ec4edd7b9d
bcachefs btree nodes are big - typically 256k - and btree roots are pinned in memory. As we're now up to 18 btrees, we now have significant memory overhead in mostly empty btree roots. And in the future we're going to start enforcing that certain btree node boundaries exist, to solve lock contention issues - analagous to XFS's AGIs. Thus, we need to start allocating smaller btree node buffers when we can. This patch changes code that refers to the filesystem constant c->opts.btree_node_size to refer to the btree node buffer size - btree_buf_bytes() - where appropriate. Signed-off-by: Kent Overstreet <kent.overstreet@linux.dev>
647 lines
18 KiB
C
647 lines
18 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
|
|
#include "bcachefs.h"
|
|
#include "btree_locking.h"
|
|
#include "btree_update.h"
|
|
#include "btree_update_interior.h"
|
|
#include "btree_write_buffer.h"
|
|
#include "error.h"
|
|
#include "journal.h"
|
|
#include "journal_io.h"
|
|
#include "journal_reclaim.h"
|
|
|
|
#include <linux/prefetch.h>
|
|
|
|
static int bch2_btree_write_buffer_journal_flush(struct journal *,
|
|
struct journal_entry_pin *, u64);
|
|
|
|
static int bch2_journal_keys_to_write_buffer(struct bch_fs *, struct journal_buf *);
|
|
|
|
static inline bool __wb_key_ref_cmp(const struct wb_key_ref *l, const struct wb_key_ref *r)
|
|
{
|
|
return (cmp_int(l->hi, r->hi) ?:
|
|
cmp_int(l->mi, r->mi) ?:
|
|
cmp_int(l->lo, r->lo)) >= 0;
|
|
}
|
|
|
|
static inline bool wb_key_ref_cmp(const struct wb_key_ref *l, const struct wb_key_ref *r)
|
|
{
|
|
#ifdef CONFIG_X86_64
|
|
int cmp;
|
|
|
|
asm("mov (%[l]), %%rax;"
|
|
"sub (%[r]), %%rax;"
|
|
"mov 8(%[l]), %%rax;"
|
|
"sbb 8(%[r]), %%rax;"
|
|
"mov 16(%[l]), %%rax;"
|
|
"sbb 16(%[r]), %%rax;"
|
|
: "=@ccae" (cmp)
|
|
: [l] "r" (l), [r] "r" (r)
|
|
: "rax", "cc");
|
|
|
|
EBUG_ON(cmp != __wb_key_ref_cmp(l, r));
|
|
return cmp;
|
|
#else
|
|
return __wb_key_ref_cmp(l, r);
|
|
#endif
|
|
}
|
|
|
|
/* Compare excluding idx, the low 24 bits: */
|
|
static inline bool wb_key_eq(const void *_l, const void *_r)
|
|
{
|
|
const struct wb_key_ref *l = _l;
|
|
const struct wb_key_ref *r = _r;
|
|
|
|
return !((l->hi ^ r->hi)|
|
|
(l->mi ^ r->mi)|
|
|
((l->lo >> 24) ^ (r->lo >> 24)));
|
|
}
|
|
|
|
static noinline void wb_sort(struct wb_key_ref *base, size_t num)
|
|
{
|
|
size_t n = num, a = num / 2;
|
|
|
|
if (!a) /* num < 2 || size == 0 */
|
|
return;
|
|
|
|
for (;;) {
|
|
size_t b, c, d;
|
|
|
|
if (a) /* Building heap: sift down --a */
|
|
--a;
|
|
else if (--n) /* Sorting: Extract root to --n */
|
|
swap(base[0], base[n]);
|
|
else /* Sort complete */
|
|
break;
|
|
|
|
/*
|
|
* Sift element at "a" down into heap. This is the
|
|
* "bottom-up" variant, which significantly reduces
|
|
* calls to cmp_func(): we find the sift-down path all
|
|
* the way to the leaves (one compare per level), then
|
|
* backtrack to find where to insert the target element.
|
|
*
|
|
* Because elements tend to sift down close to the leaves,
|
|
* this uses fewer compares than doing two per level
|
|
* on the way down. (A bit more than half as many on
|
|
* average, 3/4 worst-case.)
|
|
*/
|
|
for (b = a; c = 2*b + 1, (d = c + 1) < n;)
|
|
b = wb_key_ref_cmp(base + c, base + d) ? c : d;
|
|
if (d == n) /* Special case last leaf with no sibling */
|
|
b = c;
|
|
|
|
/* Now backtrack from "b" to the correct location for "a" */
|
|
while (b != a && wb_key_ref_cmp(base + a, base + b))
|
|
b = (b - 1) / 2;
|
|
c = b; /* Where "a" belongs */
|
|
while (b != a) { /* Shift it into place */
|
|
b = (b - 1) / 2;
|
|
swap(base[b], base[c]);
|
|
}
|
|
}
|
|
}
|
|
|
|
static noinline int wb_flush_one_slowpath(struct btree_trans *trans,
|
|
struct btree_iter *iter,
|
|
struct btree_write_buffered_key *wb)
|
|
{
|
|
struct btree_path *path = btree_iter_path(trans, iter);
|
|
|
|
bch2_btree_node_unlock_write(trans, path, path->l[0].b);
|
|
|
|
trans->journal_res.seq = wb->journal_seq;
|
|
|
|
return bch2_trans_update(trans, iter, &wb->k,
|
|
BTREE_UPDATE_INTERNAL_SNAPSHOT_NODE) ?:
|
|
bch2_trans_commit(trans, NULL, NULL,
|
|
BCH_TRANS_COMMIT_no_enospc|
|
|
BCH_TRANS_COMMIT_no_check_rw|
|
|
BCH_TRANS_COMMIT_no_journal_res|
|
|
BCH_TRANS_COMMIT_journal_reclaim);
|
|
}
|
|
|
|
static inline int wb_flush_one(struct btree_trans *trans, struct btree_iter *iter,
|
|
struct btree_write_buffered_key *wb,
|
|
bool *write_locked, size_t *fast)
|
|
{
|
|
struct btree_path *path;
|
|
int ret;
|
|
|
|
EBUG_ON(!wb->journal_seq);
|
|
EBUG_ON(!trans->c->btree_write_buffer.flushing.pin.seq);
|
|
EBUG_ON(trans->c->btree_write_buffer.flushing.pin.seq > wb->journal_seq);
|
|
|
|
ret = bch2_btree_iter_traverse(iter);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/*
|
|
* We can't clone a path that has write locks: unshare it now, before
|
|
* set_pos and traverse():
|
|
*/
|
|
if (btree_iter_path(trans, iter)->ref > 1)
|
|
iter->path = __bch2_btree_path_make_mut(trans, iter->path, true, _THIS_IP_);
|
|
|
|
path = btree_iter_path(trans, iter);
|
|
|
|
if (!*write_locked) {
|
|
ret = bch2_btree_node_lock_write(trans, path, &path->l[0].b->c);
|
|
if (ret)
|
|
return ret;
|
|
|
|
bch2_btree_node_prep_for_write(trans, path, path->l[0].b);
|
|
*write_locked = true;
|
|
}
|
|
|
|
if (unlikely(!bch2_btree_node_insert_fits(path->l[0].b, wb->k.k.u64s))) {
|
|
*write_locked = false;
|
|
return wb_flush_one_slowpath(trans, iter, wb);
|
|
}
|
|
|
|
bch2_btree_insert_key_leaf(trans, path, &wb->k, wb->journal_seq);
|
|
(*fast)++;
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Update a btree with a write buffered key using the journal seq of the
|
|
* original write buffer insert.
|
|
*
|
|
* It is not safe to rejournal the key once it has been inserted into the write
|
|
* buffer because that may break recovery ordering. For example, the key may
|
|
* have already been modified in the active write buffer in a seq that comes
|
|
* before the current transaction. If we were to journal this key again and
|
|
* crash, recovery would process updates in the wrong order.
|
|
*/
|
|
static int
|
|
btree_write_buffered_insert(struct btree_trans *trans,
|
|
struct btree_write_buffered_key *wb)
|
|
{
|
|
struct btree_iter iter;
|
|
int ret;
|
|
|
|
bch2_trans_iter_init(trans, &iter, wb->btree, bkey_start_pos(&wb->k.k),
|
|
BTREE_ITER_CACHED|BTREE_ITER_INTENT);
|
|
|
|
trans->journal_res.seq = wb->journal_seq;
|
|
|
|
ret = bch2_btree_iter_traverse(&iter) ?:
|
|
bch2_trans_update(trans, &iter, &wb->k,
|
|
BTREE_UPDATE_INTERNAL_SNAPSHOT_NODE);
|
|
bch2_trans_iter_exit(trans, &iter);
|
|
return ret;
|
|
}
|
|
|
|
static void move_keys_from_inc_to_flushing(struct btree_write_buffer *wb)
|
|
{
|
|
struct bch_fs *c = container_of(wb, struct bch_fs, btree_write_buffer);
|
|
struct journal *j = &c->journal;
|
|
|
|
if (!wb->inc.keys.nr)
|
|
return;
|
|
|
|
bch2_journal_pin_add(j, wb->inc.keys.data[0].journal_seq, &wb->flushing.pin,
|
|
bch2_btree_write_buffer_journal_flush);
|
|
|
|
darray_resize(&wb->flushing.keys, min_t(size_t, 1U << 20, wb->flushing.keys.nr + wb->inc.keys.nr));
|
|
darray_resize(&wb->sorted, wb->flushing.keys.size);
|
|
|
|
if (!wb->flushing.keys.nr && wb->sorted.size >= wb->inc.keys.nr) {
|
|
swap(wb->flushing.keys, wb->inc.keys);
|
|
goto out;
|
|
}
|
|
|
|
size_t nr = min(darray_room(wb->flushing.keys),
|
|
wb->sorted.size - wb->flushing.keys.nr);
|
|
nr = min(nr, wb->inc.keys.nr);
|
|
|
|
memcpy(&darray_top(wb->flushing.keys),
|
|
wb->inc.keys.data,
|
|
sizeof(wb->inc.keys.data[0]) * nr);
|
|
|
|
memmove(wb->inc.keys.data,
|
|
wb->inc.keys.data + nr,
|
|
sizeof(wb->inc.keys.data[0]) * (wb->inc.keys.nr - nr));
|
|
|
|
wb->flushing.keys.nr += nr;
|
|
wb->inc.keys.nr -= nr;
|
|
out:
|
|
if (!wb->inc.keys.nr)
|
|
bch2_journal_pin_drop(j, &wb->inc.pin);
|
|
else
|
|
bch2_journal_pin_update(j, wb->inc.keys.data[0].journal_seq, &wb->inc.pin,
|
|
bch2_btree_write_buffer_journal_flush);
|
|
|
|
if (j->watermark) {
|
|
spin_lock(&j->lock);
|
|
bch2_journal_set_watermark(j);
|
|
spin_unlock(&j->lock);
|
|
}
|
|
|
|
BUG_ON(wb->sorted.size < wb->flushing.keys.nr);
|
|
}
|
|
|
|
static int bch2_btree_write_buffer_flush_locked(struct btree_trans *trans)
|
|
{
|
|
struct bch_fs *c = trans->c;
|
|
struct journal *j = &c->journal;
|
|
struct btree_write_buffer *wb = &c->btree_write_buffer;
|
|
struct btree_iter iter = { NULL };
|
|
size_t skipped = 0, fast = 0, slowpath = 0;
|
|
bool write_locked = false;
|
|
int ret = 0;
|
|
|
|
bch2_trans_unlock(trans);
|
|
bch2_trans_begin(trans);
|
|
|
|
mutex_lock(&wb->inc.lock);
|
|
move_keys_from_inc_to_flushing(wb);
|
|
mutex_unlock(&wb->inc.lock);
|
|
|
|
for (size_t i = 0; i < wb->flushing.keys.nr; i++) {
|
|
wb->sorted.data[i].idx = i;
|
|
wb->sorted.data[i].btree = wb->flushing.keys.data[i].btree;
|
|
memcpy(&wb->sorted.data[i].pos, &wb->flushing.keys.data[i].k.k.p, sizeof(struct bpos));
|
|
}
|
|
wb->sorted.nr = wb->flushing.keys.nr;
|
|
|
|
/*
|
|
* We first sort so that we can detect and skip redundant updates, and
|
|
* then we attempt to flush in sorted btree order, as this is most
|
|
* efficient.
|
|
*
|
|
* However, since we're not flushing in the order they appear in the
|
|
* journal we won't be able to drop our journal pin until everything is
|
|
* flushed - which means this could deadlock the journal if we weren't
|
|
* passing BCH_TRANS_COMMIT_journal_reclaim. This causes the update to fail
|
|
* if it would block taking a journal reservation.
|
|
*
|
|
* If that happens, simply skip the key so we can optimistically insert
|
|
* as many keys as possible in the fast path.
|
|
*/
|
|
wb_sort(wb->sorted.data, wb->sorted.nr);
|
|
|
|
darray_for_each(wb->sorted, i) {
|
|
struct btree_write_buffered_key *k = &wb->flushing.keys.data[i->idx];
|
|
|
|
for (struct wb_key_ref *n = i + 1; n < min(i + 4, &darray_top(wb->sorted)); n++)
|
|
prefetch(&wb->flushing.keys.data[n->idx]);
|
|
|
|
BUG_ON(!k->journal_seq);
|
|
|
|
if (i + 1 < &darray_top(wb->sorted) &&
|
|
wb_key_eq(i, i + 1)) {
|
|
struct btree_write_buffered_key *n = &wb->flushing.keys.data[i[1].idx];
|
|
|
|
skipped++;
|
|
n->journal_seq = min_t(u64, n->journal_seq, k->journal_seq);
|
|
k->journal_seq = 0;
|
|
continue;
|
|
}
|
|
|
|
if (write_locked) {
|
|
struct btree_path *path = btree_iter_path(trans, &iter);
|
|
|
|
if (path->btree_id != i->btree ||
|
|
bpos_gt(k->k.k.p, path->l[0].b->key.k.p)) {
|
|
bch2_btree_node_unlock_write(trans, path, path->l[0].b);
|
|
write_locked = false;
|
|
}
|
|
}
|
|
|
|
if (!iter.path || iter.btree_id != k->btree) {
|
|
bch2_trans_iter_exit(trans, &iter);
|
|
bch2_trans_iter_init(trans, &iter, k->btree, k->k.k.p,
|
|
BTREE_ITER_INTENT|BTREE_ITER_ALL_SNAPSHOTS);
|
|
}
|
|
|
|
bch2_btree_iter_set_pos(&iter, k->k.k.p);
|
|
btree_iter_path(trans, &iter)->preserve = false;
|
|
|
|
do {
|
|
if (race_fault()) {
|
|
ret = -BCH_ERR_journal_reclaim_would_deadlock;
|
|
break;
|
|
}
|
|
|
|
ret = wb_flush_one(trans, &iter, k, &write_locked, &fast);
|
|
if (!write_locked)
|
|
bch2_trans_begin(trans);
|
|
} while (bch2_err_matches(ret, BCH_ERR_transaction_restart));
|
|
|
|
if (!ret) {
|
|
k->journal_seq = 0;
|
|
} else if (ret == -BCH_ERR_journal_reclaim_would_deadlock) {
|
|
slowpath++;
|
|
ret = 0;
|
|
} else
|
|
break;
|
|
}
|
|
|
|
if (write_locked) {
|
|
struct btree_path *path = btree_iter_path(trans, &iter);
|
|
bch2_btree_node_unlock_write(trans, path, path->l[0].b);
|
|
}
|
|
bch2_trans_iter_exit(trans, &iter);
|
|
|
|
if (ret)
|
|
goto err;
|
|
|
|
if (slowpath) {
|
|
/*
|
|
* Flush in the order they were present in the journal, so that
|
|
* we can release journal pins:
|
|
* The fastpath zapped the seq of keys that were successfully flushed so
|
|
* we can skip those here.
|
|
*/
|
|
trace_and_count(c, write_buffer_flush_slowpath, trans, slowpath, wb->flushing.keys.nr);
|
|
|
|
darray_for_each(wb->flushing.keys, i) {
|
|
if (!i->journal_seq)
|
|
continue;
|
|
|
|
bch2_journal_pin_update(j, i->journal_seq, &wb->flushing.pin,
|
|
bch2_btree_write_buffer_journal_flush);
|
|
|
|
bch2_trans_begin(trans);
|
|
|
|
ret = commit_do(trans, NULL, NULL,
|
|
BCH_WATERMARK_reclaim|
|
|
BCH_TRANS_COMMIT_no_check_rw|
|
|
BCH_TRANS_COMMIT_no_enospc|
|
|
BCH_TRANS_COMMIT_no_journal_res|
|
|
BCH_TRANS_COMMIT_journal_reclaim,
|
|
btree_write_buffered_insert(trans, i));
|
|
if (ret)
|
|
goto err;
|
|
}
|
|
}
|
|
err:
|
|
bch2_fs_fatal_err_on(ret, c, "%s: insert error %s", __func__, bch2_err_str(ret));
|
|
trace_write_buffer_flush(trans, wb->flushing.keys.nr, skipped, fast, 0);
|
|
bch2_journal_pin_drop(j, &wb->flushing.pin);
|
|
wb->flushing.keys.nr = 0;
|
|
return ret;
|
|
}
|
|
|
|
static int fetch_wb_keys_from_journal(struct bch_fs *c, u64 seq)
|
|
{
|
|
struct journal *j = &c->journal;
|
|
struct journal_buf *buf;
|
|
int ret = 0;
|
|
|
|
while (!ret && (buf = bch2_next_write_buffer_flush_journal_buf(j, seq))) {
|
|
ret = bch2_journal_keys_to_write_buffer(c, buf);
|
|
mutex_unlock(&j->buf_lock);
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int btree_write_buffer_flush_seq(struct btree_trans *trans, u64 seq)
|
|
{
|
|
struct bch_fs *c = trans->c;
|
|
struct btree_write_buffer *wb = &c->btree_write_buffer;
|
|
int ret = 0, fetch_from_journal_err;
|
|
|
|
do {
|
|
bch2_trans_unlock(trans);
|
|
|
|
fetch_from_journal_err = fetch_wb_keys_from_journal(c, seq);
|
|
|
|
/*
|
|
* On memory allocation failure, bch2_btree_write_buffer_flush_locked()
|
|
* is not guaranteed to empty wb->inc:
|
|
*/
|
|
mutex_lock(&wb->flushing.lock);
|
|
ret = bch2_btree_write_buffer_flush_locked(trans);
|
|
mutex_unlock(&wb->flushing.lock);
|
|
} while (!ret &&
|
|
(fetch_from_journal_err ||
|
|
(wb->inc.pin.seq && wb->inc.pin.seq <= seq) ||
|
|
(wb->flushing.pin.seq && wb->flushing.pin.seq <= seq)));
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int bch2_btree_write_buffer_journal_flush(struct journal *j,
|
|
struct journal_entry_pin *_pin, u64 seq)
|
|
{
|
|
struct bch_fs *c = container_of(j, struct bch_fs, journal);
|
|
|
|
return bch2_trans_run(c, btree_write_buffer_flush_seq(trans, seq));
|
|
}
|
|
|
|
int bch2_btree_write_buffer_flush_sync(struct btree_trans *trans)
|
|
{
|
|
struct bch_fs *c = trans->c;
|
|
|
|
trace_and_count(c, write_buffer_flush_sync, trans, _RET_IP_);
|
|
|
|
return btree_write_buffer_flush_seq(trans, journal_cur_seq(&c->journal));
|
|
}
|
|
|
|
int bch2_btree_write_buffer_flush_nocheck_rw(struct btree_trans *trans)
|
|
{
|
|
struct bch_fs *c = trans->c;
|
|
struct btree_write_buffer *wb = &c->btree_write_buffer;
|
|
int ret = 0;
|
|
|
|
if (mutex_trylock(&wb->flushing.lock)) {
|
|
ret = bch2_btree_write_buffer_flush_locked(trans);
|
|
mutex_unlock(&wb->flushing.lock);
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
int bch2_btree_write_buffer_tryflush(struct btree_trans *trans)
|
|
{
|
|
struct bch_fs *c = trans->c;
|
|
|
|
if (!bch2_write_ref_tryget(c, BCH_WRITE_REF_btree_write_buffer))
|
|
return -BCH_ERR_erofs_no_writes;
|
|
|
|
int ret = bch2_btree_write_buffer_flush_nocheck_rw(trans);
|
|
bch2_write_ref_put(c, BCH_WRITE_REF_btree_write_buffer);
|
|
return ret;
|
|
}
|
|
|
|
static void bch2_btree_write_buffer_flush_work(struct work_struct *work)
|
|
{
|
|
struct bch_fs *c = container_of(work, struct bch_fs, btree_write_buffer.flush_work);
|
|
struct btree_write_buffer *wb = &c->btree_write_buffer;
|
|
int ret;
|
|
|
|
mutex_lock(&wb->flushing.lock);
|
|
do {
|
|
ret = bch2_trans_run(c, bch2_btree_write_buffer_flush_locked(trans));
|
|
} while (!ret && bch2_btree_write_buffer_should_flush(c));
|
|
mutex_unlock(&wb->flushing.lock);
|
|
|
|
bch2_write_ref_put(c, BCH_WRITE_REF_btree_write_buffer);
|
|
}
|
|
|
|
int bch2_journal_key_to_wb_slowpath(struct bch_fs *c,
|
|
struct journal_keys_to_wb *dst,
|
|
enum btree_id btree, struct bkey_i *k)
|
|
{
|
|
struct btree_write_buffer *wb = &c->btree_write_buffer;
|
|
int ret;
|
|
retry:
|
|
ret = darray_make_room_gfp(&dst->wb->keys, 1, GFP_KERNEL);
|
|
if (!ret && dst->wb == &wb->flushing)
|
|
ret = darray_resize(&wb->sorted, wb->flushing.keys.size);
|
|
|
|
if (unlikely(ret)) {
|
|
if (dst->wb == &c->btree_write_buffer.flushing) {
|
|
mutex_unlock(&dst->wb->lock);
|
|
dst->wb = &c->btree_write_buffer.inc;
|
|
bch2_journal_pin_add(&c->journal, dst->seq, &dst->wb->pin,
|
|
bch2_btree_write_buffer_journal_flush);
|
|
goto retry;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
dst->room = darray_room(dst->wb->keys);
|
|
if (dst->wb == &wb->flushing)
|
|
dst->room = min(dst->room, wb->sorted.size - wb->flushing.keys.nr);
|
|
BUG_ON(!dst->room);
|
|
BUG_ON(!dst->seq);
|
|
|
|
struct btree_write_buffered_key *wb_k = &darray_top(dst->wb->keys);
|
|
wb_k->journal_seq = dst->seq;
|
|
wb_k->btree = btree;
|
|
bkey_copy(&wb_k->k, k);
|
|
dst->wb->keys.nr++;
|
|
dst->room--;
|
|
return 0;
|
|
}
|
|
|
|
void bch2_journal_keys_to_write_buffer_start(struct bch_fs *c, struct journal_keys_to_wb *dst, u64 seq)
|
|
{
|
|
struct btree_write_buffer *wb = &c->btree_write_buffer;
|
|
|
|
if (mutex_trylock(&wb->flushing.lock)) {
|
|
mutex_lock(&wb->inc.lock);
|
|
move_keys_from_inc_to_flushing(wb);
|
|
|
|
/*
|
|
* Attempt to skip wb->inc, and add keys directly to
|
|
* wb->flushing, saving us a copy later:
|
|
*/
|
|
|
|
if (!wb->inc.keys.nr) {
|
|
dst->wb = &wb->flushing;
|
|
} else {
|
|
mutex_unlock(&wb->flushing.lock);
|
|
dst->wb = &wb->inc;
|
|
}
|
|
} else {
|
|
mutex_lock(&wb->inc.lock);
|
|
dst->wb = &wb->inc;
|
|
}
|
|
|
|
dst->room = darray_room(dst->wb->keys);
|
|
if (dst->wb == &wb->flushing)
|
|
dst->room = min(dst->room, wb->sorted.size - wb->flushing.keys.nr);
|
|
dst->seq = seq;
|
|
|
|
bch2_journal_pin_add(&c->journal, seq, &dst->wb->pin,
|
|
bch2_btree_write_buffer_journal_flush);
|
|
}
|
|
|
|
void bch2_journal_keys_to_write_buffer_end(struct bch_fs *c, struct journal_keys_to_wb *dst)
|
|
{
|
|
struct btree_write_buffer *wb = &c->btree_write_buffer;
|
|
|
|
if (!dst->wb->keys.nr)
|
|
bch2_journal_pin_drop(&c->journal, &dst->wb->pin);
|
|
|
|
if (bch2_btree_write_buffer_should_flush(c) &&
|
|
__bch2_write_ref_tryget(c, BCH_WRITE_REF_btree_write_buffer) &&
|
|
!queue_work(system_unbound_wq, &c->btree_write_buffer.flush_work))
|
|
bch2_write_ref_put(c, BCH_WRITE_REF_btree_write_buffer);
|
|
|
|
if (dst->wb == &wb->flushing)
|
|
mutex_unlock(&wb->flushing.lock);
|
|
mutex_unlock(&wb->inc.lock);
|
|
}
|
|
|
|
static int bch2_journal_keys_to_write_buffer(struct bch_fs *c, struct journal_buf *buf)
|
|
{
|
|
struct journal_keys_to_wb dst;
|
|
struct jset_entry *entry;
|
|
struct bkey_i *k;
|
|
int ret = 0;
|
|
|
|
bch2_journal_keys_to_write_buffer_start(c, &dst, le64_to_cpu(buf->data->seq));
|
|
|
|
for_each_jset_entry_type(entry, buf->data, BCH_JSET_ENTRY_write_buffer_keys) {
|
|
jset_entry_for_each_key(entry, k) {
|
|
ret = bch2_journal_key_to_wb(c, &dst, entry->btree_id, k);
|
|
if (ret)
|
|
goto out;
|
|
}
|
|
|
|
entry->type = BCH_JSET_ENTRY_btree_keys;
|
|
}
|
|
|
|
buf->need_flush_to_write_buffer = false;
|
|
out:
|
|
bch2_journal_keys_to_write_buffer_end(c, &dst);
|
|
return ret;
|
|
}
|
|
|
|
static int wb_keys_resize(struct btree_write_buffer_keys *wb, size_t new_size)
|
|
{
|
|
if (wb->keys.size >= new_size)
|
|
return 0;
|
|
|
|
if (!mutex_trylock(&wb->lock))
|
|
return -EINTR;
|
|
|
|
int ret = darray_resize(&wb->keys, new_size);
|
|
mutex_unlock(&wb->lock);
|
|
return ret;
|
|
}
|
|
|
|
int bch2_btree_write_buffer_resize(struct bch_fs *c, size_t new_size)
|
|
{
|
|
struct btree_write_buffer *wb = &c->btree_write_buffer;
|
|
|
|
return wb_keys_resize(&wb->flushing, new_size) ?:
|
|
wb_keys_resize(&wb->inc, new_size);
|
|
}
|
|
|
|
void bch2_fs_btree_write_buffer_exit(struct bch_fs *c)
|
|
{
|
|
struct btree_write_buffer *wb = &c->btree_write_buffer;
|
|
|
|
BUG_ON((wb->inc.keys.nr || wb->flushing.keys.nr) &&
|
|
!bch2_journal_error(&c->journal));
|
|
|
|
darray_exit(&wb->sorted);
|
|
darray_exit(&wb->flushing.keys);
|
|
darray_exit(&wb->inc.keys);
|
|
}
|
|
|
|
int bch2_fs_btree_write_buffer_init(struct bch_fs *c)
|
|
{
|
|
struct btree_write_buffer *wb = &c->btree_write_buffer;
|
|
|
|
mutex_init(&wb->inc.lock);
|
|
mutex_init(&wb->flushing.lock);
|
|
INIT_WORK(&wb->flush_work, bch2_btree_write_buffer_flush_work);
|
|
|
|
/* Will be resized by journal as needed: */
|
|
unsigned initial_size = 1 << 16;
|
|
|
|
return darray_make_room(&wb->inc.keys, initial_size) ?:
|
|
darray_make_room(&wb->flushing.keys, initial_size) ?:
|
|
darray_make_room(&wb->sorted, initial_size);
|
|
}
|