc5_hdmi_csc_full_rgb_to_yuv_bt709[2][3][4] = {
{
/*
* Full Range
*
* [ 0.212600 0.715200 0.072200 0 ]
* [ -0.114572 -0.385428 0.500000 128 ]
* [ 0.500000 -0.454153 -0.045847 128 ]
*/
{ 0x06ce, 0x16e3, 0x024f, 0x0000 },
{ 0xfc56, 0xf3ac, 0x1000, 0x2000 },
{ 0x1000, 0xf179, 0xfe89, 0x2000 },
},
{
/*
* Limited Range
*
* [ 0.181906 0.611804 0.061758 16 ]
* [ -0.100268 -0.337232 0.437500 128 ]
* [ 0.437500 -0.397386 -0.040114 128 ]
*/
{ 0x05d2, 0x1394, 0x01fa, 0x0400 },
{ 0xfccc, 0xf536, 0x0e00, 0x2000 },
{ 0x0e00, 0xf34a, 0xfeb8, 0x2000 },
},
};
/*
* Conversion between Full Range RGB and YUV using the BT.2020 Colorspace
*
* Matrices are signed 2p13 fixed point, with signed 9p6 offsets
*/
static const u16 vc5_hdmi_csc_full_rgb_to_yuv_bt2020[2][3][4] = {
{
/*
* Full Range
*
* [ 0.262700 0.678000 0.059300 0 ]
* [ -0.139630 -0.360370 0.500000 128 ]
* [ 0.500000 -0.459786 -0.040214 128 ]
*/
{ 0x0868, 0x15b2, 0x01e6, 0x0000 },
{ 0xfb89, 0xf479, 0x1000, 0x2000 },
{ 0x1000, 0xf14a, 0xfeb8, 0x2000 },
},
{
/* Limited Range
*
* [ 0.224732 0.580008 0.050729 16 ]
* [ -0.122176 -0.315324 0.437500 128 ]
* [ 0.437500 -0.402312 -0.035188 128 ]
*/
{ 0x082f, 0x1012, 0x031f, 0x0400 },
{ 0xfb48, 0xf6ba, 0x0e00, 0x2000 },
{ 0x0e00, 0xf448, 0xfdba, 0x2000 },
},
};
static void vc5_hdmi_set_csc_coeffs(struct vc4_hdmi *vc4_hdmi,
const u16 coeffs[3][4])
{
lockdep_assert_held(&vc4_hdmi->hw_lock);
HDMI_WRITE(HDMI_CSC_12_11, (coeffs[0][1] << 16) | coeffs[0][0]);
HDMI_WRITE(HDMI_CSC_14_13, (coeffs[0][3] << 16) | coeffs[0][2]);
HDMI_WRITE(HDMI_CSC_22_21, (coeffs[1][1] << 16) | coeffs[1][0]);
HDMI_WRITE(HDMI_CSC_24_23, (coeffs[1][3] << 16) | coeffs[1][2]);
HDMI_WRITE(HDMI_CSC_32_31, (coeffs[2][1] << 16) | coeffs[2][0]);
HDMI_WRITE(HDMI_CSC_34_33, (coeffs[2][3] << 16) | coeffs[2][2]);
}
static void vc5_hdmi_set_csc_coeffs_swap(struct vc4_hdmi *vc4_hdmi,
const u16 coeffs[3][4])
{
lockdep_assert_held(&vc4_hdmi->hw_lock);
/* YUV444 needs the CSC matrices using the channels in a different order */
HDMI_WRITE(HDMI_CSC_12_11, (coeffs[1][1] << 16) | coeffs[1][0]);
HDMI_WRITE(HDMI_CSC_14_13, (coeffs[1][3] << 16) | coeffs[1][2]);
HDMI_WRITE(HDMI_CSC_22_21, (coeffs[2][1] << 16) | coeffs[2][0]);
HDMI_WRITE(HDMI_CSC_24_23, (coeffs[2][3] << 16) | coeffs[2][2]);
HDMI_WRITE(HDMI_CSC_32_31, (coeffs[0][1] << 16) | coeffs[0][0]);
HDMI_WRITE(HDMI_CSC_34_33, (coeffs[0][3] << 16) | coeffs[0][2]);
}
static const u16
(*vc5_hdmi_find_yuv_csc_coeffs(struct vc4_hdmi *vc4_hdmi, u32 colorspace, bool limited))[4]
{
switch (colorspace) {
case DRM_MODE_COLORIMETRY_SMPTE_170M_YCC:
case DRM_MODE_COLORIMETRY_XVYCC_601:
case DRM_MODE_COLORIMETRY_SYCC_601:
case DRM_MODE_COLORIMETRY_OPYCC_601:
case DRM_MODE_COLORIMETRY_BT601_YCC:
return vc5_hdmi_csc_full_rgb_to_yuv_bt601[limited];
default:
case DRM_MODE_COLORIMETRY_NO_DATA:
case DRM_MODE_COLORIMETRY_BT709_YCC:
case DRM_MODE_COLORIMETRY_XVYCC_709:
case DRM_MODE_COLORIMETRY_RGB_WIDE_FIXED:
case DRM_MODE_COLORIMETRY_RGB_WIDE_FLOAT:
return vc5_hdmi_csc_full_rgb_to_yuv_bt709[limited];
case DRM_MODE_COLORIMETRY_BT2020_CYCC:
case DRM_MODE_COLORIMETRY_BT2020_YCC:
case DRM_MODE_COLORIMETRY_BT2020_RGB:
case DRM_MODE_COLORIMETRY_DCI_P3_RGB_D65:
case DRM_MODE_COLORIMETRY_DCI_P3_RGB_THEATER:
return vc5_hdmi_csc_full_rgb_to_yuv_bt2020[limited];
}
}
static void vc5_hdmi_csc_setup(struct vc4_hdmi *vc4_hdmi,
struct drm_connector_state *state,
const struct drm_display_mode *mode)
{
struct drm_device *drm = vc4_hdmi->connector.dev;
struct vc4_hdmi_connector_state *vc4_state =
conn_state_to_vc4_hdmi_conn_state(state);
unsigned int lim_range = vc4_hdmi_is_full_range(vc4_hdmi, vc4_state) ? 0 : 1;
unsigned long flags;
const u16 (*csc)[4];
u32 if_cfg = 0;
u32 if_xbar = 0x543210;
u32 csc_chan_ctl = 0;
u32 csc_ctl = VC5_MT_CP_CSC_CTL_ENABLE | VC4_SET_FIELD(VC4_HD_CSC_CTL_MODE_CUSTOM,
VC5_MT_CP_CSC_CTL_MODE);
int idx;
if (!drm_dev_enter(drm, &idx))
return;
spin_lock_irqsave(&vc4_hdmi->hw_lock, flags);
switch (vc4_state->output_format) {
case VC4_HDMI_OUTPUT_YUV444:
csc = vc5_hdmi_find_yuv_csc_coeffs(vc4_hdmi, state->colorspace, !!lim_range);
vc5_hdmi_set_csc_coeffs_swap(vc4_hdmi, csc);
break;
case VC4_HDMI_OUTPUT_YUV422:
csc = vc5_hdmi_find_yuv_csc_coeffs(vc4_hdmi, state->colorspace, !!lim_range);
csc_ctl |= VC4_SET_FIELD(VC5_MT_CP_CSC_CTL_FILTER_MODE_444_TO_422_STANDARD,
VC5_MT_CP_CSC_CTL_FILTER_MODE_444_TO_422) |
VC5_MT_CP_CSC_CTL_USE_444_TO_422 |
VC5_MT_CP_CSC_CTL_USE_RNG_SUPPRESSION;
csc_chan_ctl |= VC4_SET_FIELD(VC5_MT_CP_CHANNEL_CTL_OUTPUT_REMAP_LEGACY_STYLE,
VC5_MT_CP_CHANNEL_CTL_OUTPUT_REMAP);
if_cfg |= VC4_SET_FIELD(VC5_DVP_HT_VEC_INTERFACE_CFG_SEL_422_FORMAT_422_LEGACY,
VC5_DVP_HT_VEC_INTERFACE_CFG_SEL_422);
vc5_hdmi_set_csc_coeffs(vc4_hdmi, csc);
break;
case VC4_HDMI_OUTPUT_RGB:
if_xbar = 0x354021;
vc5_hdmi_set_csc_coeffs(vc4_hdmi, vc5_hdmi_csc_full_rgb_to_rgb[lim_range]);
break;
default:
break;
}
HDMI_WRITE(HDMI_VEC_INTERFACE_CFG, if_cfg);
HDMI_WRITE(HDMI_VEC_INTERFACE_XBAR, if_xbar);
HDMI_WRITE(HDMI_CSC_CHANNEL_CTL, csc_chan_ctl);
HDMI_WRITE(HDMI_CSC_CTL, csc_ctl);
spin_unlock_irqrestore(&vc4_hdmi->hw_lock, flags);
drm_dev_exit(idx);
}
static void vc4_hdmi_set_timings(struct vc4_hdmi *vc4_hdmi,
struct drm_connector_state *state,
const struct drm_display_mode *mode)
{
struct drm_device *drm = vc4_hdmi->connector.dev;
bool hsync_pos = mode->flags & DRM_MODE_FLAG_PHSYNC;
bool vsync_pos = mode->flags & DRM_MODE_FLAG_PVSYNC;
bool interlaced = mode->flags & DRM_MODE_FLAG_INTERLACE;
u32 pixel_rep = (mode->flags & DRM_MODE_FLAG_DBLCLK) ? 2 : 1;
u32 verta = (VC4_SET_FIELD(mode->crtc_vsync_end - mode->crtc_vsync_start,
VC4_HDMI_VERTA_VSP) |
VC4_SET_FIELD(mode->crtc_vsync_start - mode->crtc_vdisplay,
VC4_HDMI_VERTA_VFP) |
VC4_SET_FIELD(mode->crtc_vdisplay, VC4_HDMI_VERTA_VAL));
u32 vertb = (VC4_SET_FIELD(0, VC4_HDMI_VERTB_VSPO) |
VC4_SET_FIELD(mode->crtc_vtotal - mode->crtc_vsync_end +
interlaced,
VC4_HDMI_VERTB_VBP));
u32 vertb_even = (VC4_SET_FIELD(0, VC4_HDMI_VERTB_VSPO) |
VC4_SET_FIELD(mode->crtc_vtotal -
mode->crtc_vsync_end,
VC4_HDMI_VERTB_VBP));
unsigned long flags;
u32 reg;
int idx;
if (!drm_dev_enter(drm, &idx))
return;
spin_lock_irqsave(&vc4_hdmi->hw_lock, flags);
HDMI_WRITE(HDMI_HORZA,
(vsync_pos ? VC4_HDMI_HORZA_VPOS : 0) |
(hsync_pos ? VC4_HDMI_HORZA_HPOS : 0) |
VC4_SET_FIELD(mode->hdisplay * pixel_rep,
VC4_HDMI_HORZA_HAP));
HDMI_WRITE(HDMI_HORZB,
VC4_SET_FIELD((mode->htotal -
mode->hsync_end) * pixel_rep,
VC4_HDMI_HORZB_HBP) |
VC4_SET_FIELD((mode->hsync_end -
mode->hsync_start) * pixel_rep,
VC4_HDMI_HORZB_HSP) |
VC4_SET_FIELD((mode->hsync_start -
mode->hdisplay) * pixel_rep,
VC4_HDMI_HORZB_HFP));
HDMI_WRITE(HDMI_VERTA0, verta);
HDMI_WRITE(HDMI_VERTA1, verta);
HDMI_WRITE(HDMI_VERTB0, vertb_even);
HDMI_WRITE(HDMI_VERTB1, vertb);
reg = HDMI_READ(HDMI_MISC_CONTROL);
reg &= ~VC4_HDMI_MISC_CONTROL_PIXEL_REP_MASK;
reg |= VC4_SET_FIELD(pixel_rep - 1, VC4_HDMI_MISC_CONTROL_PIXEL_REP);
HDMI_WRITE(HDMI_MISC_CONTROL, reg);
spin_unlock_irqrestore(&vc4_hdmi->hw_lock, flags);
drm_dev_exit(idx);
}
static void vc5_hdmi_set_timings(struct vc4_hdmi *vc4_hdmi,
struct drm_connector_state *state,
const struct drm_display_mode *mode)
{
struct drm_device *drm = vc4_hdmi->connector.dev;
const struct vc4_hdmi_connector_state *vc4_state =
conn_state_to_vc4_hdmi_conn_state(state);
bool hsync_pos = mode->flags & DRM_MODE_FLAG_PHSYNC;
bool vsync_pos = mode->flags & DRM_MODE_FLAG_PVSYNC;
bool interlaced = mode->flags & DRM_MODE_FLAG_INTERLACE;
u32 pixel_rep = (mode->flags & DRM_MODE_FLAG_DBLCLK) ? 2 : 1;
u32 verta = (VC4_SET_FIELD(mode->crtc_vsync_end - mode->crtc_vsync_start,
VC5_HDMI_VERTA_VSP) |
VC4_SET_FIELD(mode->crtc_vsync_start - mode->crtc_vdisplay,
VC5_HDMI_VERTA_VFP) |
VC4_SET_FIELD(mode->crtc_vdisplay, VC5_HDMI_VERTA_VAL));
u32 vertb = (VC4_SET_FIELD(mode->htotal >> (2 - pixel_rep),
VC5_HDMI_VERTB_VSPO) |
VC4_SET_FIELD(mode->crtc_vtotal - mode->crtc_vsync_end +
interlaced,
VC4_HDMI_VERTB_VBP));
u32 vertb_even = (VC4_SET_FIELD(0, VC5_HDMI_VERTB_VSPO) |
VC4_SET_FIELD(mode->crtc_vtotal -
mode->crtc_vsync_end,
VC4_HDMI_VERTB_VBP));
unsigned long flags;
unsigned char gcp;
u32 reg;
int idx;
if (!drm_dev_enter(drm, &idx))
return;
spin_lock_irqsave(&vc4_hdmi->hw_lock, flags);
HDMI_WRITE(HDMI_HORZA,
(vsync_pos ? VC5_HDMI_HORZA_VPOS : 0) |
(hsync_pos ? VC5_HDMI_HORZA_HPOS : 0) |
VC4_SET_FIELD(mode->hdisplay * pixel_rep,
VC5_HDMI_HORZA_HAP) |
VC4_SET_FIELD((mode->hsync_start -
mode->hdisplay) * pixel_rep,
VC5_HDMI_HORZA_HFP));
HDMI_WRITE(HDMI_HORZB,
VC4_SET_FIELD((mode->htotal -
mode->hsync_end) * pixel_rep,
VC5_HDMI_HORZB_HBP) |
VC4_SET_FIELD((mode->hsync_end -
mode->hsync_start) * pixel_rep,
VC5_HDMI_HORZB_HSP));
HDMI_WRITE(HDMI_VERTA0, verta);
HDMI_WRITE(HDMI_VERTA1, verta);
HDMI_WRITE(HDMI_VERTB0, vertb_even);
HDMI_WRITE(HDMI_VERTB1, vertb);
switch (vc4_state->output_bpc) {
case 12:
gcp = 6;
break;
case 10:
gcp = 5;
break;
case 8:
default:
gcp = 0;
break;
}
/*
* YCC422 is always 36-bit and not considered deep colour so
* doesn't signal in GCP.
*/
if (vc4_state->output_format == VC4_HDMI_OUTPUT_YUV422) {
gcp = 0;
}
reg = HDMI_READ(HDMI_DEEP_COLOR_CONFIG_1);
reg &= ~(VC5_HDMI_DEEP_COLOR_CONFIG_1_INIT_PACK_PHASE_MASK |
VC5_HDMI_DEEP_COLOR_CONFIG_1_COLOR_DEPTH_MASK);
reg |= VC4_SET_FIELD(2, VC5_HDMI_DEEP_COLOR_CONFIG_1_INIT_PACK_PHASE) |
VC4_SET_FIELD(gcp, VC5_HDMI_DEEP_COLOR_CONFIG_1_COLOR_DEPTH);
HDMI_WRITE(HDMI_DEEP_COLOR_CONFIG_1, reg);
reg = HDMI_READ(HDMI_GCP_WORD_1);
reg &= ~VC5_HDMI_GCP_WORD_1_GCP_SUBPACKET_BYTE_1_MASK;
reg |= VC4_SET_FIELD(gcp, VC5_HDMI_GCP_WORD_1_GCP_SUBPACKET_BYTE_1);
reg &= ~VC5_HDMI_GCP_WORD_1_GCP_SUBPACKET_BYTE_0_MASK;
reg |= VC5_HDMI_GCP_WORD_1_GCP_SUBPACKET_BYTE_0_CLEAR_AVMUTE;
HDMI_WRITE(HDMI_GCP_WORD_1, reg);
reg = HDMI_READ(HDMI_GCP_CONFIG);
reg |= VC5_HDMI_GCP_CONFIG_GCP_ENABLE;
HDMI_WRITE(HDMI_GCP_CONFIG, reg);
reg = HDMI_READ(HDMI_MISC_CONTROL);
reg &= ~VC5_HDMI_MISC_CONTROL_PIXEL_REP_MASK;
reg |= VC4_SET_FIELD(pixel_rep - 1, VC5_HDMI_MISC_CONTROL_PIXEL_REP);
HDMI_WRITE(HDMI_MISC_CONTROL, reg);
HDMI_WRITE(HDMI_CLOCK_STOP, 0);
spin_unlock_irqrestore(&vc4_hdmi->hw_lock, flags);
drm_dev_exit(idx);
}
static void vc4_hdmi_recenter_fifo(struct vc4_hdmi *vc4_hdmi)
{
struct drm_device *drm = vc4_hdmi->connector.dev;
unsigned long flags;
u32 drift;
int ret;
int idx;
if (!drm_dev_enter(drm, &idx))
return;
spin_lock_irqsave(&vc4_hdmi->hw_lock, flags);
drift = HDMI_READ(HDMI_FIFO_CTL);
drift &= VC4_HDMI_FIFO_VALID_WRITE_MASK;
HDMI_WRITE(HDMI_FIFO_CTL,
drift & ~VC4_HDMI_FIFO_CTL_RECENTER);
HDMI_WRITE(HDMI_FIFO_CTL,
drift | VC4_HDMI_FIFO_CTL_RECENTER);
spin_unlock_irqrestore(&vc4_hdmi->hw_lock, flags);
usleep_range(1000, 1100);
spin_lock_irqsave(&vc4_hdmi->hw_lock, flags);
HDMI_WRITE(HDMI_FIFO_CTL,
drift & ~VC4_HDMI_FIFO_CTL_RECENTER);
HDMI_WRITE(HDMI_FIFO_CTL,
drift | VC4_HDMI_FIFO_CTL_RECENTER);
spin_unlock_irqrestore(&vc4_hdmi->hw_lock, flags);
ret = wait_for(HDMI_READ(HDMI_FIFO_CTL) &
VC4_HDMI_FIFO_CTL_RECENTER_DONE, 1);
WARN_ONCE(ret, "Timeout waiting for "
"VC4_HDMI_FIFO_CTL_RECENTER_DONE");
drm_dev_exit(idx);
}
static void vc4_hdmi_encoder_pre_crtc_configure(struct drm_encoder *encoder,
struct drm_atomic_state *state)
{
struct vc4_hdmi *vc4_hdmi = encoder_to_vc4_hdmi(encoder);
struct drm_device *drm = vc4_hdmi->connector.dev;
struct drm_connector *connector = &vc4_hdmi->connector;
struct drm_connector_state *conn_state =
drm_atomic_get_new_connector_state(state, connector);
struct vc4_hdmi_connector_state *vc4_conn_state =
conn_state_to_vc4_hdmi_conn_state(conn_state);
const struct drm_display_mode *mode = &vc4_hdmi->saved_adjusted_mode;
unsigned long tmds_char_rate = vc4_conn_state->tmds_char_rate;
unsigned long bvb_rate, hsm_rate;
unsigned long flags;
int ret;
int idx;
mutex_lock(&vc4_hdmi->mutex);
if (!drm_dev_enter(drm, &idx))
goto out;
ret = pm_runtime_resume_and_get(&vc4_hdmi->pdev->dev);
if (ret < 0) {
DRM_ERROR("Failed to retain power domain: %d\n", ret);
goto err_dev_exit;
}
/*
* As stated in RPi's vc4 firmware "HDMI state machine (HSM) clock must
* be faster than pixel clock, infinitesimally faster, tested in
* simulation. Otherwise, exact value is unimportant for HDMI
* operation." This conflicts with bcm2835's vc4 documentation, which
* states HSM's clock has to be at least 108% of the pixel clock.
*
* Real life tests reveal that vc4's firmware statement holds up, and
* users are able to use pixel clocks closer to HSM's, namely for
* 1920x1200@60Hz. So it was decided to have leave a 1% margin between
* both clocks. Which, for RPi0-3 implies a maximum pixel clock of
* 162MHz.
*
* Additionally, the AXI clock needs to be at least 25% of
* pixel clock, but HSM ends up being the limiting factor.
*/
hsm_rate = max_t(unsigned long,
HSM_MIN_CLOCK_FREQ,
(tmds_char_rate / 100) * 101);
ret = clk_set_min_rate(vc4_hdmi->hsm_clock, hsm_rate);
if (ret) {
DRM_ERROR("Failed to set HSM clock rate: %d\n", ret);
goto err_put_runtime_pm;
}
ret = clk_set_rate(vc4_hdmi->pixel_clock, tmds_char_rate);
if (ret) {
DRM_ERROR("Failed to set pixel clock rate: %d\n", ret);
goto err_put_runtime_pm;
}
ret = clk_prepare_enable(vc4_hdmi->pixel_clock);
if (ret) {
DRM_ERROR("Failed to turn on pixel clock: %d\n", ret);
goto err_put_runtime_pm;
}
vc4_hdmi_cec_update_clk_div(vc4_hdmi);
if (tmds_char_rate > 297000000)
bvb_rate = 300000000;
else if (tmds_char_rate > 148500000)
bvb_rate = 150000000;
else
bvb_rate = 75000000;
ret = clk_set_min_rate(vc4_hdmi->pixel_bvb_clock, bvb_rate);
if (ret) {
DRM_ERROR("Failed to set pixel bvb clock rate: %d\n", ret);
goto err_disable_pixel_clock;
}
ret = clk_prepare_enable(vc4_hdmi->pixel_bvb_clock);
if (ret) {
DRM_ERROR("Failed to turn on pixel bvb clock: %d\n", ret);
goto err_disable_pixel_clock;
}
if (vc4_hdmi->variant->phy_init)
vc4_hdmi->variant->phy_init(vc4_hdmi, vc4_conn_state);
spin_lock_irqsave(&vc4_hdmi->hw_lock, flags);
HDMI_WRITE(HDMI_SCHEDULER_CONTROL,
HDMI_READ(HDMI_SCHEDULER_CONTROL) |
VC4_HDMI_SCHEDULER_CONTROL_MANUAL_FORMAT |
VC4_HDMI_SCHEDULER_CONTROL_IGNORE_VSYNC_PREDICTS);
spin_unlock_irqrestore(&vc4_hdmi->hw_lock, flags);
if (vc4_hdmi->variant->set_timings)
vc4_hdmi->variant->set_timings(vc4_hdmi, conn_state, mode);
drm_dev_exit(idx);
mutex_unlock(&vc4_hdmi->mutex);
return;
err_disable_pixel_clock:
clk_disable_unprepare(vc4_hdmi->pixel_clock);
err_put_runtime_pm:
pm_runtime_put(&vc4_hdmi->pdev->dev);
err_dev_exit:
drm_dev_exit(idx);
out:
mutex_unlock(&vc4_hdmi->mutex);
return;
}
static void vc4_hdmi_encoder_pre_crtc_enable(struct drm_encoder *encoder,
struct drm_atomic_state *state)
{
struct vc4_hdmi *vc4_hdmi = encoder_to_vc4_hdmi(encoder);
struct drm_device *drm = vc4_hdmi->connector.dev;
struct drm_connector *connector = &vc4_hdmi->connector;
const struct drm_display_mode *mode = &vc4_hdmi->saved_adjusted_mode;
struct drm_connector_state *conn_state =
drm_atomic_get_new_connector_state(state, connector);
unsigned long flags;
int idx;
mutex_lock(&vc4_hdmi->mutex);
if (!drm_dev_enter(drm, &idx))
goto out;
if (vc4_hdmi->variant->csc_setup)
vc4_hdmi->variant->csc_setup(vc4_hdmi, conn_state, mode);
spin_lock_irqsave(&vc4_hdmi->hw_lock, flags);
HDMI_WRITE(HDMI_FIFO_CTL, VC4_HDMI_FIFO_CTL_MASTER_SLAVE_N);
spin_unlock_irqrestore(&vc4_hdmi->hw_lock, flags);
drm_dev_exit(idx);
out:
mutex_unlock(&vc4_hdmi->mutex);
}
static void vc4_hdmi_encoder_post_crtc_enable(struct drm_encoder *encoder,
struct drm_atomic_state *state)
{
struct vc4_hdmi *vc4_hdmi = encoder_to_vc4_hdmi(encoder);
struct drm_device *drm = vc4_hdmi->connector.dev;
const struct drm_display_mode *mode = &vc4_hdmi->saved_adjusted_mode;
struct drm_display_info *display = &vc4_hdmi->connector.display_info;
bool hsync_pos = mode->flags & DRM_MODE_FLAG_PHSYNC;
bool vsync_pos = mode->flags & DRM_MODE_FLAG_PVSYNC;
unsigned long flags;
int ret;
int idx;
mutex_lock(&vc4_hdmi->mutex);
if (!drm_dev_enter(drm, &idx))
goto out;
spin_lock_irqsave(&vc4_hdmi->hw_lock, flags);
HDMI_WRITE(HDMI_VID_CTL,
VC4_HD_VID_CTL_ENABLE |
VC4_HD_VID_CTL_CLRRGB |
VC4_HD_VID_CTL_UNDERFLOW_ENABLE |
VC4_HD_VID_CTL_FRAME_COUNTER_RESET |
(vsync_pos ? 0 : VC4_HD_VID_CTL_VSYNC_LOW) |
(hsync_pos ? 0 : VC4_HD_VID_CTL_HSYNC_LOW));
HDMI_WRITE(HDMI_VID_CTL,
HDMI_READ(HDMI_VID_CTL) & ~VC4_HD_VID_CTL_BLANKPIX);
if (display->is_hdmi) {
HDMI_WRITE(HDMI_SCHEDULER_CONTROL,
HDMI_READ(HDMI_SCHEDULER_CONTROL) |
VC4_HDMI_SCHEDULER_CONTROL_MODE_HDMI);
spin_unlock_irqrestore(&vc4_hdmi->hw_lock, flags);
ret = wait_for(HDMI_READ(HDMI_SCHEDULER_CONTROL) &
VC4_HDMI_SCHEDULER_CONTROL_HDMI_ACTIVE, 1000);
WARN_ONCE(ret, "Timeout waiting for "
"VC4_HDMI_SCHEDULER_CONTROL_HDMI_ACTIVE\n");
} else {
HDMI_WRITE(HDMI_RAM_PACKET_CONFIG,
HDMI_READ(HDMI_RAM_PACKET_CONFIG) &
~(VC4_HDMI_RAM_PACKET_ENABLE));
HDMI_WRITE(HDMI_SCHEDULER_CONTROL,
HDMI_READ(HDMI_SCHEDULER_CONTROL) &
~VC4_HDMI_SCHEDULER_CONTROL_MODE_HDMI);
spin_unlock_irqrestore(&vc4_hdmi->hw_lock, flags);
ret = wait_for(!(HDMI_READ(HDMI_SCHEDULER_CONTROL) &
VC4_HDMI_SCHEDULER_CONTROL_HDMI_ACTIVE), 1000);
WARN_ONCE(ret, "Timeout waiting for "
"!VC4_HDMI_SCHEDULER_CONTROL_HDMI_ACTIVE\n");
}
if (display->is_hdmi) {
spin_lock_irqsave(&vc4_hdmi->hw_lock, flags);
WARN_ON(!(HDMI_READ(HDMI_SCHEDULER_CONTROL) &
VC4_HDMI_SCHEDULER_CONTROL_HDMI_ACTIVE));
HDMI_WRITE(HDMI_RAM_PACKET_CONFIG,
VC4_HDMI_RAM_PACKET_ENABLE);
spin_unlock_irqrestore(&vc4_hdmi->hw_lock, flags);
vc4_hdmi->packet_ram_enabled = true;
vc4_hdmi_set_infoframes(encoder);
}
vc4_hdmi_recenter_fifo(vc4_hdmi);
vc4_hdmi_enable_scrambling(encoder);
drm_dev_exit(idx);
out:
mutex_unlock(&vc4_hdmi->mutex);
}
static void vc4_hdmi_encoder_atomic_mode_set(struct drm_encoder *encoder,
struct drm_crtc_state *crtc_state,
struct drm_connector_state *conn_state)
{
struct vc4_hdmi *vc4_hdmi = encoder_to_vc4_hdmi(encoder);
struct vc4_hdmi_connector_state *vc4_state =
conn_state_to_vc4_hdmi_conn_state(conn_state);
mutex_lock(&vc4_hdmi->mutex);
drm_mode_copy(&vc4_hdmi->saved_adjusted_mode,
&crtc_state->adjusted_mode);
vc4_hdmi->output_bpc = vc4_state->output_bpc;
vc4_hdmi->output_format = vc4_state->output_format;
mutex_unlock(&vc4_hdmi->mutex);
}
static bool
vc4_hdmi_sink_supports_format_bpc(const struct vc4_hdmi *vc4_hdmi,
const struct drm_display_info *info,
const struct drm_display_mode *mode,
unsigned int format, unsigned int bpc)
{
struct drm_device *dev = vc4_hdmi->connector.dev;
u8 vic = drm_match_cea_mode(mode);
if (vic == 1 && bpc != 8) {
drm_dbg(dev, "VIC1 requires a bpc of 8, got %u\n", bpc);
return false;
}
if (!info->is_hdmi &&
(format != VC4_HDMI_OUTPUT_RGB || bpc != 8)) {
drm_dbg(dev, "DVI Monitors require an RGB output at 8 bpc\n");
return false;
}
switch (format) {
case VC4_HDMI_OUTPUT_RGB:
drm_dbg(dev, "RGB Format, checking the constraints.\n");
if (!(info->color_formats & DRM_COLOR_FORMAT_RGB444))
return false;
if (bpc == 10 && !(info->edid_hdmi_rgb444_dc_modes & DRM_EDID_HDMI_DC_30)) {
drm_dbg(dev, "10 BPC but sink doesn't support Deep Color 30.\n");
return false;
}
if (bpc == 12 && !(info->edid_hdmi_rgb444_dc_modes & DRM_EDID_HDMI_DC_36)) {
drm_dbg(dev, "12 BPC but sink doesn't support Deep Color 36.\n");
return false;
}
drm_dbg(dev, "RGB format supported in that configuration.\n");
return true;
case VC4_HDMI_OUTPUT_YUV422:
drm_dbg(dev, "YUV422 format, checking the constraints.\n");
if (!(info->color_formats & DRM_COLOR_FORMAT_YCBCR422)) {
drm_dbg(dev, "Sink doesn't support YUV422.\n");
return false;
}
if (bpc != 12) {
drm_dbg(dev, "YUV422 only supports 12 bpc.\n");
return false;
}
drm_dbg(dev, "YUV422 format supported in that configuration.\n");
return true;
case VC4_HDMI_OUTPUT_YUV444:
drm_dbg(dev, "YUV444 format, checking the constraints.\n");
if (!(info->color_formats & DRM_COLOR_FORMAT_YCBCR444)) {
drm_dbg(dev, "Sink doesn't support YUV444.\n");
return false;
}
if (bpc == 10 && !(info->edid_hdmi_ycbcr444_dc_modes & DRM_EDID_HDMI_DC_30)) {
drm_dbg(dev, "10 BPC but sink doesn't support Deep Color 30.\n");
return false;
}
if (bpc == 12 && !(info->edid_hdmi_ycbcr444_dc_modes & DRM_EDID_HDMI_DC_36)) {
drm_dbg(dev, "12 BPC but sink doesn't support Deep Color 36.\n");
return false;
}
drm_dbg(dev, "YUV444 format supported in that configuration.\n");
return true;
}
return false;
}
static enum drm_mode_status
vc4_hdmi_encoder_clock_valid(const struct vc4_hdmi *vc4_hdmi,
const struct drm_display_mode *mode,
unsigned long long clock)
{
const struct drm_connector *connector = &vc4_hdmi->connector;
const struct drm_display_info *info = &connector->display_info;
struct vc4_dev *vc4 = to_vc4_dev(connector->dev);
if (clock > vc4_hdmi->variant->max_pixel_clock)
return MODE_CLOCK_HIGH;
if (!vc4->hvs->vc5_hdmi_enable_hdmi_20 && clock > HDMI_14_MAX_TMDS_CLK)
return MODE_CLOCK_HIGH;
/* 4096x2160@60 is not reliable without overclocking core */
if (!vc4->hvs->vc5_hdmi_enable_4096by2160 &&
mode->hdisplay > 3840 && mode->vdisplay >= 2160 &&
drm_mode_vrefresh(mode) >= 50)
return MODE_CLOCK_HIGH;
if (info->max_tmds_clock && clock > (info->max_tmds_clock * 1000))
return MODE_CLOCK_HIGH;
return MODE_OK;
}
static unsigned long long
vc4_hdmi_encoder_compute_mode_clock(const struct drm_display_mode *mode,
unsigned int bpc,
enum vc4_hdmi_output_format fmt)
{
unsigned long long clock = mode->clock * 1000ULL;
if (mode->flags & DRM_MODE_FLAG_DBLCLK)
clock = clock * 2;
if (fmt == VC4_HDMI_OUTPUT_YUV422)
bpc = 8;
clock = clock * bpc;
do_div(clock, 8);
return clock;
}
static int
vc4_hdmi_encoder_compute_clock(const struct vc4_hdmi *vc4_hdmi,
struct vc4_hdmi_connector_state *vc4_state,
const struct drm_display_mode *mode,
unsigned int bpc, unsigned int fmt)
{
unsigned long long clock;
clock = vc4_hdmi_encoder_compute_mode_clock(mode, bpc, fmt);
if (vc4_hdmi_encoder_clock_valid(vc4_hdmi, mode, clock) != MODE_OK)
return -EINVAL;
vc4_state->tmds_char_rate = clock;
return 0;
}
static int
vc4_hdmi_encoder_compute_format(const struct vc4_hdmi *vc4_hdmi,
struct vc4_hdmi_connector_state *vc4_state,
const struct drm_display_mode *mode,
unsigned int bpc)
{
struct drm_device *dev = vc4_hdmi->connector.dev;
const struct drm_connector *connector = &vc4_hdmi->connector;
const struct drm_display_info *info = &connector->display_info;
unsigned int format;
drm_dbg(dev, "Trying with an RGB output\n");
format = VC4_HDMI_OUTPUT_RGB;
if (vc4_hdmi_sink_supports_format_bpc(vc4_hdmi, info, mode, format, bpc)) {
int ret;
ret = vc4_hdmi_encoder_compute_clock(vc4_hdmi, vc4_state,
mode, bpc, format);
if (!ret) {
vc4_state->output_format = format;
return 0;
}
}
drm_dbg(dev, "Failed, Trying with an YUV422 output\n");
format = VC4_HDMI_OUTPUT_YUV422;
if (vc4_hdmi_sink_supports_format_bpc(vc4_hdmi, info, mode, format, bpc)) {
int ret;
ret = vc4_hdmi_encoder_compute_clock(vc4_hdmi, vc4_state,
mode, bpc, format);
if (!ret) {
vc4_state->output_format = format;
return 0;
}
}
drm_dbg(dev, "Failed. No Format Supported for that bpc count.\n");
return -EINVAL;
}
static int
vc4_hdmi_encoder_compute_config(const struct vc4_hdmi *vc4_hdmi,
struct vc4_hdmi_connector_state *vc4_state,
const struct drm_display_mode *mode)
{
struct drm_device *dev = vc4_hdmi->connector.dev;
struct drm_connector_state *conn_state = &vc4_state->base;
unsigned int max_bpc = clamp_t(unsigned int, conn_state->max_bpc, 8, 12);
unsigned int bpc;
int ret;
for (bpc = max_bpc; bpc >= 8; bpc -= 2) {
drm_dbg(dev, "Trying with a %d bpc output\n", bpc);
ret = vc4_hdmi_encoder_compute_format(vc4_hdmi, vc4_state,
mode, bpc);
if (ret)
continue;
vc4_state->output_bpc = bpc;
drm_dbg(dev,
"Mode %ux%u @ %uHz: Found configuration: bpc: %u, fmt: %s, clock: %llu\n",
mode->hdisplay, mode->vdisplay, drm_mode_vrefresh(mode),
vc4_state->output_bpc,
vc4_hdmi_output_fmt_str(vc4_state->output_format),
vc4_state->tmds_char_rate);
break;
}
return ret;
}
#define WIFI_2_4GHz_CH1_MIN_FREQ 2400000000ULL
#define WIFI_2_4GHz_CH1_MAX_FREQ 2422000000ULL
static int vc4_hdmi_encoder_atomic_check(struct drm_encoder *encoder,
struct drm_crtc_state *crtc_state,
struct drm_connector_state *conn_state)
{
struct vc4_hdmi *vc4_hdmi = encoder_to_vc4_hdmi(encoder);
struct drm_connector *connector = &vc4_hdmi->connector;
struct drm_connector_state *old_conn_state =
drm_atomic_get_old_connector_state(conn_state->state, connector);
struct vc4_hdmi_connector_state *old_vc4_state =
conn_state_to_vc4_hdmi_conn_state(old_conn_state);
struct vc4_hdmi_connector_state *vc4_state = conn_state_to_vc4_hdmi_conn_state(conn_state);
struct drm_display_mode *mode = &crtc_state->adjusted_mode;
unsigned long long tmds_char_rate = mode->clock * 1000;
unsigned long long tmds_bit_rate;
int ret;
if (vc4_hdmi->variant->unsupported_odd_h_timings) {
if (mode->flags & DRM_MODE_FLAG_DBLCLK) {
/* Only try to fixup DBLCLK modes to get 480i and 576i
* working.
* A generic solution for all modes with odd horizontal
* timing values seems impossible based on trying to
* solve it for 1366x768 monitors.
*/
if ((mode->hsync_start - mode->hdisplay) & 1)
mode->hsync_start--;
if ((mode->hsync_end - mode->hsync_start) & 1)
mode->hsync_end--;
}
/* Now check whether we still have odd values remaining */
if ((mode->hdisplay % 2) || (mode->hsync_start % 2) ||
(mode->hsync_end % 2) || (mode->htotal % 2))
return -EINVAL;
}
/*
* The 1440p@60 pixel rate is in the same range than the first
* WiFi channel (between 2.4GHz and 2.422GHz with 22MHz
* bandwidth). Slightly lower the frequency to bring it out of
* the WiFi range.
*/
tmds_bit_rate = tmds_char_rate * 10;
if (vc4_hdmi->disable_wifi_frequencies &&
(tmds_bit_rate >= WIFI_2_4GHz_CH1_MIN_FREQ &&
tmds_bit_rate <= WIFI_2_4GHz_CH1_MAX_FREQ)) {
mode->clock = 238560;
tmds_char_rate = mode->clock * 1000;
}
ret = vc4_hdmi_encoder_compute_config(vc4_hdmi, vc4_state, mode);
if (ret)
return ret;
/* vc4_hdmi_encoder_compute_config may have changed output_bpc and/or output_format */
if (vc4_state->output_bpc != old_vc4_state->output_bpc ||
vc4_state->output_format != old_vc4_state->output_format)
crtc_state->mode_changed = true;
return 0;
}
static enum drm_mode_status
vc4_hdmi_encoder_mode_valid(struct drm_encoder *encoder,
const struct drm_display_mode *mode)
{
struct vc4_hdmi *vc4_hdmi = encoder_to_vc4_hdmi(encoder);
if (vc4_hdmi->variant->unsupported_odd_h_timings &&
!(mode->flags & DRM_MODE_FLAG_DBLCLK) &&
((mode->hdisplay % 2) || (mode->hsync_start % 2) ||
(mode->hsync_end % 2) || (mode->htotal % 2)))
return MODE_H_ILLEGAL;
return vc4_hdmi_encoder_clock_valid(vc4_hdmi, mode, mode->clock * 1000);
}
static const struct drm_encoder_helper_funcs vc4_hdmi_encoder_helper_funcs = {
.atomic_check = vc4_hdmi_encoder_atomic_check,
.atomic_mode_set = vc4_hdmi_encoder_atomic_mode_set,
.mode_valid = vc4_hdmi_encoder_mode_valid,
};
static int vc4_hdmi_late_register(struct drm_encoder *encoder)
{
struct drm_device *drm = encoder->dev;
struct vc4_hdmi *vc4_hdmi = encoder_to_vc4_hdmi(encoder);
const struct vc4_hdmi_variant *variant = vc4_hdmi->variant;
drm_debugfs_add_file(drm, variant->debugfs_name,
vc4_hdmi_debugfs_regs, vc4_hdmi);
return 0;
}
static const struct drm_encoder_funcs vc4_hdmi_encoder_funcs = {
.late_register = vc4_hdmi_late_register,
};
static u32 vc4_hdmi_channel_map(struct vc4_hdmi *vc4_hdmi, u32 channel_mask)
{
int i;
u32 channel_map = 0;
for (i = 0; i < 8; i++) {
if (channel_mask & BIT(i))
channel_map |= i << (3 * i);
}
return channel_map;
}
static u32 vc5_hdmi_channel_map(struct vc4_hdmi *vc4_hdmi, u32 channel_mask)
{
int i;
u32 channel_map = 0;
for (i = 0; i < 8; i++) {
if (channel_mask & BIT(i))
channel_map |= i << (4 * i);
}
return channel_map;
}
static bool vc5_hdmi_hp_detect(struct vc4_hdmi *vc4_hdmi)
{
struct drm_device *drm = vc4_hdmi->connector.dev;
unsigned long flags;
u32 hotplug;
int idx;
if (!drm_dev_enter(drm, &idx))
return false;
spin_lock_irqsave(&vc4_hdmi->hw_lock, flags);
hotplug = HDMI_READ(HDMI_HOTPLUG);
spin_unlock_irqrestore(&vc4_hdmi->hw_lock, flags);
drm_dev_exit(idx);
return !!(hotplug & VC4_HDMI_HOTPLUG_CONNECTED);
}
/* HDMI audio codec callbacks */
static void vc4_hdmi_audio_set_mai_clock(struct vc4_hdmi *vc4_hdmi,
unsigned int samplerate)
{
struct drm_device *drm = vc4_hdmi->connector.dev;
u32 hsm_clock;
unsigned long flags;
unsigned long n, m;
int idx;
if (!drm_dev_enter(drm, &idx))
return;
hsm_clock = clk_get_rate(vc4_hdmi->audio_clock);
rational_best_approximation(hsm_clock, samplerate,
VC4_HD_MAI_SMP_N_MASK >>
VC4_HD_MAI_SMP_N_SHIFT,
(VC4_HD_MAI_SMP_M_MASK >>
VC4_HD_MAI_SMP_M_SHIFT) + 1,
&n, &m);
spin_lock_irqsave(&vc4_hdmi->hw_lock, flags);
HDMI_WRITE(HDMI_MAI_SMP,
VC4_SET_FIELD(n, VC4_HD_MAI_SMP_N) |
VC4_SET_FIELD(m - 1, VC4_HD_MAI_SMP_M));
spin_unlock_irqrestore(&vc4_hdmi->hw_lock, flags);
drm_dev_exit(idx);
}
static void vc4_hdmi_set_n_cts(struct vc4_hdmi *vc4_hdmi, unsigned int samplerate)
{
const struct drm_display_mode *mode = &vc4_hdmi->saved_adjusted_mode;
u32 n, cts;
u64 tmp;
lockdep_assert_held(&vc4_hdmi->mutex);
lockdep_assert_held(&vc4_hdmi->hw_lock);
n = 128 * samplerate / 1000;
tmp = (u64)(mode->clock * 1000) * n;
do_div(tmp, 128 * samplerate);
cts = tmp;
HDMI_WRITE(HDMI_CRP_CFG,
VC4_HDMI_CRP_CFG_EXTERNAL_CTS_EN |
VC4_SET_FIELD(n, VC4_HDMI_CRP_CFG_N));
/*
* We could get slightly more accurate clocks in some cases by
* providing a CTS_1 value. The two CTS values are alternated
* between based on the period fields
*/
HDMI_WRITE(HDMI_CTS_0, cts);
HDMI_WRITE(HDMI_CTS_1, cts);
}
static inline struct vc4_hdmi *dai_to_hdmi(struct snd_soc_dai *dai)
{
struct snd_soc_card *card = snd_soc_dai_get_drvdata(dai);
return snd_soc_card_get_drvdata(card);
}
static bool vc4_hdmi_audio_can_stream(struct vc4_hdmi *vc4_hdmi)
{
struct drm_display_info *display = &vc4_hdmi->connector.display_info;
lockdep_assert_held(&vc4_hdmi->mutex);
/*
* If the encoder is currently in DVI mode, treat the codec DAI
* as missing.
*/
if (!display->is_hdmi)
return false;
return true;
}
static int vc4_hdmi_audio_startup(struct device *dev, void *data)
{
struct vc4_hdmi *vc4_hdmi = dev_get_drvdata(dev);
struct drm_device *drm = vc4_hdmi->connector.dev;
unsigned long flags;
int ret = 0;
int idx;
mutex_lock(&vc4_hdmi->mutex);
if (!drm_dev_enter(drm, &idx)) {
ret = -ENODEV;
goto out;
}
if (!vc4_hdmi_audio_can_stream(vc4_hdmi)) {
ret = -ENODEV;
goto out_dev_exit;
}
vc4_hdmi->audio.streaming = true;
spin_lock_irqsave(&vc4_hdmi->hw_lock, flags);
HDMI_WRITE(HDMI_MAI_CTL,
VC4_HD_MAI_CTL_RESET |
VC4_HD_MAI_CTL_FLUSH |
VC4_HD_MAI_CTL_DLATE |
VC4_HD_MAI_CTL_ERRORE |
VC4_HD_MAI_CTL_ERRORF);
spin_unlock_irqrestore(&vc4_hdmi->hw_lock, flags);
if (vc4_hdmi->variant->phy_rng_enable)
vc4_hdmi->variant->phy_rng_enable(vc4_hdmi);
out_dev_exit:
drm_dev_exit(idx);
out:
mutex_unlock(&vc4_hdmi->mutex);
return ret;
}
static void vc4_hdmi_audio_reset(struct vc4_hdmi *vc4_hdmi)
{
struct drm_encoder *encoder = &vc4_hdmi->encoder.base;
struct device *dev = &vc4_hdmi->pdev->dev;
unsigned long flags;
int ret;
lockdep_assert_held(&vc4_hdmi->mutex);
vc4_hdmi->audio.streaming = false;
ret = vc4_hdmi_stop_packet(encoder, HDMI_INFOFRAME_TYPE_AUDIO, false);
if (ret)
dev_err(dev, "Failed to stop audio infoframe: %d\n", ret);
spin_lock_irqsave(&vc4_hdmi->hw_lock, flags);
HDMI_WRITE(HDMI_MAI_CTL, VC4_HD_MAI_CTL_RESET);
HDMI_WRITE(HDMI_MAI_CTL, VC4_HD_MAI_CTL_ERRORF);
HDMI_WRITE(HDMI_MAI_CTL, VC4_HD_MAI_CTL_FLUSH);
spin_unlock_irqrestore(&vc4_hdmi->hw_lock, flags);
}
static void vc4_hdmi_audio_shutdown(struct device *dev, void *data)
{
struct vc4_hdmi *vc4_hdmi = dev_get_drvdata(dev);
struct drm_device *drm = vc4_hdmi->connector.dev;
unsigned long flags;
int idx;
mutex_lock(&vc4_hdmi->mutex);
if (!drm_dev_enter(drm, &idx))
goto out;
spin_lock_irqsave(&vc4_hdmi->hw_lock, flags);
HDMI_WRITE(HDMI_MAI_CTL,
VC4_HD_MAI_CTL_DLATE |
VC4_HD_MAI_CTL_ERRORE |
VC4_HD_MAI_CTL_ERRORF);
spin_unlock_irqrestore(&vc4_hdmi->hw_lock, flags);
if (vc4_hdmi->variant->phy_rng_disable)
vc4_hdmi->variant->phy_rng_disable(vc4_hdmi);
vc4_hdmi->audio.streaming = false;
vc4_hdmi_audio_reset(vc4_hdmi);
drm_dev_exit(idx);
out:
mutex_unlock(&vc4_hdmi->mutex);
}
static int sample_rate_to_mai_fmt(int samplerate)
{
switch (samplerate) {
case 8000:
return VC4_HDMI_MAI_SAMPLE_RATE_8000;
case 11025:
return VC4_HDMI_MAI_SAMPLE_RATE_11025;
case 12000:
return VC4_HDMI_MAI_SAMPLE_RATE_12000;
case 16000:
return VC4_HDMI_MAI_SAMPLE_RATE_16000;
case 22050:
return VC4_HDMI_MAI_SAMPLE_RATE_22050;
case 24000:
return VC4_HDMI_MAI_SAMPLE_RATE_24000;
case 32000:
return VC4_HDMI_MAI_SAMPLE_RATE_32000;
case 44100:
return VC4_HDMI_MAI_SAMPLE_RATE_44100;
case 48000:
return VC4_HDMI_MAI_SAMPLE_RATE_48000;
case 64000:
return VC4_HDMI_MAI_SAMPLE_RATE_64000;
case 88200:
return VC4_HDMI_MAI_SAMPLE_RATE_88200;
case 96000:
return VC4_HDMI_MAI_SAMPLE_RATE_96000;
case 128000:
return VC4_HDMI_MAI_SAMPLE_RATE_128000;
case 176400:
return VC4_HDMI_MAI_SAMPLE_RATE_176400;
case 192000:
return VC4_HDMI_MAI_SAMPLE_RATE_192000;
default:
return VC4_HDMI_MAI_SAMPLE_RATE_NOT_INDICATED;
}
}
/* HDMI audio codec callbacks */
static int vc4_hdmi_audio_prepare(struct device *dev, void *data,
struct hdmi_codec_daifmt *daifmt,
struct hdmi_codec_params *params)
{
struct vc4_hdmi *vc4_hdmi = dev_get_drvdata(dev);
struct drm_device *drm = vc4_hdmi->connector.dev;
struct drm_encoder *encoder = &vc4_hdmi->encoder.base;
unsigned int sample_rate = params->sample_rate;
unsigned int channels = params->channels;
unsigned long flags;
u32 audio_packet_config, channel_mask;
u32 channel_map;
u32 mai_audio_format;
u32 mai_sample_rate;
int ret = 0;
int idx;
dev_dbg(dev, "%s: %u Hz, %d bit, %d channels\n", __func__,
sample_rate, params->sample_width, channels);
mutex_lock(&vc4_hdmi->mutex);
if (!drm_dev_enter(drm, &idx)) {
ret = -ENODEV;
goto out;
}
if (!vc4_hdmi_audio_can_stream(vc4_hdmi)) {
ret = -EINVAL;
goto out_dev_exit;
}
vc4_hdmi_audio_set_mai_clock(vc4_hdmi, sample_rate);
spin_lock_irqsave(&vc4_hdmi->hw_lock, flags);
HDMI_WRITE(HDMI_MAI_CTL,
VC4_SET_FIELD(channels, VC4_HD_MAI_CTL_CHNUM) |
VC4_HD_MAI_CTL_WHOLSMP |
VC4_HD_MAI_CTL_CHALIGN |
VC4_HD_MAI_CTL_ENABLE);
mai_sample_rate = sample_rate_to_mai_fmt(sample_rate);
if (params->iec.status[0] & IEC958_AES0_NONAUDIO &&
params->channels == 8)
mai_audio_format = VC4_HDMI_MAI_FORMAT_HBR;
else
mai_audio_format = VC4_HDMI_MAI_FORMAT_PCM;
HDMI_WRITE(HDMI_MAI_FMT,
VC4_SET_FIELD(mai_sample_rate,
VC4_HDMI_MAI_FORMAT_SAMPLE_RATE) |
VC4_SET_FIELD(mai_audio_format,
VC4_HDMI_MAI_FORMAT_AUDIO_FORMAT));
/* The B frame identifier should match the value used by alsa-lib (8) */
audio_packet_config =
VC4_HDMI_AUDIO_PACKET_ZERO_DATA_ON_SAMPLE_FLAT |
VC4_HDMI_AUDIO_PACKET_ZERO_DATA_ON_INACTIVE_CHANNELS |
VC4_SET_FIELD(0x8, VC4_HDMI_AUDIO_PACKET_B_FRAME_IDENTIFIER);
channel_mask = GENMASK(channels - 1, 0);
audio_packet_config |= VC4_SET_FIELD(channel_mask,
VC4_HDMI_AUDIO_PACKET_CEA_MASK);
/* Set the MAI threshold */
HDMI_WRITE(HDMI_MAI_THR,
VC4_SET_FIELD(0x08, VC4_HD_MAI_THR_PANICHIGH) |
VC4_SET_FIELD(0x08, VC4_HD_MAI_THR_PANICLOW) |
VC4_SET_FIELD(0x06, VC4_HD_MAI_THR_DREQHIGH) |
VC4_SET_FIELD(0x08, VC4_HD_MAI_THR_DREQLOW));
HDMI_WRITE(HDMI_MAI_CONFIG,
VC4_HDMI_MAI_CONFIG_BIT_REVERSE |
VC4_HDMI_MAI_CONFIG_FORMAT_REVERSE |
VC4_SET_FIELD(channel_mask, VC4_HDMI_MAI_CHANNEL_MASK));
channel_map = vc4_hdmi->variant->channel_map(vc4_hdmi, channel_mask);
HDMI_WRITE(HDMI_MAI_CHANNEL_MAP, channel_map);
HDMI_WRITE(HDMI_AUDIO_PACKET_CONFIG, audio_packet_config);
vc4_hdmi_set_n_cts(vc4_hdmi, sample_rate);
spin_unlock_irqrestore(&vc4_hdmi->hw_lock, flags);
memcpy(&vc4_hdmi->audio.infoframe, &params->cea, sizeof(params->cea));
vc4_hdmi_set_audio_infoframe(encoder);
out_dev_exit:
drm_dev_exit(idx);
out:
mutex_unlock(&vc4_hdmi->mutex);
return ret;
}
static const struct snd_soc_component_driver vc4_hdmi_audio_cpu_dai_comp = {
.name = "vc4-hdmi-cpu-dai-component",
.legacy_dai_naming = 1,
};
static int vc4_hdmi_audio_cpu_dai_probe(struct snd_soc_dai *dai)
{
struct vc4_hdmi *vc4_hdmi = dai_to_hdmi(dai);
snd_soc_dai_init_dma_data(dai, &vc4_hdmi->audio.dma_data, NULL);
return 0;
}
static const struct snd_soc_dai_ops vc4_snd_dai_ops = {
.probe = vc4_hdmi_audio_cpu_dai_probe,
};
static struct snd_soc_dai_driver vc4_hdmi_audio_cpu_dai_drv = {
.name = "vc4-hdmi-cpu-dai",
.ops = &vc4_snd_dai_ops,
.playback = {
.stream_name = "Playback",
.channels_min = 1,
.channels_max = 8,
.rates = SNDRV_PCM_RATE_32000 | SNDRV_PCM_RATE_44100 |
SNDRV_PCM_RATE_48000 | SNDRV_PCM_RATE_88200 |
SNDRV_PCM_RATE_96000 | SNDRV_PCM_RATE_176400 |
SNDRV_PCM_RATE_192000,
.formats = SNDRV_PCM_FMTBIT_IEC958_SUBFRAME_LE,
},
};
static const struct snd_dmaengine_pcm_config pcm_conf = {
.chan_names[SNDRV_PCM_STREAM_PLAYBACK] = "audio-rx",
.prepare_slave_config = snd_dmaengine_pcm_prepare_slave_config,
};
static int vc4_hdmi_audio_get_eld(struct device *dev, void *data,
uint8_t *buf, size_t len)
{
struct vc4_hdmi *vc4_hdmi = dev_get_drvdata(dev);
struct drm_connector *connector = &vc4_hdmi->connector;
mutex_lock(&vc4_hdmi->mutex);
memcpy(buf, connector->eld, min(sizeof(connector->eld), len));
mutex_unlock(&vc4_hdmi->mutex);
return 0;
}
static const struct hdmi_codec_ops vc4_hdmi_codec_ops = {
.get_eld = vc4_hdmi_audio_get_eld,
.prepare = vc4_hdmi_audio_prepare,
.audio_shutdown = vc4_hdmi_audio_shutdown,
.audio_startup = vc4_hdmi_audio_startup,
};
static struct hdmi_codec_pdata vc4_hdmi_codec_pdata = {
.ops = &vc4_hdmi_codec_ops,
.max_i2s_channels = 8,
.i2s = 1,
};
static void vc4_hdmi_audio_codec_release(void *ptr)
{
struct vc4_hdmi *vc4_hdmi = ptr;
platform_device_unregister(vc4_hdmi->audio.codec_pdev);
vc4_hdmi->audio.codec_pdev = NULL;
}
static int vc4_hdmi_audio_init(struct vc4_hdmi *vc4_hdmi)
{
const struct vc4_hdmi_register *mai_data =
&vc4_hdmi->variant->registers[HDMI_MAI_DATA];
struct snd_soc_dai_link *dai_link = &vc4_hdmi->audio.link;
struct snd_soc_card *card = &vc4_hdmi->audio.card;
struct device *dev = &vc4_hdmi->pdev->dev;
struct platform_device *codec_pdev;
const __be32 *addr;
int index, len;
int ret;
/*
* ASoC makes it a bit hard to retrieve a pointer to the
* vc4_hdmi structure. Registering the card will overwrite our
* device drvdata with a pointer to the snd_soc_card structure,
* which can then be used to retrieve whatever drvdata we want
* to associate.
*
* However, that doesn't fly in the case where we wouldn't
* register an ASoC card (because of an old DT that is missing
* the dmas properties for example), then the card isn't
* registered and the device drvdata wouldn't be set.
*
* We can deal with both cases by making sure a snd_soc_card
* pointer and a vc4_hdmi structure are pointing to the same
* memory address, so we can treat them indistinctly without any
* issue.
*/
BUILD_BUG_ON(offsetof(struct vc4_hdmi_audio, card) != 0);
BUILD_BUG_ON(offsetof(struct vc4_hdmi, audio) != 0);
if (!of_find_property(dev->of_node, "dmas", &len) || !len) {
dev_warn(dev,
"'dmas' DT property is missing or empty, no HDMI audio\n");
return 0;
}
if (mai_data->reg != VC4_HD) {
WARN_ONCE(true, "MAI isn't in the HD block\n");
return -EINVAL;
}
/*
* Get the physical address of VC4_HD_MAI_DATA. We need to retrieve
* the bus address specified in the DT, because the physical address
* (the one returned by platform_get_resource()) is not appropriate
* for DMA transfers.
* This VC/MMU should probably be exposed to avoid this kind of hacks.
*/
index = of_property_match_string(dev->of_node, "reg-names", "hd");
/* Before BCM2711, we don't have a named register range */
if (index < 0)
index = 1;
addr = of_get_address(dev->of_node, index, NULL, NULL);
vc4_hdmi->audio.dma_data.addr = be32_to_cpup(addr) + mai_data->offset;
vc4_hdmi->audio.dma_data.addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
vc4_hdmi->audio.dma_data.maxburst = 2;
/*
* NOTE: Strictly speaking, we should probably use a DRM-managed
* registration there to avoid removing all the audio components
* by the time the driver doesn't have any user anymore.
*
* However, the ASoC core uses a number of devm_kzalloc calls
* when registering, even when using non-device-managed
* functions (such as in snd_soc_register_component()).
*
* If we call snd_soc_unregister_component() in a DRM-managed
* action, the device-managed actions have already been executed
* and thus we would access memory that has been freed.
*
* Using device-managed hooks here probably leaves us open to a
* bunch of issues if userspace still has a handle on the ALSA
* device when the device is removed. However, this is mitigated
* by the use of drm_dev_enter()/drm_dev_exit() in the audio
* path to prevent the access to the device resources if it
* isn't there anymore.
*
* Then, the vc4_hdmi structure is DRM-managed and thus only
* freed whenever the last user has closed the DRM device file.
* It should thus outlive ALSA in most situations.
*/
ret = devm_snd_dmaengine_pcm_register(dev, &pcm_conf, 0);
if (ret) {
dev_err(dev, "Could not register PCM component: %d\n", ret);
return ret;
}
ret = devm_snd_soc_register_component(dev, &vc4_hdmi_audio_cpu_dai_comp,
&vc4_hdmi_audio_cpu_dai_drv, 1);
if (ret) {
dev_err(dev, "Could not register CPU DAI: %d\n", ret);
return ret;
}
codec_pdev = platform_device_register_data(dev, HDMI_CODEC_DRV_NAME,
PLATFORM_DEVID_AUTO,
&vc4_hdmi_codec_pdata,
sizeof(vc4_hdmi_codec_pdata));
if (IS_ERR(codec_pdev)) {
dev_err(dev, "Couldn't register the HDMI codec: %ld\n", PTR_ERR(codec_pdev));
return PTR_ERR(codec_pdev);
}
vc4_hdmi->audio.codec_pdev = codec_pdev;
ret = devm_add_action_or_reset(dev, vc4_hdmi_audio_codec_release, vc4_hdmi);
if (ret)
return ret;
dai_link->cpus = &vc4_hdmi->audio.cpu;
dai_link->codecs = &vc4_hdmi->audio.codec;
dai_link->platforms = &vc4_hdmi->audio.platform;
dai_link->num_cpus = 1;
dai_link->num_codecs = 1;
dai_link->num_platforms = 1;
dai_link->name = "MAI";
dai_link->stream_name = "MAI PCM";
dai_link->codecs->dai_name = "i2s-hifi";
dai_link->cpus->dai_name = dev_name(dev);
dai_link->codecs->name = dev_name(&codec_pdev->dev);
dai_link->platforms->name = dev_name(dev);
card->dai_link = dai_link;
card->num_links = 1;
card->name = vc4_hdmi->variant->card_name;
card->driver_name = "vc4-hdmi";
card->dev = dev;
card->owner = THIS_MODULE;
/*
* Be careful, snd_soc_register_card() calls dev_set_drvdata() and
* stores a pointer to the snd card object in dev->driver_data. This
* means we cannot use it for something else. The hdmi back-pointer is
* now stored in card->drvdata and should be retrieved with
* snd_soc_card_get_drvdata() if needed.
*/
snd_soc_card_set_drvdata(card, vc4_hdmi);
ret = devm_snd_soc_register_card(dev, card);
if (ret)
dev_err_probe(dev, ret, "Could not register sound card\n");
return ret;
}
static irqreturn_t vc4_hdmi_hpd_irq_thread(int irq, void *priv)
{
struct vc4_hdmi *vc4_hdmi = priv;
struct drm_connector *connector = &vc4_hdmi->connector;
struct drm_device *dev = connector->dev;
if (dev && dev->registered)
drm_connector_helper_hpd_irq_event(connector);
return IRQ_HANDLED;
}
static int vc4_hdmi_hotplug_init(struct vc4_hdmi *vc4_hdmi)
{
struct drm_connector *connector = &vc4_hdmi->connector;
struct platform_device *pdev = vc4_hdmi->pdev;
int ret;
if (vc4_hdmi->variant->external_irq_controller) {
unsigned int hpd_con = platform_get_irq_byname(pdev, "hpd-connected");
unsigned int hpd_rm = platform_get_irq_byname(pdev, "hpd-removed");
ret = devm_request_threaded_irq(&pdev->dev, hpd_con,
NULL,
vc4_hdmi_hpd_irq_thread, IRQF_ONESHOT,
"vc4 hdmi hpd connected", vc4_hdmi);
if (ret)
return ret;
ret = devm_request_threaded_irq(&pdev->dev, hpd_rm,
NULL,
vc4_hdmi_hpd_irq_thread, IRQF_ONESHOT,
"vc4 hdmi hpd disconnected", vc4_hdmi);
if (ret)
return ret;
connector->polled = DRM_CONNECTOR_POLL_HPD;
}
return 0;
}
#ifdef CONFIG_DRM_VC4_HDMI_CEC
static irqreturn_t vc4_cec_irq_handler_rx_thread(int irq, void *priv)
{
struct vc4_hdmi *vc4_hdmi = priv;
if (vc4_hdmi->cec_rx_msg.len)
cec_received_msg(vc4_hdmi->cec_adap,
&vc4_hdmi->cec_rx_msg);
return IRQ_HANDLED;
}
static irqreturn_t vc4_cec_irq_handler_tx_thread(int irq, void *priv)
{
struct vc4_hdmi *vc4_hdmi = priv;
if (vc4_hdmi->cec_tx_ok) {
cec_transmit_done(vc4_hdmi->cec_adap, CEC_TX_STATUS_OK,
0, 0, 0, 0);
} else {
/*
* This CEC implementation makes 1 retry, so if we
* get a NACK, then that means it made 2 attempts.
*/
cec_transmit_done(vc4_hdmi->cec_adap, CEC_TX_STATUS_NACK,
0, 2, 0, 0);
}
return IRQ_HANDLED;
}
static irqreturn_t vc4_cec_irq_handler_thread(int irq, void *priv)
{
struct vc4_hdmi *vc4_hdmi = priv;
irqreturn_t ret;
if (vc4_hdmi->cec_irq_was_rx)
ret = vc4_cec_irq_handler_rx_thread(irq, priv);
else
ret = vc4_cec_irq_handler_tx_thread(irq, priv);
return ret;
}
static void vc4_cec_read_msg(struct vc4_hdmi *vc4_hdmi, u32 cntrl1)
{
struct drm_device *dev = vc4_hdmi->connector.dev;
struct cec_msg *msg = &vc4_hdmi->cec_rx_msg;
unsigned int i;
lockdep_assert_held(&vc4_hdmi->hw_lock);
msg->len = 1 + ((cntrl1 & VC4_HDMI_CEC_REC_WRD_CNT_MASK) >>
VC4_HDMI_CEC_REC_WRD_CNT_SHIFT);
if (msg->len > 16) {
drm_err(dev, "Attempting to read too much data (%d)\n", msg->len);
return;
}
for (i = 0; i < msg->len; i += 4) {
u32 val = HDMI_READ(HDMI_CEC_RX_DATA_1 + (i >> 2));
msg->msg[i] = val & 0xff;
msg->msg[i + 1] = (val >> 8) & 0xff;
msg->msg[i + 2] = (val >> 16) & 0xff;
msg->msg[i + 3] = (val >> 24) & 0xff;
}
}
static irqreturn_t vc4_cec_irq_handler_tx_bare_locked(struct vc4_hdmi *vc4_hdmi)
{
u32 cntrl1;
/*
* We don't need to protect the register access using
* drm_dev_enter() there because the interrupt handler lifetime
* is tied to the device itself, and not to the DRM device.
*
* So when the device will be gone, one of the first thing we
* will be doing will be to unregister the interrupt handler,
* and then unregister the DRM device. drm_dev_enter() would
* thus always succeed if we are here.
*/
lockdep_assert_held(&vc4_hdmi->hw_lock);
cntrl1 = HDMI_READ(HDMI_CEC_CNTRL_1);
vc4_hdmi->cec_tx_ok = cntrl1 & VC4_HDMI_CEC_TX_STATUS_GOOD;
cntrl1 &= ~VC4_HDMI_CEC_START_XMIT_BEGIN;
HDMI_WRITE(HDMI_CEC_CNTRL_1, cntrl1);
return IRQ_WAKE_THREAD;
}
static irqreturn_t vc4_cec_irq_handler_tx_bare(int irq, void *priv)
{
struct vc4_hdmi *vc4_hdmi = priv;
irqreturn_t ret;
spin_lock(&vc4_hdmi->hw_lock);
ret = vc4_cec_irq_handler_tx_bare_locked(vc4_hdmi);
spin_unlock(&vc4_hdmi->hw_lock);
return ret;
}
static irqreturn_t vc4_cec_irq_handler_rx_bare_locked(struct vc4_hdmi *vc4_hdmi)
{
u32 cntrl1;
lockdep_assert_held(&vc4_hdmi->hw_lock);
/*
* We don't need to protect the register access using
* drm_dev_enter() there because the interrupt handler lifetime
* is tied to the device itself, and not to the DRM device.
*
* So when the device will be gone, one of the first thing we
* will be doing will be to unregister the interrupt handler,
* and then unregister the DRM device. drm_dev_enter() would
* thus always succeed if we are here.
*/
vc4_hdmi->cec_rx_msg.len = 0;
cntrl1 = HDMI_READ(HDMI_CEC_CNTRL_1);
vc4_cec_read_msg(vc4_hdmi, cntrl1);
cntrl1 |= VC4_HDMI_CEC_CLEAR_RECEIVE_OFF;
HDMI_WRITE(HDMI_CEC_CNTRL_1, cntrl1);
cntrl1 &= ~VC4_HDMI_CEC_CLEAR_RECEIVE_OFF;
HDMI_WRITE(HDMI_CEC_CNTRL_1, cntrl1);
return IRQ_WAKE_THREAD;
}
static irqreturn_t vc4_cec_irq_handler_rx_bare(int irq, void *priv)
{
struct vc4_hdmi *vc4_hdmi = priv;
irqreturn_t ret;
spin_lock(&vc4_hdmi->hw_lock);
ret = vc4_cec_irq_handler_rx_bare_locked(vc4_hdmi);
spin_unlock(&vc4_hdmi->hw_lock);
return ret;
}
static irqreturn_t vc4_cec_irq_handler(int irq, void *priv)
{
struct vc4_hdmi *vc4_hdmi = priv;
u32 stat = HDMI_READ(HDMI_CEC_CPU_STATUS);
irqreturn_t ret;
u32 cntrl5;
/*
* We don't need to protect the register access using
* drm_dev_enter() there because the interrupt handler lifetime
* is tied to the device itself, and not to the DRM device.
*
* So when the device will be gone, one of the first thing we
* will be doing will be to unregister the interrupt handler,
* and then unregister the DRM device. drm_dev_enter() would
* thus always succeed if we are here.
*/
if (!(stat & VC4_HDMI_CPU_CEC))
return IRQ_NONE;
spin_lock(&vc4_hdmi->hw_lock);
cntrl5 = HDMI_READ(HDMI_CEC_CNTRL_5);
vc4_hdmi->cec_irq_was_rx = cntrl5 & VC4_HDMI_CEC_RX_CEC_INT;
if (vc4_hdmi->cec_irq_was_rx)
ret = vc4_cec_irq_handler_rx_bare_locked(vc4_hdmi);
else
ret = vc4_cec_irq_handler_tx_bare_locked(vc4_hdmi);
HDMI_WRITE(HDMI_CEC_CPU_CLEAR, VC4_HDMI_CPU_CEC);
spin_unlock(&vc4_hdmi->hw_lock);
return ret;
}
static int vc4_hdmi_cec_enable(struct cec_adapter *adap)
{
struct vc4_hdmi *vc4_hdmi = cec_get_drvdata(adap);
struct drm_device *drm = vc4_hdmi->connector.dev;
/* clock period in microseconds */
const u32 usecs = 1000000 / CEC_CLOCK_FREQ;
unsigned long flags;
u32 val;
int ret;
int idx;
if (!drm_dev_enter(drm, &idx))
/*
* We can't return an error code, because the CEC
* framework will emit WARN_ON messages at unbind
* otherwise.
*/
return 0;
ret = pm_runtime_resume_and_get(&vc4_hdmi->pdev->dev);
if (ret) {
drm_dev_exit(idx);
return ret;
}
mutex_lock(&vc4_hdmi->mutex);
spin_lock_irqsave(&vc4_hdmi->hw_lock, flags);
val = HDMI_READ(HDMI_CEC_CNTRL_5);
val &= ~(VC4_HDMI_CEC_TX_SW_RESET | VC4_HDMI_CEC_RX_SW_RESET |
VC4_HDMI_CEC_CNT_TO_4700_US_MASK |
VC4_HDMI_CEC_CNT_TO_4500_US_MASK);
val |= ((4700 / usecs) << VC4_HDMI_CEC_CNT_TO_4700_US_SHIFT) |
((4500 / usecs) << VC4_HDMI_CEC_CNT_TO_4500_US_SHIFT);
HDMI_WRITE(HDMI_CEC_CNTRL_5, val |
VC4_HDMI_CEC_TX_SW_RESET | VC4_HDMI_CEC_RX_SW_RESET);
HDMI_WRITE(HDMI_CEC_CNTRL_5, val);
HDMI_WRITE(HDMI_CEC_CNTRL_2,
((1500 / usecs) << VC4_HDMI_CEC_CNT_TO_1500_US_SHIFT) |
((1300 / usecs) << VC4_HDMI_CEC_CNT_TO_1300_US_SHIFT) |
((800 / usecs) << VC4_HDMI_CEC_CNT_TO_800_US_SHIFT) |
((600 / usecs) << VC4_HDMI_CEC_CNT_TO_600_US_SHIFT) |
((400 / usecs) << VC4_HDMI_CEC_CNT_TO_400_US_SHIFT));
HDMI_WRITE(HDMI_CEC_CNTRL_3,
((2750 / usecs) << VC4_HDMI_CEC_CNT_TO_2750_US_SHIFT) |
((2400 / usecs) << VC4_HDMI_CEC_CNT_TO_2400_US_SHIFT) |
((2050 / usecs) << VC4_HDMI_CEC_CNT_TO_2050_US_SHIFT) |
((1700 / usecs) << VC4_HDMI_CEC_CNT_TO_1700_US_SHIFT));
HDMI_WRITE(HDMI_CEC_CNTRL_4,
((4300 / usecs) << VC4_HDMI_CEC_CNT_TO_4300_US_SHIFT) |
((3900 / usecs) << VC4_HDMI_CEC_CNT_TO_3900_US_SHIFT) |
((3600 / usecs) << VC4_HDMI_CEC_CNT_TO_3600_US_SHIFT) |
((3500 / usecs) << VC4_HDMI_CEC_CNT_TO_3500_US_SHIFT));
if (!vc4_hdmi->variant->external_irq_controller)
HDMI_WRITE(HDMI_CEC_CPU_MASK_CLEAR, VC4_HDMI_CPU_CEC);
spin_unlock_irqrestore(&vc4_hdmi->hw_lock, flags);
mutex_unlock(&vc4_hdmi->mutex);
drm_dev_exit(idx);
return 0;
}
static int vc4_hdmi_cec_disable(struct cec_adapter *adap)
{
struct vc4_hdmi *vc4_hdmi = cec_get_drvdata(adap);
struct drm_device *drm = vc4_hdmi->connector.dev;
unsigned long flags;
int idx;
if (!drm_dev_enter(drm, &idx))
/*
* We can't return an error code, because the CEC
* framework will emit WARN_ON messages at unbind
* otherwise.
*/
return 0;
mutex_lock(&vc4_hdmi->mutex);
spin_lock_irqsave(&vc4_hdmi->hw_lock, flags);
if (!vc4_hdmi->variant->external_irq_controller)
HDMI_WRITE(HDMI_CEC_CPU_MASK_SET, VC4_HDMI_CPU_CEC);
HDMI_WRITE(HDMI_CEC_CNTRL_5, HDMI_READ(HDMI_CEC_CNTRL_5) |
VC4_HDMI_CEC_TX_SW_RESET | VC4_HDMI_CEC_RX_SW_RESET);
spin_unlock_irqrestore(&vc4_hdmi->hw_lock, flags);
mutex_unlock(&vc4_hdmi->mutex);
pm_runtime_put(&vc4_hdmi->pdev->dev);
drm_dev_exit(idx);
return 0;
}
static int vc4_hdmi_cec_adap_enable(struct cec_adapter *adap, bool enable)
{
if (enable)
return vc4_hdmi_cec_enable(adap);
else
return vc4_hdmi_cec_disable(adap);
}
static int vc4_hdmi_cec_adap_log_addr(struct cec_adapter *adap, u8 log_addr)
{
struct vc4_hdmi *vc4_hdmi = cec_get_drvdata(adap);
struct drm_device *drm = vc4_hdmi->connector.dev;
unsigned long flags;
int idx;
if (!drm_dev_enter(drm, &idx))
/*
* We can't return an error code, because the CEC
* framework will emit WARN_ON messages at unbind
* otherwise.
*/
return 0;
mutex_lock(&vc4_hdmi->mutex);
spin_lock_irqsave(&vc4_hdmi->hw_lock, flags);
HDMI_WRITE(HDMI_CEC_CNTRL_1,
(HDMI_READ(HDMI_CEC_CNTRL_1) & ~VC4_HDMI_CEC_ADDR_MASK) |
(log_addr & 0xf) << VC4_HDMI_CEC_ADDR_SHIFT);
spin_unlock_irqrestore(&vc4_hdmi->hw_lock, flags);
mutex_unlock(&vc4_hdmi->mutex);
drm_dev_exit(idx);
return 0;
}
static int vc4_hdmi_cec_adap_transmit(struct cec_adapter *adap, u8 attempts,
u32 signal_free_time, struct cec_msg *msg)
{
struct vc4_hdmi *vc4_hdmi = cec_get_drvdata(adap);
struct drm_device *dev = vc4_hdmi->connector.dev;
unsigned long flags;
u32 val;
unsigned int i;
int idx;
if (!drm_dev_enter(dev, &idx))
return -ENODEV;
if (msg->len > 16) {
drm_err(dev, "Attempting to transmit too much data (%d)\n", msg->len);
drm_dev_exit(idx);
return -ENOMEM;
}
mutex_lock(&vc4_hdmi->mutex);
spin_lock_irqsave(&vc4_hdmi->hw_lock, flags);
for (i = 0; i < msg->len; i += 4)
HDMI_WRITE(HDMI_CEC_TX_DATA_1 + (i >> 2),
(msg->msg[i]) |
(msg->msg[i + 1] << 8) |
(msg->msg[i + 2] << 16) |
(msg->msg[i + 3] << 24));
val = HDMI_READ(HDMI_CEC_CNTRL_1);
val &= ~VC4_HDMI_CEC_START_XMIT_BEGIN;
HDMI_WRITE(HDMI_CEC_CNTRL_1, val);
val &= ~VC4_HDMI_CEC_MESSAGE_LENGTH_MASK;
val |= (msg->len - 1) << VC4_HDMI_CEC_MESSAGE_LENGTH_SHIFT;
val |= VC4_HDMI_CEC_START_XMIT_BEGIN;
HDMI_WRITE(HDMI_CEC_CNTRL_1, val);
spin_unlock_irqrestore(&vc4_hdmi->hw_lock, flags);
mutex_unlock(&vc4_hdmi->mutex);
drm_dev_exit(idx);
return 0;
}
static const struct cec_adap_ops vc4_hdmi_cec_adap_ops = {
.adap_enable = vc4_hdmi_cec_adap_enable,
.adap_log_addr = vc4_hdmi_cec_adap_log_addr,
.adap_transmit = vc4_hdmi_cec_adap_transmit,
};
static void vc4_hdmi_cec_release(void *ptr)
{
struct vc4_hdmi *vc4_hdmi = ptr;
cec_unregister_adapter(vc4_hdmi->cec_adap);
vc4_hdmi->cec_adap = NULL;
}
static int vc4_hdmi_cec_init(struct vc4_hdmi *vc4_hdmi)
{
struct cec_connector_info conn_info;
struct platform_device *pdev = vc4_hdmi->pdev;
struct device *dev = &pdev->dev;
int ret;
if (!of_property_present(dev->of_node, "interrupts")) {
dev_warn(dev, "'interrupts' DT property is missing, no CEC\n");
return 0;
}
vc4_hdmi->cec_adap = cec_allocate_adapter(&vc4_hdmi_cec_adap_ops,
vc4_hdmi,
vc4_hdmi->variant->card_name,
CEC_CAP_DEFAULTS |
CEC_CAP_CONNECTOR_INFO, 1);
ret = PTR_ERR_OR_ZERO(vc4_hdmi->cec_adap);
if (ret < 0)
return ret;
cec_fill_conn_info_from_drm(&conn_info, &vc4_hdmi->connector);
cec_s_conn_info(vc4_hdmi->cec_adap, &conn_info);
if (vc4_hdmi->variant->external_irq_controller) {
ret = devm_request_threaded_irq(dev, platform_get_irq_byname(pdev, "cec-rx"),
vc4_cec_irq_handler_rx_bare,
vc4_cec_irq_handler_rx_thread, 0,
"vc4 hdmi cec rx", vc4_hdmi);
if (ret)
goto err_delete_cec_adap;
ret = devm_request_threaded_irq(dev, platform_get_irq_byname(pdev, "cec-tx"),
vc4_cec_irq_handler_tx_bare,
vc4_cec_irq_handler_tx_thread, 0,
"vc4 hdmi cec tx", vc4_hdmi);
if (ret)
goto err_delete_cec_adap;
} else {
ret = devm_request_threaded_irq(dev, platform_get_irq(pdev, 0),
vc4_cec_irq_handler,
vc4_cec_irq_handler_thread, 0,
"vc4 hdmi cec", vc4_hdmi);
if (ret)
goto err_delete_cec_adap;
}
ret = cec_register_adapter(vc4_hdmi->cec_adap, &pdev->dev);
if (ret < 0)
goto err_delete_cec_adap;
/*
* NOTE: Strictly speaking, we should probably use a DRM-managed
* registration there to avoid removing the CEC adapter by the
* time the DRM driver doesn't have any user anymore.
*
* However, the CEC framework already cleans up the CEC adapter
* only when the last user has closed its file descriptor, so we
* don't need to handle it in DRM.
*
* By the time the device-managed hook is executed, we will give
* up our reference to the CEC adapter and therefore don't
* really care when it's actually freed.
*
* There's still a problematic sequence: if we unregister our
* CEC adapter, but the userspace keeps a handle on the CEC
* adapter but not the DRM device for some reason. In such a
* case, our vc4_hdmi structure will be freed, but the
* cec_adapter structure will have a dangling pointer to what
* used to be our HDMI controller. If we get a CEC call at that
* moment, we could end up with a use-after-free. Fortunately,
* the CEC framework already handles this too, by calling
* cec_is_registered() in cec_ioctl() and cec_poll().
*/
ret = devm_add_action_or_reset(dev, vc4_hdmi_cec_release, vc4_hdmi);
if (ret)
return ret;
return 0;
err_delete_cec_adap:
cec_delete_adapter(vc4_hdmi->cec_adap);
return ret;
}
#else
static int vc4_hdmi_cec_init(struct vc4_hdmi *vc4_hdmi)
{
return 0;
}
#endif
static void vc4_hdmi_free_regset(struct drm_device *drm, void *ptr)
{
struct debugfs_reg32 *regs = ptr;
kfree(regs);
}
static int vc4_hdmi_build_regset(struct drm_device *drm,
struct vc4_hdmi *vc4_hdmi,
struct debugfs_regset32 *regset,
enum vc4_hdmi_regs reg)
{
const struct vc4_hdmi_variant *variant = vc4_hdmi->variant;
struct debugfs_reg32 *regs, *new_regs;
unsigned int count = 0;
unsigned int i;
int ret;
regs = kcalloc(variant->num_registers, sizeof(*regs),
GFP_KERNEL);
if (!regs)
return -ENOMEM;
for (i = 0; i < variant->num_registers; i++) {
const struct vc4_hdmi_register *field = &variant->registers[i];
if (field->reg != reg)
continue;
regs[count].name = field->name;
regs[count].offset = field->offset;
count++;
}
new_regs = krealloc(regs, count * sizeof(*regs), GFP_KERNEL);
if (!new_regs)
return -ENOMEM;
regset->base = __vc4_hdmi_get_field_base(vc4_hdmi, reg);
regset->regs = new_regs;
regset->nregs = count;
ret = drmm_add_action_or_reset(drm, vc4_hdmi_free_regset, new_regs);
if (ret)
return ret;
return 0;
}
static int vc4_hdmi_init_resources(struct drm_device *drm,
struct vc4_hdmi *vc4_hdmi)
{
struct platform_device *pdev = vc4_hdmi->pdev;
struct device *dev = &pdev->dev;
int ret;
vc4_hdmi->hdmicore_regs = vc4_ioremap_regs(pdev, 0);
if (IS_ERR(vc4_hdmi->hdmicore_regs))
return PTR_ERR(vc4_hdmi->hdmicore_regs);
vc4_hdmi->hd_regs = vc4_ioremap_regs(pdev, 1);
if (IS_ERR(vc4_hdmi->hd_regs))
return PTR_ERR(vc4_hdmi->hd_regs);
ret = vc4_hdmi_build_regset(drm, vc4_hdmi, &vc4_hdmi->hd_regset, VC4_HD);
if (ret)
return ret;
ret = vc4_hdmi_build_regset(drm, vc4_hdmi, &vc4_hdmi->hdmi_regset, VC4_HDMI);
if (ret)
return ret;
vc4_hdmi->pixel_clock = devm_clk_get(dev, "pixel");
if (IS_ERR(vc4_hdmi->pixel_clock)) {
ret = PTR_ERR(vc4_hdmi->pixel_clock);
if (ret != -EPROBE_DEFER)
DRM_ERROR("Failed to get pixel clock\n");
return ret;
}
vc4_hdmi->hsm_clock = devm_clk_get(dev, "hdmi");
if (IS_ERR(vc4_hdmi->hsm_clock)) {
DRM_ERROR("Failed to get HDMI state machine clock\n");
return PTR_ERR(vc4_hdmi->hsm_clock);
}
vc4_hdmi->audio_clock = vc4_hdmi->hsm_clock;
vc4_hdmi->cec_clock = vc4_hdmi->hsm_clock;
return 0;
}
static int vc5_hdmi_init_resources(struct drm_device *drm,
struct vc4_hdmi *vc4_hdmi)
{
struct platform_device *pdev = vc4_hdmi->pdev;
struct device *dev = &pdev->dev;
struct resource *res;
int ret;
res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "hdmi");
if (!res)
return -ENODEV;
vc4_hdmi->hdmicore_regs = devm_ioremap(dev, res->start,
resource_size(res));
if (!vc4_hdmi->hdmicore_regs)
return -ENOMEM;
res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "hd");
if (!res)
return -ENODEV;
vc4_hdmi->hd_regs = devm_ioremap(dev, res->start, resource_size(res));
if (!vc4_hdmi->hd_regs)
return -ENOMEM;
res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "cec");
if (!res)
return -ENODEV;
vc4_hdmi->cec_regs = devm_ioremap(dev, res->start, resource_size(res));
if (!vc4_hdmi->cec_regs)
return -ENOMEM;
res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "csc");
if (!res)
return -ENODEV;
vc4_hdmi->csc_regs = devm_ioremap(dev, res->start, resource_size(res));
if (!vc4_hdmi->csc_regs)
return -ENOMEM;
res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "dvp");
if (!res)
return -ENODEV;
vc4_hdmi->dvp_regs = devm_ioremap(dev, res->start, resource_size(res));
if (!vc4_hdmi->dvp_regs)
return -ENOMEM;
res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "phy");
if (!res)
return -ENODEV;
vc4_hdmi->phy_regs = devm_ioremap(dev, res->start, resource_size(res));
if (!vc4_hdmi->phy_regs)
return -ENOMEM;
res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "packet");
if (!res)
return -ENODEV;
vc4_hdmi->ram_regs = devm_ioremap(dev, res->start, resource_size(res));
if (!vc4_hdmi->ram_regs)
return -ENOMEM;
res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "rm");
if (!res)
return -ENODEV;
vc4_hdmi->rm_regs = devm_ioremap(dev, res->start, resource_size(res));
if (!vc4_hdmi->rm_regs)
return -ENOMEM;
vc4_hdmi->hsm_clock = devm_clk_get(dev, "hdmi");
if (IS_ERR(vc4_hdmi->hsm_clock)) {
DRM_ERROR("Failed to get HDMI state machine clock\n");
return PTR_ERR(vc4_hdmi->hsm_clock);
}
vc4_hdmi->pixel_bvb_clock = devm_clk_get(dev, "bvb");
if (IS_ERR(vc4_hdmi->pixel_bvb_clock)) {
DRM_ERROR("Failed to get pixel bvb clock\n");
return PTR_ERR(vc4_hdmi->pixel_bvb_clock);
}
vc4_hdmi->audio_clock = devm_clk_get(dev, "audio");
if (IS_ERR(vc4_hdmi->audio_clock)) {
DRM_ERROR("Failed to get audio clock\n");
return PTR_ERR(vc4_hdmi->audio_clock);
}
vc4_hdmi->cec_clock = devm_clk_get(dev, "cec");
if (IS_ERR(vc4_hdmi->cec_clock)) {
DRM_ERROR("Failed to get CEC clock\n");
return PTR_ERR(vc4_hdmi->cec_clock);
}
vc4_hdmi->reset = devm_reset_control_get(dev, NULL);
if (IS_ERR(vc4_hdmi->reset)) {
DRM_ERROR("Failed to get HDMI reset line\n");
return PTR_ERR(vc4_hdmi->reset);
}
ret = vc4_hdmi_build_regset(drm, vc4_hdmi, &vc4_hdmi->hdmi_regset, VC4_HDMI);
if (ret)
return ret;
ret = vc4_hdmi_build_regset(drm, vc4_hdmi, &vc4_hdmi->hd_regset, VC4_HD);
if (ret)
return ret;
ret = vc4_hdmi_build_regset(drm, vc4_hdmi, &vc4_hdmi->cec_regset, VC5_CEC);
if (ret)
return ret;
ret = vc4_hdmi_build_regset(drm, vc4_hdmi, &vc4_hdmi->csc_regset, VC5_CSC);
if (ret)
return ret;
ret = vc4_hdmi_build_regset(drm, vc4_hdmi, &vc4_hdmi->dvp_regset, VC5_DVP);
if (ret)
return ret;
ret = vc4_hdmi_build_regset(drm, vc4_hdmi, &vc4_hdmi->phy_regset, VC5_PHY);
if (ret)
return ret;
ret = vc4_hdmi_build_regset(drm, vc4_hdmi, &vc4_hdmi->ram_regset, VC5_RAM);
if (ret)
return ret;
ret = vc4_hdmi_build_regset(drm, vc4_hdmi, &vc4_hdmi->rm_regset, VC5_RM);
if (ret)
return ret;
return 0;
}
static int vc4_hdmi_runtime_suspend(struct device *dev)
{
struct vc4_hdmi *vc4_hdmi = dev_get_drvdata(dev);
clk_disable_unprepare(vc4_hdmi->hsm_clock);
return 0;
}
static int vc4_hdmi_runtime_resume(struct device *dev)
{
struct vc4_hdmi *vc4_hdmi = dev_get_drvdata(dev);
unsigned long __maybe_unused flags;
u32 __maybe_unused value;
unsigned long rate;
int ret;
ret = clk_prepare_enable(vc4_hdmi->hsm_clock);
if (ret)
return ret;
/*
* Whenever the RaspberryPi boots without an HDMI monitor
* plugged in, the firmware won't have initialized the HSM clock
* rate and it will be reported as 0.
*
* If we try to access a register of the controller in such a
* case, it will lead to a silent CPU stall. Let's make sure we
* prevent such a case.
*/
rate = clk_get_rate(vc4_hdmi->hsm_clock);
if (!rate) {
ret = -EINVAL;
goto err_disable_clk;
}
if (vc4_hdmi->variant->reset)
vc4_hdmi->variant->reset(vc4_hdmi);
#ifdef CONFIG_DRM_VC4_HDMI_CEC
spin_lock_irqsave(&vc4_hdmi->hw_lock, flags);
value = HDMI_READ(HDMI_CEC_CNTRL_1);
/* Set the logical address to Unregistered */
value |= VC4_HDMI_CEC_ADDR_MASK;
HDMI_WRITE(HDMI_CEC_CNTRL_1, value);
spin_unlock_irqrestore(&vc4_hdmi->hw_lock, flags);
vc4_hdmi_cec_update_clk_div(vc4_hdmi);
if (!vc4_hdmi->variant->external_irq_controller) {
spin_lock_irqsave(&vc4_hdmi->hw_lock, flags);
HDMI_WRITE(HDMI_CEC_CPU_MASK_SET, 0xffffffff);
spin_unlock_irqrestore(&vc4_hdmi->hw_lock, flags);
}
#endif
return 0;
err_disable_clk:
clk_disable_unprepare(vc4_hdmi->hsm_clock);
return ret;
}
static void vc4_hdmi_put_ddc_device(void *ptr)
{
struct vc4_hdmi *vc4_hdmi = ptr;
put_device(&vc4_hdmi->ddc->dev);
}
static int vc4_hdmi_bind(struct device *dev, struct device *master, void *data)
{
const struct vc4_hdmi_variant *variant = of_device_get_match_data(dev);
struct platform_device *pdev = to_platform_device(dev);
struct drm_device *drm = dev_get_drvdata(master);
struct vc4_hdmi *vc4_hdmi;
struct drm_encoder *encoder;
struct device_node *ddc_node;
int ret;
vc4_hdmi = drmm_kzalloc(drm, sizeof(*vc4_hdmi), GFP_KERNEL);
if (!vc4_hdmi)
return -ENOMEM;
ret = drmm_mutex_init(drm, &vc4_hdmi->mutex);
if (ret)
return ret;
spin_lock_init(&vc4_hdmi->hw_lock);
INIT_DELAYED_WORK(&vc4_hdmi->scrambling_work, vc4_hdmi_scrambling_wq);
dev_set_drvdata(dev, vc4_hdmi);
encoder = &vc4_hdmi->encoder.base;
vc4_hdmi->encoder.type = variant->encoder_type;
vc4_hdmi->encoder.pre_crtc_configure = vc4_hdmi_encoder_pre_crtc_configure;
vc4_hdmi->encoder.pre_crtc_enable = vc4_hdmi_encoder_pre_crtc_enable;
vc4_hdmi->encoder.post_crtc_enable = vc4_hdmi_encoder_post_crtc_enable;
vc4_hdmi->encoder.post_crtc_disable = vc4_hdmi_encoder_post_crtc_disable;
vc4_hdmi->encoder.post_crtc_powerdown = vc4_hdmi_encoder_post_crtc_powerdown;
vc4_hdmi->pdev = pdev;
vc4_hdmi->variant = variant;
/*
* Since we don't know the state of the controller and its
* display (if any), let's assume it's always enabled.
* vc4_hdmi_disable_scrambling() will thus run at boot, make
* sure it's disabled, and avoid any inconsistency.
*/
if (variant->max_pixel_clock > HDMI_14_MAX_TMDS_CLK)
vc4_hdmi->scdc_enabled = true;
ret = variant->init_resources(drm, vc4_hdmi);
if (ret)
return ret;
ddc_node = of_parse_phandle(dev->of_node, "ddc", 0);
if (!ddc_node) {
DRM_ERROR("Failed to find ddc node in device tree\n");
return -ENODEV;
}
vc4_hdmi->ddc = of_find_i2c_adapter_by_node(ddc_node);
of_node_put(ddc_node);
if (!vc4_hdmi->ddc) {
DRM_DEBUG("Failed to get ddc i2c adapter by node\n");
return -EPROBE_DEFER;
}
ret = devm_add_action_or_reset(dev, vc4_hdmi_put_ddc_device, vc4_hdmi);
if (ret)
return ret;
/* Only use the GPIO HPD pin if present in the DT, otherwise
* we'll use the HDMI core's register.
*/
vc4_hdmi->hpd_gpio = devm_gpiod_get_optional(dev, "hpd", GPIOD_IN);
if (IS_ERR(vc4_hdmi->hpd_gpio)) {
return PTR_ERR(vc4_hdmi->hpd_gpio);
}
vc4_hdmi->disable_wifi_frequencies =
of_property_read_bool(dev->of_node, "wifi-2.4ghz-coexistence");
ret = devm_pm_runtime_enable(dev);
if (ret)
return ret;
/*
* We need to have the device powered up at this point to call
* our reset hook and for the CEC init.
*/
ret = pm_runtime_resume_and_get(dev);
if (ret)
return ret;
if ((of_device_is_compatible(dev->of_node, "brcm,bcm2711-hdmi0") ||
of_device_is_compatible(dev->of_node, "brcm,bcm2711-hdmi1")) &&
HDMI_READ(HDMI_VID_CTL) & VC4_HD_VID_CTL_ENABLE) {
clk_prepare_enable(vc4_hdmi->pixel_clock);
clk_prepare_enable(vc4_hdmi->hsm_clock);
clk_prepare_enable(vc4_hdmi->pixel_bvb_clock);
}
ret = drmm_encoder_init(drm, encoder,
&vc4_hdmi_encoder_funcs,
DRM_MODE_ENCODER_TMDS,
NULL);
if (ret)
goto err_put_runtime_pm;
drm_encoder_helper_add(encoder, &vc4_hdmi_encoder_helper_funcs);
ret = vc4_hdmi_connector_init(drm, vc4_hdmi);
if (ret)
goto err_put_runtime_pm;
ret = vc4_hdmi_hotplug_init(vc4_hdmi);
if (ret)
goto err_put_runtime_pm;
ret = vc4_hdmi_cec_init(vc4_hdmi);
if (ret)
goto err_put_runtime_pm;
ret = vc4_hdmi_audio_init(vc4_hdmi);
if (ret)
goto err_put_runtime_pm;
pm_runtime_put_sync(dev);
return 0;
err_put_runtime_pm:
pm_runtime_put_sync(dev);
return ret;
}
static const struct component_ops vc4_hdmi_ops = {
.bind = vc4_hdmi_bind,
};
static int vc4_hdmi_dev_probe(struct platform_device *pdev)
{
return component_add(&pdev->dev, &vc4_hdmi_ops);
}
static void vc4_hdmi_dev_remove(struct platform_device *pdev)
{
component_del(&pdev->dev, &vc4_hdmi_ops);
}
static const struct vc4_hdmi_variant bcm2835_variant = {
.encoder_type = VC4_ENCODER_TYPE_HDMI0,
.debugfs_name = "hdmi_regs",
.card_name = "vc4-hdmi",
.max_pixel_clock = 162000000,
.registers = vc4_hdmi_fields,
.num_registers = ARRAY_SIZE(vc4_hdmi_fields),
.init_resources = vc4_hdmi_init_resources,
.csc_setup = vc4_hdmi_csc_setup,
.reset = vc4_hdmi_reset,
.set_timings = vc4_hdmi_set_timings,
.phy_init = vc4_hdmi_phy_init,
.phy_disable = vc4_hdmi_phy_disable,
.phy_rng_enable = vc4_hdmi_phy_rng_enable,
.phy_rng_disable = vc4_hdmi_phy_rng_disable,
.channel_map = vc4_hdmi_channel_map,
.supports_hdr = false,
};
static const struct vc4_hdmi_variant bcm2711_hdmi0_variant = {
.encoder_type = VC4_ENCODER_TYPE_HDMI0,
.debugfs_name = "hdmi0_regs",
.card_name = "vc4-hdmi-0",
.max_pixel_clock = 600000000,
.registers = vc5_hdmi_hdmi0_fields,
.num_registers = ARRAY_SIZE(vc5_hdmi_hdmi0_fields),
.phy_lane_mapping = {
PHY_LANE_0,
PHY_LANE_1,
PHY_LANE_2,
PHY_LANE_CK,
},
.unsupported_odd_h_timings = true,
.external_irq_controller = true,
.init_resources = vc5_hdmi_init_resources,
.csc_setup = vc5_hdmi_csc_setup,
.reset = vc5_hdmi_reset,
.set_timings = vc5_hdmi_set_timings,
.phy_init = vc5_hdmi_phy_init,
.phy_disable = vc5_hdmi_phy_disable,
.phy_rng_enable = vc5_hdmi_phy_rng_enable,
.phy_rng_disable = vc5_hdmi_phy_rng_disable,
.channel_map = vc5_hdmi_channel_map,
.supports_hdr = true,
.hp_detect = vc5_hdmi_hp_detect,
};
static const struct vc4_hdmi_variant bcm2711_hdmi1_variant = {
.encoder_type = VC4_ENCODER_TYPE_HDMI1,
.debugfs_name = "hdmi1_regs",
.card_name = "vc4-hdmi-1",
.max_pixel_clock = HDMI_14_MAX_TMDS_CLK,
.registers = vc5_hdmi_hdmi1_fields,
.num_registers = ARRAY_SIZE(vc5_hdmi_hdmi1_fields),
.phy_lane_mapping = {
PHY_LANE_1,
PHY_LANE_0,
PHY_LANE_CK,
PHY_LANE_2,
},
.unsupported_odd_h_timings = true,
.external_irq_controller = true,
.init_resources = vc5_hdmi_init_resources,
.csc_setup = vc5_hdmi_csc_setup,
.reset = vc5_hdmi_reset,
.set_timings = vc5_hdmi_set_timings,
.phy_init = vc5_hdmi_phy_init,
.phy_disable = vc5_hdmi_phy_disable,
.phy_rng_enable = vc5_hdmi_phy_rng_enable,
.phy_rng_disable = vc5_hdmi_phy_rng_disable,
.channel_map = vc5_hdmi_channel_map,
.supports_hdr = true,
.hp_detect = vc5_hdmi_hp_detect,
};
static const struct of_device_id vc4_hdmi_dt_match[] = {
{ .compatible = "brcm,bcm2835-hdmi", .data = &bcm2835_variant },
{ .compatible = "brcm,bcm2711-hdmi0", .data = &bcm2711_hdmi0_variant },
{ .compatible = "brcm,bcm2711-hdmi1", .data = &bcm2711_hdmi1_variant },
{}
};
static const struct dev_pm_ops vc4_hdmi_pm_ops = {
SET_RUNTIME_PM_OPS(vc4_hdmi_runtime_suspend,
vc4_hdmi_runtime_resume,
NULL)
};
struct platform_driver vc4_hdmi_driver = {
.probe = vc4_hdmi_dev_probe,
.remove_new = vc4_hdmi_dev_remove,
.driver = {
.name = "vc4_hdmi",
.of_match_table = vc4_hdmi_dt_match,
.pm = &vc4_hdmi_pm_ops,
},
};