Mika Westerberg b2911a593a thunderbolt: Enable wakes from system suspend
In order for the router and the whole domain to wake up from system
suspend states we need to enable wakes for the connected routers. For
device routers we enable wakes from PCIe and USB 3.x. This allows
devices such as keyboards connected to USB 3.x hub that is tunneled to
wake the system up as expected. For all routers we enabled wake on USB4
for each connected ports. This is used to propagate the wake from router
to another.

Do the same for legacy routers through link controller vendor specific
registers as documented in USB4 spec chapter 13.

While there correct kernel-doc of usb4_switch_set_sleep() -- it does not
enable wakes instead there is a separate function (usb4_switch_set_wake())
that does.

Signed-off-by: Mika Westerberg <mika.westerberg@linux.intel.com>
2020-09-03 12:06:42 +03:00

1733 lines
42 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* USB4 specific functionality
*
* Copyright (C) 2019, Intel Corporation
* Authors: Mika Westerberg <mika.westerberg@linux.intel.com>
* Rajmohan Mani <rajmohan.mani@intel.com>
*/
#include <linux/delay.h>
#include <linux/ktime.h>
#include "sb_regs.h"
#include "tb.h"
#define USB4_DATA_DWORDS 16
#define USB4_DATA_RETRIES 3
enum usb4_switch_op {
USB4_SWITCH_OP_QUERY_DP_RESOURCE = 0x10,
USB4_SWITCH_OP_ALLOC_DP_RESOURCE = 0x11,
USB4_SWITCH_OP_DEALLOC_DP_RESOURCE = 0x12,
USB4_SWITCH_OP_NVM_WRITE = 0x20,
USB4_SWITCH_OP_NVM_AUTH = 0x21,
USB4_SWITCH_OP_NVM_READ = 0x22,
USB4_SWITCH_OP_NVM_SET_OFFSET = 0x23,
USB4_SWITCH_OP_DROM_READ = 0x24,
USB4_SWITCH_OP_NVM_SECTOR_SIZE = 0x25,
};
enum usb4_sb_target {
USB4_SB_TARGET_ROUTER,
USB4_SB_TARGET_PARTNER,
USB4_SB_TARGET_RETIMER,
};
#define USB4_NVM_READ_OFFSET_MASK GENMASK(23, 2)
#define USB4_NVM_READ_OFFSET_SHIFT 2
#define USB4_NVM_READ_LENGTH_MASK GENMASK(27, 24)
#define USB4_NVM_READ_LENGTH_SHIFT 24
#define USB4_NVM_SET_OFFSET_MASK USB4_NVM_READ_OFFSET_MASK
#define USB4_NVM_SET_OFFSET_SHIFT USB4_NVM_READ_OFFSET_SHIFT
#define USB4_DROM_ADDRESS_MASK GENMASK(14, 2)
#define USB4_DROM_ADDRESS_SHIFT 2
#define USB4_DROM_SIZE_MASK GENMASK(19, 15)
#define USB4_DROM_SIZE_SHIFT 15
#define USB4_NVM_SECTOR_SIZE_MASK GENMASK(23, 0)
typedef int (*read_block_fn)(void *, unsigned int, void *, size_t);
typedef int (*write_block_fn)(void *, const void *, size_t);
static int usb4_switch_wait_for_bit(struct tb_switch *sw, u32 offset, u32 bit,
u32 value, int timeout_msec)
{
ktime_t timeout = ktime_add_ms(ktime_get(), timeout_msec);
do {
u32 val;
int ret;
ret = tb_sw_read(sw, &val, TB_CFG_SWITCH, offset, 1);
if (ret)
return ret;
if ((val & bit) == value)
return 0;
usleep_range(50, 100);
} while (ktime_before(ktime_get(), timeout));
return -ETIMEDOUT;
}
static int usb4_switch_op_read_data(struct tb_switch *sw, void *data,
size_t dwords)
{
if (dwords > USB4_DATA_DWORDS)
return -EINVAL;
return tb_sw_read(sw, data, TB_CFG_SWITCH, ROUTER_CS_9, dwords);
}
static int usb4_switch_op_write_data(struct tb_switch *sw, const void *data,
size_t dwords)
{
if (dwords > USB4_DATA_DWORDS)
return -EINVAL;
return tb_sw_write(sw, data, TB_CFG_SWITCH, ROUTER_CS_9, dwords);
}
static int usb4_switch_op_read_metadata(struct tb_switch *sw, u32 *metadata)
{
return tb_sw_read(sw, metadata, TB_CFG_SWITCH, ROUTER_CS_25, 1);
}
static int usb4_switch_op_write_metadata(struct tb_switch *sw, u32 metadata)
{
return tb_sw_write(sw, &metadata, TB_CFG_SWITCH, ROUTER_CS_25, 1);
}
static int usb4_do_read_data(u16 address, void *buf, size_t size,
read_block_fn read_block, void *read_block_data)
{
unsigned int retries = USB4_DATA_RETRIES;
unsigned int offset;
offset = address & 3;
address = address & ~3;
do {
size_t nbytes = min_t(size_t, size, USB4_DATA_DWORDS * 4);
unsigned int dwaddress, dwords;
u8 data[USB4_DATA_DWORDS * 4];
int ret;
dwaddress = address / 4;
dwords = ALIGN(nbytes, 4) / 4;
ret = read_block(read_block_data, dwaddress, data, dwords);
if (ret) {
if (ret != -ENODEV && retries--)
continue;
return ret;
}
memcpy(buf, data + offset, nbytes);
size -= nbytes;
address += nbytes;
buf += nbytes;
} while (size > 0);
return 0;
}
static int usb4_do_write_data(unsigned int address, const void *buf, size_t size,
write_block_fn write_next_block, void *write_block_data)
{
unsigned int retries = USB4_DATA_RETRIES;
unsigned int offset;
offset = address & 3;
address = address & ~3;
do {
u32 nbytes = min_t(u32, size, USB4_DATA_DWORDS * 4);
u8 data[USB4_DATA_DWORDS * 4];
int ret;
memcpy(data + offset, buf, nbytes);
ret = write_next_block(write_block_data, data, nbytes / 4);
if (ret) {
if (ret == -ETIMEDOUT) {
if (retries--)
continue;
ret = -EIO;
}
return ret;
}
size -= nbytes;
address += nbytes;
buf += nbytes;
} while (size > 0);
return 0;
}
static int usb4_switch_op(struct tb_switch *sw, u16 opcode, u8 *status)
{
u32 val;
int ret;
val = opcode | ROUTER_CS_26_OV;
ret = tb_sw_write(sw, &val, TB_CFG_SWITCH, ROUTER_CS_26, 1);
if (ret)
return ret;
ret = usb4_switch_wait_for_bit(sw, ROUTER_CS_26, ROUTER_CS_26_OV, 0, 500);
if (ret)
return ret;
ret = tb_sw_read(sw, &val, TB_CFG_SWITCH, ROUTER_CS_26, 1);
if (ret)
return ret;
if (val & ROUTER_CS_26_ONS)
return -EOPNOTSUPP;
*status = (val & ROUTER_CS_26_STATUS_MASK) >> ROUTER_CS_26_STATUS_SHIFT;
return 0;
}
static void usb4_switch_check_wakes(struct tb_switch *sw)
{
struct tb_port *port;
bool wakeup = false;
u32 val;
if (!device_may_wakeup(&sw->dev))
return;
if (tb_route(sw)) {
if (tb_sw_read(sw, &val, TB_CFG_SWITCH, ROUTER_CS_6, 1))
return;
tb_sw_dbg(sw, "PCIe wake: %s, USB3 wake: %s\n",
(val & ROUTER_CS_6_WOPS) ? "yes" : "no",
(val & ROUTER_CS_6_WOUS) ? "yes" : "no");
wakeup = val & (ROUTER_CS_6_WOPS | ROUTER_CS_6_WOUS);
}
/* Check for any connected downstream ports for USB4 wake */
tb_switch_for_each_port(sw, port) {
if (!tb_port_has_remote(port))
continue;
if (tb_port_read(port, &val, TB_CFG_PORT,
port->cap_usb4 + PORT_CS_18, 1))
break;
tb_port_dbg(port, "USB4 wake: %s\n",
(val & PORT_CS_18_WOU4S) ? "yes" : "no");
if (val & PORT_CS_18_WOU4S)
wakeup = true;
}
if (wakeup)
pm_wakeup_event(&sw->dev, 0);
}
static bool link_is_usb4(struct tb_port *port)
{
u32 val;
if (!port->cap_usb4)
return false;
if (tb_port_read(port, &val, TB_CFG_PORT,
port->cap_usb4 + PORT_CS_18, 1))
return false;
return !(val & PORT_CS_18_TCM);
}
/**
* usb4_switch_setup() - Additional setup for USB4 device
* @sw: USB4 router to setup
*
* USB4 routers need additional settings in order to enable all the
* tunneling. This function enables USB and PCIe tunneling if it can be
* enabled (e.g the parent switch also supports them). If USB tunneling
* is not available for some reason (like that there is Thunderbolt 3
* switch upstream) then the internal xHCI controller is enabled
* instead.
*/
int usb4_switch_setup(struct tb_switch *sw)
{
struct tb_port *downstream_port;
struct tb_switch *parent;
bool tbt3, xhci;
u32 val = 0;
int ret;
usb4_switch_check_wakes(sw);
if (!tb_route(sw))
return 0;
ret = tb_sw_read(sw, &val, TB_CFG_SWITCH, ROUTER_CS_6, 1);
if (ret)
return ret;
parent = tb_switch_parent(sw);
downstream_port = tb_port_at(tb_route(sw), parent);
sw->link_usb4 = link_is_usb4(downstream_port);
tb_sw_dbg(sw, "link: %s\n", sw->link_usb4 ? "USB4" : "TBT3");
xhci = val & ROUTER_CS_6_HCI;
tbt3 = !(val & ROUTER_CS_6_TNS);
tb_sw_dbg(sw, "TBT3 support: %s, xHCI: %s\n",
tbt3 ? "yes" : "no", xhci ? "yes" : "no");
ret = tb_sw_read(sw, &val, TB_CFG_SWITCH, ROUTER_CS_5, 1);
if (ret)
return ret;
if (sw->link_usb4 && tb_switch_find_port(parent, TB_TYPE_USB3_DOWN)) {
val |= ROUTER_CS_5_UTO;
xhci = false;
}
/* Only enable PCIe tunneling if the parent router supports it */
if (tb_switch_find_port(parent, TB_TYPE_PCIE_DOWN)) {
val |= ROUTER_CS_5_PTO;
/*
* xHCI can be enabled if PCIe tunneling is supported
* and the parent does not have any USB3 dowstream
* adapters (so we cannot do USB 3.x tunneling).
*/
if (xhci)
val |= ROUTER_CS_5_HCO;
}
/* TBT3 supported by the CM */
val |= ROUTER_CS_5_C3S;
/* Tunneling configuration is ready now */
val |= ROUTER_CS_5_CV;
ret = tb_sw_write(sw, &val, TB_CFG_SWITCH, ROUTER_CS_5, 1);
if (ret)
return ret;
return usb4_switch_wait_for_bit(sw, ROUTER_CS_6, ROUTER_CS_6_CR,
ROUTER_CS_6_CR, 50);
}
/**
* usb4_switch_read_uid() - Read UID from USB4 router
* @sw: USB4 router
* @uid: UID is stored here
*
* Reads 64-bit UID from USB4 router config space.
*/
int usb4_switch_read_uid(struct tb_switch *sw, u64 *uid)
{
return tb_sw_read(sw, uid, TB_CFG_SWITCH, ROUTER_CS_7, 2);
}
static int usb4_switch_drom_read_block(void *data,
unsigned int dwaddress, void *buf,
size_t dwords)
{
struct tb_switch *sw = data;
u8 status = 0;
u32 metadata;
int ret;
metadata = (dwords << USB4_DROM_SIZE_SHIFT) & USB4_DROM_SIZE_MASK;
metadata |= (dwaddress << USB4_DROM_ADDRESS_SHIFT) &
USB4_DROM_ADDRESS_MASK;
ret = usb4_switch_op_write_metadata(sw, metadata);
if (ret)
return ret;
ret = usb4_switch_op(sw, USB4_SWITCH_OP_DROM_READ, &status);
if (ret)
return ret;
if (status)
return -EIO;
return usb4_switch_op_read_data(sw, buf, dwords);
}
/**
* usb4_switch_drom_read() - Read arbitrary bytes from USB4 router DROM
* @sw: USB4 router
* @address: Byte address inside DROM to start reading
* @buf: Buffer where the DROM content is stored
* @size: Number of bytes to read from DROM
*
* Uses USB4 router operations to read router DROM. For devices this
* should always work but for hosts it may return %-EOPNOTSUPP in which
* case the host router does not have DROM.
*/
int usb4_switch_drom_read(struct tb_switch *sw, unsigned int address, void *buf,
size_t size)
{
return usb4_do_read_data(address, buf, size,
usb4_switch_drom_read_block, sw);
}
/**
* usb4_switch_lane_bonding_possible() - Are conditions met for lane bonding
* @sw: USB4 router
*
* Checks whether conditions are met so that lane bonding can be
* established with the upstream router. Call only for device routers.
*/
bool usb4_switch_lane_bonding_possible(struct tb_switch *sw)
{
struct tb_port *up;
int ret;
u32 val;
up = tb_upstream_port(sw);
ret = tb_port_read(up, &val, TB_CFG_PORT, up->cap_usb4 + PORT_CS_18, 1);
if (ret)
return false;
return !!(val & PORT_CS_18_BE);
}
/**
* usb4_switch_set_wake() - Enabled/disable wake
* @sw: USB4 router
* @flags: Wakeup flags (%0 to disable)
*
* Enables/disables router to wake up from sleep.
*/
int usb4_switch_set_wake(struct tb_switch *sw, unsigned int flags)
{
struct tb_port *port;
u64 route = tb_route(sw);
u32 val;
int ret;
/*
* Enable wakes coming from all USB4 downstream ports (from
* child routers). For device routers do this also for the
* upstream USB4 port.
*/
tb_switch_for_each_port(sw, port) {
if (!route && tb_is_upstream_port(port))
continue;
ret = tb_port_read(port, &val, TB_CFG_PORT,
port->cap_usb4 + PORT_CS_19, 1);
if (ret)
return ret;
val &= ~(PORT_CS_19_WOC | PORT_CS_19_WOD | PORT_CS_19_WOU4);
if (flags & TB_WAKE_ON_CONNECT)
val |= PORT_CS_19_WOC;
if (flags & TB_WAKE_ON_DISCONNECT)
val |= PORT_CS_19_WOD;
if (flags & TB_WAKE_ON_USB4)
val |= PORT_CS_19_WOU4;
ret = tb_port_write(port, &val, TB_CFG_PORT,
port->cap_usb4 + PORT_CS_19, 1);
if (ret)
return ret;
}
/*
* Enable wakes from PCIe and USB 3.x on this router. Only
* needed for device routers.
*/
if (route) {
ret = tb_sw_read(sw, &val, TB_CFG_SWITCH, ROUTER_CS_5, 1);
if (ret)
return ret;
val &= ~(ROUTER_CS_5_WOP | ROUTER_CS_5_WOU);
if (flags & TB_WAKE_ON_USB3)
val |= ROUTER_CS_5_WOU;
if (flags & TB_WAKE_ON_PCIE)
val |= ROUTER_CS_5_WOP;
ret = tb_sw_write(sw, &val, TB_CFG_SWITCH, ROUTER_CS_5, 1);
if (ret)
return ret;
}
return 0;
}
/**
* usb4_switch_set_sleep() - Prepare the router to enter sleep
* @sw: USB4 router
*
* Sets sleep bit for the router. Returns when the router sleep ready
* bit has been asserted.
*/
int usb4_switch_set_sleep(struct tb_switch *sw)
{
int ret;
u32 val;
/* Set sleep bit and wait for sleep ready to be asserted */
ret = tb_sw_read(sw, &val, TB_CFG_SWITCH, ROUTER_CS_5, 1);
if (ret)
return ret;
val |= ROUTER_CS_5_SLP;
ret = tb_sw_write(sw, &val, TB_CFG_SWITCH, ROUTER_CS_5, 1);
if (ret)
return ret;
return usb4_switch_wait_for_bit(sw, ROUTER_CS_6, ROUTER_CS_6_SLPR,
ROUTER_CS_6_SLPR, 500);
}
/**
* usb4_switch_nvm_sector_size() - Return router NVM sector size
* @sw: USB4 router
*
* If the router supports NVM operations this function returns the NVM
* sector size in bytes. If NVM operations are not supported returns
* %-EOPNOTSUPP.
*/
int usb4_switch_nvm_sector_size(struct tb_switch *sw)
{
u32 metadata;
u8 status;
int ret;
ret = usb4_switch_op(sw, USB4_SWITCH_OP_NVM_SECTOR_SIZE, &status);
if (ret)
return ret;
if (status)
return status == 0x2 ? -EOPNOTSUPP : -EIO;
ret = usb4_switch_op_read_metadata(sw, &metadata);
if (ret)
return ret;
return metadata & USB4_NVM_SECTOR_SIZE_MASK;
}
static int usb4_switch_nvm_read_block(void *data,
unsigned int dwaddress, void *buf, size_t dwords)
{
struct tb_switch *sw = data;
u8 status = 0;
u32 metadata;
int ret;
metadata = (dwords << USB4_NVM_READ_LENGTH_SHIFT) &
USB4_NVM_READ_LENGTH_MASK;
metadata |= (dwaddress << USB4_NVM_READ_OFFSET_SHIFT) &
USB4_NVM_READ_OFFSET_MASK;
ret = usb4_switch_op_write_metadata(sw, metadata);
if (ret)
return ret;
ret = usb4_switch_op(sw, USB4_SWITCH_OP_NVM_READ, &status);
if (ret)
return ret;
if (status)
return -EIO;
return usb4_switch_op_read_data(sw, buf, dwords);
}
/**
* usb4_switch_nvm_read() - Read arbitrary bytes from router NVM
* @sw: USB4 router
* @address: Starting address in bytes
* @buf: Read data is placed here
* @size: How many bytes to read
*
* Reads NVM contents of the router. If NVM is not supported returns
* %-EOPNOTSUPP.
*/
int usb4_switch_nvm_read(struct tb_switch *sw, unsigned int address, void *buf,
size_t size)
{
return usb4_do_read_data(address, buf, size,
usb4_switch_nvm_read_block, sw);
}
static int usb4_switch_nvm_set_offset(struct tb_switch *sw,
unsigned int address)
{
u32 metadata, dwaddress;
u8 status = 0;
int ret;
dwaddress = address / 4;
metadata = (dwaddress << USB4_NVM_SET_OFFSET_SHIFT) &
USB4_NVM_SET_OFFSET_MASK;
ret = usb4_switch_op_write_metadata(sw, metadata);
if (ret)
return ret;
ret = usb4_switch_op(sw, USB4_SWITCH_OP_NVM_SET_OFFSET, &status);
if (ret)
return ret;
return status ? -EIO : 0;
}
static int usb4_switch_nvm_write_next_block(void *data, const void *buf,
size_t dwords)
{
struct tb_switch *sw = data;
u8 status;
int ret;
ret = usb4_switch_op_write_data(sw, buf, dwords);
if (ret)
return ret;
ret = usb4_switch_op(sw, USB4_SWITCH_OP_NVM_WRITE, &status);
if (ret)
return ret;
return status ? -EIO : 0;
}
/**
* usb4_switch_nvm_write() - Write to the router NVM
* @sw: USB4 router
* @address: Start address where to write in bytes
* @buf: Pointer to the data to write
* @size: Size of @buf in bytes
*
* Writes @buf to the router NVM using USB4 router operations. If NVM
* write is not supported returns %-EOPNOTSUPP.
*/
int usb4_switch_nvm_write(struct tb_switch *sw, unsigned int address,
const void *buf, size_t size)
{
int ret;
ret = usb4_switch_nvm_set_offset(sw, address);
if (ret)
return ret;
return usb4_do_write_data(address, buf, size,
usb4_switch_nvm_write_next_block, sw);
}
/**
* usb4_switch_nvm_authenticate() - Authenticate new NVM
* @sw: USB4 router
*
* After the new NVM has been written via usb4_switch_nvm_write(), this
* function triggers NVM authentication process. If the authentication
* is successful the router is power cycled and the new NVM starts
* running. In case of failure returns negative errno.
*/
int usb4_switch_nvm_authenticate(struct tb_switch *sw)
{
u8 status = 0;
int ret;
ret = usb4_switch_op(sw, USB4_SWITCH_OP_NVM_AUTH, &status);
if (ret)
return ret;
switch (status) {
case 0x0:
tb_sw_dbg(sw, "NVM authentication successful\n");
return 0;
case 0x1:
return -EINVAL;
case 0x2:
return -EAGAIN;
case 0x3:
return -EOPNOTSUPP;
default:
return -EIO;
}
}
/**
* usb4_switch_query_dp_resource() - Query availability of DP IN resource
* @sw: USB4 router
* @in: DP IN adapter
*
* For DP tunneling this function can be used to query availability of
* DP IN resource. Returns true if the resource is available for DP
* tunneling, false otherwise.
*/
bool usb4_switch_query_dp_resource(struct tb_switch *sw, struct tb_port *in)
{
u8 status;
int ret;
ret = usb4_switch_op_write_metadata(sw, in->port);
if (ret)
return false;
ret = usb4_switch_op(sw, USB4_SWITCH_OP_QUERY_DP_RESOURCE, &status);
/*
* If DP resource allocation is not supported assume it is
* always available.
*/
if (ret == -EOPNOTSUPP)
return true;
else if (ret)
return false;
return !status;
}
/**
* usb4_switch_alloc_dp_resource() - Allocate DP IN resource
* @sw: USB4 router
* @in: DP IN adapter
*
* Allocates DP IN resource for DP tunneling using USB4 router
* operations. If the resource was allocated returns %0. Otherwise
* returns negative errno, in particular %-EBUSY if the resource is
* already allocated.
*/
int usb4_switch_alloc_dp_resource(struct tb_switch *sw, struct tb_port *in)
{
u8 status;
int ret;
ret = usb4_switch_op_write_metadata(sw, in->port);
if (ret)
return ret;
ret = usb4_switch_op(sw, USB4_SWITCH_OP_ALLOC_DP_RESOURCE, &status);
if (ret == -EOPNOTSUPP)
return 0;
else if (ret)
return ret;
return status ? -EBUSY : 0;
}
/**
* usb4_switch_dealloc_dp_resource() - Releases allocated DP IN resource
* @sw: USB4 router
* @in: DP IN adapter
*
* Releases the previously allocated DP IN resource.
*/
int usb4_switch_dealloc_dp_resource(struct tb_switch *sw, struct tb_port *in)
{
u8 status;
int ret;
ret = usb4_switch_op_write_metadata(sw, in->port);
if (ret)
return ret;
ret = usb4_switch_op(sw, USB4_SWITCH_OP_DEALLOC_DP_RESOURCE, &status);
if (ret == -EOPNOTSUPP)
return 0;
else if (ret)
return ret;
return status ? -EIO : 0;
}
static int usb4_port_idx(const struct tb_switch *sw, const struct tb_port *port)
{
struct tb_port *p;
int usb4_idx = 0;
/* Assume port is primary */
tb_switch_for_each_port(sw, p) {
if (!tb_port_is_null(p))
continue;
if (tb_is_upstream_port(p))
continue;
if (!p->link_nr) {
if (p == port)
break;
usb4_idx++;
}
}
return usb4_idx;
}
/**
* usb4_switch_map_pcie_down() - Map USB4 port to a PCIe downstream adapter
* @sw: USB4 router
* @port: USB4 port
*
* USB4 routers have direct mapping between USB4 ports and PCIe
* downstream adapters where the PCIe topology is extended. This
* function returns the corresponding downstream PCIe adapter or %NULL
* if no such mapping was possible.
*/
struct tb_port *usb4_switch_map_pcie_down(struct tb_switch *sw,
const struct tb_port *port)
{
int usb4_idx = usb4_port_idx(sw, port);
struct tb_port *p;
int pcie_idx = 0;
/* Find PCIe down port matching usb4_port */
tb_switch_for_each_port(sw, p) {
if (!tb_port_is_pcie_down(p))
continue;
if (pcie_idx == usb4_idx)
return p;
pcie_idx++;
}
return NULL;
}
/**
* usb4_switch_map_usb3_down() - Map USB4 port to a USB3 downstream adapter
* @sw: USB4 router
* @port: USB4 port
*
* USB4 routers have direct mapping between USB4 ports and USB 3.x
* downstream adapters where the USB 3.x topology is extended. This
* function returns the corresponding downstream USB 3.x adapter or
* %NULL if no such mapping was possible.
*/
struct tb_port *usb4_switch_map_usb3_down(struct tb_switch *sw,
const struct tb_port *port)
{
int usb4_idx = usb4_port_idx(sw, port);
struct tb_port *p;
int usb_idx = 0;
/* Find USB3 down port matching usb4_port */
tb_switch_for_each_port(sw, p) {
if (!tb_port_is_usb3_down(p))
continue;
if (usb_idx == usb4_idx)
return p;
usb_idx++;
}
return NULL;
}
/**
* usb4_port_unlock() - Unlock USB4 downstream port
* @port: USB4 port to unlock
*
* Unlocks USB4 downstream port so that the connection manager can
* access the router below this port.
*/
int usb4_port_unlock(struct tb_port *port)
{
int ret;
u32 val;
ret = tb_port_read(port, &val, TB_CFG_PORT, ADP_CS_4, 1);
if (ret)
return ret;
val &= ~ADP_CS_4_LCK;
return tb_port_write(port, &val, TB_CFG_PORT, ADP_CS_4, 1);
}
static int usb4_port_set_configured(struct tb_port *port, bool configured)
{
int ret;
u32 val;
if (!port->cap_usb4)
return -EINVAL;
ret = tb_port_read(port, &val, TB_CFG_PORT,
port->cap_usb4 + PORT_CS_19, 1);
if (ret)
return ret;
if (configured)
val |= PORT_CS_19_PC;
else
val &= ~PORT_CS_19_PC;
return tb_port_write(port, &val, TB_CFG_PORT,
port->cap_usb4 + PORT_CS_19, 1);
}
/**
* usb4_port_configure() - Set USB4 port configured
* @port: USB4 router
*
* Sets the USB4 link to be configured for power management purposes.
*/
int usb4_port_configure(struct tb_port *port)
{
return usb4_port_set_configured(port, true);
}
/**
* usb4_port_unconfigure() - Set USB4 port unconfigured
* @port: USB4 router
*
* Sets the USB4 link to be unconfigured for power management purposes.
*/
void usb4_port_unconfigure(struct tb_port *port)
{
usb4_port_set_configured(port, false);
}
static int usb4_set_xdomain_configured(struct tb_port *port, bool configured)
{
int ret;
u32 val;
if (!port->cap_usb4)
return -EINVAL;
ret = tb_port_read(port, &val, TB_CFG_PORT,
port->cap_usb4 + PORT_CS_19, 1);
if (ret)
return ret;
if (configured)
val |= PORT_CS_19_PID;
else
val &= ~PORT_CS_19_PID;
return tb_port_write(port, &val, TB_CFG_PORT,
port->cap_usb4 + PORT_CS_19, 1);
}
/**
* usb4_port_configure_xdomain() - Configure port for XDomain
* @port: USB4 port connected to another host
*
* Marks the USB4 port as being connected to another host. Returns %0 in
* success and negative errno in failure.
*/
int usb4_port_configure_xdomain(struct tb_port *port)
{
return usb4_set_xdomain_configured(port, true);
}
/**
* usb4_port_unconfigure_xdomain() - Unconfigure port for XDomain
* @port: USB4 port that was connected to another host
*
* Clears USB4 port from being marked as XDomain.
*/
void usb4_port_unconfigure_xdomain(struct tb_port *port)
{
usb4_set_xdomain_configured(port, false);
}
static int usb4_port_wait_for_bit(struct tb_port *port, u32 offset, u32 bit,
u32 value, int timeout_msec)
{
ktime_t timeout = ktime_add_ms(ktime_get(), timeout_msec);
do {
u32 val;
int ret;
ret = tb_port_read(port, &val, TB_CFG_PORT, offset, 1);
if (ret)
return ret;
if ((val & bit) == value)
return 0;
usleep_range(50, 100);
} while (ktime_before(ktime_get(), timeout));
return -ETIMEDOUT;
}
static int usb4_port_read_data(struct tb_port *port, void *data, size_t dwords)
{
if (dwords > USB4_DATA_DWORDS)
return -EINVAL;
return tb_port_read(port, data, TB_CFG_PORT, port->cap_usb4 + PORT_CS_2,
dwords);
}
static int usb4_port_write_data(struct tb_port *port, const void *data,
size_t dwords)
{
if (dwords > USB4_DATA_DWORDS)
return -EINVAL;
return tb_port_write(port, data, TB_CFG_PORT, port->cap_usb4 + PORT_CS_2,
dwords);
}
static int usb4_port_sb_read(struct tb_port *port, enum usb4_sb_target target,
u8 index, u8 reg, void *buf, u8 size)
{
size_t dwords = DIV_ROUND_UP(size, 4);
int ret;
u32 val;
if (!port->cap_usb4)
return -EINVAL;
val = reg;
val |= size << PORT_CS_1_LENGTH_SHIFT;
val |= (target << PORT_CS_1_TARGET_SHIFT) & PORT_CS_1_TARGET_MASK;
if (target == USB4_SB_TARGET_RETIMER)
val |= (index << PORT_CS_1_RETIMER_INDEX_SHIFT);
val |= PORT_CS_1_PND;
ret = tb_port_write(port, &val, TB_CFG_PORT,
port->cap_usb4 + PORT_CS_1, 1);
if (ret)
return ret;
ret = usb4_port_wait_for_bit(port, port->cap_usb4 + PORT_CS_1,
PORT_CS_1_PND, 0, 500);
if (ret)
return ret;
ret = tb_port_read(port, &val, TB_CFG_PORT,
port->cap_usb4 + PORT_CS_1, 1);
if (ret)
return ret;
if (val & PORT_CS_1_NR)
return -ENODEV;
if (val & PORT_CS_1_RC)
return -EIO;
return buf ? usb4_port_read_data(port, buf, dwords) : 0;
}
static int usb4_port_sb_write(struct tb_port *port, enum usb4_sb_target target,
u8 index, u8 reg, const void *buf, u8 size)
{
size_t dwords = DIV_ROUND_UP(size, 4);
int ret;
u32 val;
if (!port->cap_usb4)
return -EINVAL;
if (buf) {
ret = usb4_port_write_data(port, buf, dwords);
if (ret)
return ret;
}
val = reg;
val |= size << PORT_CS_1_LENGTH_SHIFT;
val |= PORT_CS_1_WNR_WRITE;
val |= (target << PORT_CS_1_TARGET_SHIFT) & PORT_CS_1_TARGET_MASK;
if (target == USB4_SB_TARGET_RETIMER)
val |= (index << PORT_CS_1_RETIMER_INDEX_SHIFT);
val |= PORT_CS_1_PND;
ret = tb_port_write(port, &val, TB_CFG_PORT,
port->cap_usb4 + PORT_CS_1, 1);
if (ret)
return ret;
ret = usb4_port_wait_for_bit(port, port->cap_usb4 + PORT_CS_1,
PORT_CS_1_PND, 0, 500);
if (ret)
return ret;
ret = tb_port_read(port, &val, TB_CFG_PORT,
port->cap_usb4 + PORT_CS_1, 1);
if (ret)
return ret;
if (val & PORT_CS_1_NR)
return -ENODEV;
if (val & PORT_CS_1_RC)
return -EIO;
return 0;
}
static int usb4_port_sb_op(struct tb_port *port, enum usb4_sb_target target,
u8 index, enum usb4_sb_opcode opcode, int timeout_msec)
{
ktime_t timeout;
u32 val;
int ret;
val = opcode;
ret = usb4_port_sb_write(port, target, index, USB4_SB_OPCODE, &val,
sizeof(val));
if (ret)
return ret;
timeout = ktime_add_ms(ktime_get(), timeout_msec);
do {
/* Check results */
ret = usb4_port_sb_read(port, target, index, USB4_SB_OPCODE,
&val, sizeof(val));
if (ret)
return ret;
switch (val) {
case 0:
return 0;
case USB4_SB_OPCODE_ERR:
return -EAGAIN;
case USB4_SB_OPCODE_ONS:
return -EOPNOTSUPP;
default:
if (val != opcode)
return -EIO;
break;
}
} while (ktime_before(ktime_get(), timeout));
return -ETIMEDOUT;
}
/**
* usb4_port_enumerate_retimers() - Send RT broadcast transaction
* @port: USB4 port
*
* This forces the USB4 port to send broadcast RT transaction which
* makes the retimers on the link to assign index to themselves. Returns
* %0 in case of success and negative errno if there was an error.
*/
int usb4_port_enumerate_retimers(struct tb_port *port)
{
u32 val;
val = USB4_SB_OPCODE_ENUMERATE_RETIMERS;
return usb4_port_sb_write(port, USB4_SB_TARGET_ROUTER, 0,
USB4_SB_OPCODE, &val, sizeof(val));
}
static inline int usb4_port_retimer_op(struct tb_port *port, u8 index,
enum usb4_sb_opcode opcode,
int timeout_msec)
{
return usb4_port_sb_op(port, USB4_SB_TARGET_RETIMER, index, opcode,
timeout_msec);
}
/**
* usb4_port_retimer_read() - Read from retimer sideband registers
* @port: USB4 port
* @index: Retimer index
* @reg: Sideband register to read
* @buf: Data from @reg is stored here
* @size: Number of bytes to read
*
* Function reads retimer sideband registers starting from @reg. The
* retimer is connected to @port at @index. Returns %0 in case of
* success, and read data is copied to @buf. If there is no retimer
* present at given @index returns %-ENODEV. In any other failure
* returns negative errno.
*/
int usb4_port_retimer_read(struct tb_port *port, u8 index, u8 reg, void *buf,
u8 size)
{
return usb4_port_sb_read(port, USB4_SB_TARGET_RETIMER, index, reg, buf,
size);
}
/**
* usb4_port_retimer_write() - Write to retimer sideband registers
* @port: USB4 port
* @index: Retimer index
* @reg: Sideband register to write
* @buf: Data that is written starting from @reg
* @size: Number of bytes to write
*
* Writes retimer sideband registers starting from @reg. The retimer is
* connected to @port at @index. Returns %0 in case of success. If there
* is no retimer present at given @index returns %-ENODEV. In any other
* failure returns negative errno.
*/
int usb4_port_retimer_write(struct tb_port *port, u8 index, u8 reg,
const void *buf, u8 size)
{
return usb4_port_sb_write(port, USB4_SB_TARGET_RETIMER, index, reg, buf,
size);
}
/**
* usb4_port_retimer_is_last() - Is the retimer last on-board retimer
* @port: USB4 port
* @index: Retimer index
*
* If the retimer at @index is last one (connected directly to the
* Type-C port) this function returns %1. If it is not returns %0. If
* the retimer is not present returns %-ENODEV. Otherwise returns
* negative errno.
*/
int usb4_port_retimer_is_last(struct tb_port *port, u8 index)
{
u32 metadata;
int ret;
ret = usb4_port_retimer_op(port, index, USB4_SB_OPCODE_QUERY_LAST_RETIMER,
500);
if (ret)
return ret;
ret = usb4_port_retimer_read(port, index, USB4_SB_METADATA, &metadata,
sizeof(metadata));
return ret ? ret : metadata & 1;
}
/**
* usb4_port_retimer_nvm_sector_size() - Read retimer NVM sector size
* @port: USB4 port
* @index: Retimer index
*
* Reads NVM sector size (in bytes) of a retimer at @index. This
* operation can be used to determine whether the retimer supports NVM
* upgrade for example. Returns sector size in bytes or negative errno
* in case of error. Specifically returns %-ENODEV if there is no
* retimer at @index.
*/
int usb4_port_retimer_nvm_sector_size(struct tb_port *port, u8 index)
{
u32 metadata;
int ret;
ret = usb4_port_retimer_op(port, index, USB4_SB_OPCODE_GET_NVM_SECTOR_SIZE,
500);
if (ret)
return ret;
ret = usb4_port_retimer_read(port, index, USB4_SB_METADATA, &metadata,
sizeof(metadata));
return ret ? ret : metadata & USB4_NVM_SECTOR_SIZE_MASK;
}
static int usb4_port_retimer_nvm_set_offset(struct tb_port *port, u8 index,
unsigned int address)
{
u32 metadata, dwaddress;
int ret;
dwaddress = address / 4;
metadata = (dwaddress << USB4_NVM_SET_OFFSET_SHIFT) &
USB4_NVM_SET_OFFSET_MASK;
ret = usb4_port_retimer_write(port, index, USB4_SB_METADATA, &metadata,
sizeof(metadata));
if (ret)
return ret;
return usb4_port_retimer_op(port, index, USB4_SB_OPCODE_NVM_SET_OFFSET,
500);
}
struct retimer_info {
struct tb_port *port;
u8 index;
};
static int usb4_port_retimer_nvm_write_next_block(void *data, const void *buf,
size_t dwords)
{
const struct retimer_info *info = data;
struct tb_port *port = info->port;
u8 index = info->index;
int ret;
ret = usb4_port_retimer_write(port, index, USB4_SB_DATA,
buf, dwords * 4);
if (ret)
return ret;
return usb4_port_retimer_op(port, index,
USB4_SB_OPCODE_NVM_BLOCK_WRITE, 1000);
}
/**
* usb4_port_retimer_nvm_write() - Write to retimer NVM
* @port: USB4 port
* @index: Retimer index
* @address: Byte address where to start the write
* @buf: Data to write
* @size: Size in bytes how much to write
*
* Writes @size bytes from @buf to the retimer NVM. Used for NVM
* upgrade. Returns %0 if the data was written successfully and negative
* errno in case of failure. Specifically returns %-ENODEV if there is
* no retimer at @index.
*/
int usb4_port_retimer_nvm_write(struct tb_port *port, u8 index, unsigned int address,
const void *buf, size_t size)
{
struct retimer_info info = { .port = port, .index = index };
int ret;
ret = usb4_port_retimer_nvm_set_offset(port, index, address);
if (ret)
return ret;
return usb4_do_write_data(address, buf, size,
usb4_port_retimer_nvm_write_next_block, &info);
}
/**
* usb4_port_retimer_nvm_authenticate() - Start retimer NVM upgrade
* @port: USB4 port
* @index: Retimer index
*
* After the new NVM image has been written via usb4_port_retimer_nvm_write()
* this function can be used to trigger the NVM upgrade process. If
* successful the retimer restarts with the new NVM and may not have the
* index set so one needs to call usb4_port_enumerate_retimers() to
* force index to be assigned.
*/
int usb4_port_retimer_nvm_authenticate(struct tb_port *port, u8 index)
{
u32 val;
/*
* We need to use the raw operation here because once the
* authentication completes the retimer index is not set anymore
* so we do not get back the status now.
*/
val = USB4_SB_OPCODE_NVM_AUTH_WRITE;
return usb4_port_sb_write(port, USB4_SB_TARGET_RETIMER, index,
USB4_SB_OPCODE, &val, sizeof(val));
}
/**
* usb4_port_retimer_nvm_authenticate_status() - Read status of NVM upgrade
* @port: USB4 port
* @index: Retimer index
* @status: Raw status code read from metadata
*
* This can be called after usb4_port_retimer_nvm_authenticate() and
* usb4_port_enumerate_retimers() to fetch status of the NVM upgrade.
*
* Returns %0 if the authentication status was successfully read. The
* completion metadata (the result) is then stored into @status. If
* reading the status fails, returns negative errno.
*/
int usb4_port_retimer_nvm_authenticate_status(struct tb_port *port, u8 index,
u32 *status)
{
u32 metadata, val;
int ret;
ret = usb4_port_retimer_read(port, index, USB4_SB_OPCODE, &val,
sizeof(val));
if (ret)
return ret;
switch (val) {
case 0:
*status = 0;
return 0;
case USB4_SB_OPCODE_ERR:
ret = usb4_port_retimer_read(port, index, USB4_SB_METADATA,
&metadata, sizeof(metadata));
if (ret)
return ret;
*status = metadata & USB4_SB_METADATA_NVM_AUTH_WRITE_MASK;
return 0;
case USB4_SB_OPCODE_ONS:
return -EOPNOTSUPP;
default:
return -EIO;
}
}
static int usb4_port_retimer_nvm_read_block(void *data, unsigned int dwaddress,
void *buf, size_t dwords)
{
const struct retimer_info *info = data;
struct tb_port *port = info->port;
u8 index = info->index;
u32 metadata;
int ret;
metadata = dwaddress << USB4_NVM_READ_OFFSET_SHIFT;
if (dwords < USB4_DATA_DWORDS)
metadata |= dwords << USB4_NVM_READ_LENGTH_SHIFT;
ret = usb4_port_retimer_write(port, index, USB4_SB_METADATA, &metadata,
sizeof(metadata));
if (ret)
return ret;
ret = usb4_port_retimer_op(port, index, USB4_SB_OPCODE_NVM_READ, 500);
if (ret)
return ret;
return usb4_port_retimer_read(port, index, USB4_SB_DATA, buf,
dwords * 4);
}
/**
* usb4_port_retimer_nvm_read() - Read contents of retimer NVM
* @port: USB4 port
* @index: Retimer index
* @address: NVM address (in bytes) to start reading
* @buf: Data read from NVM is stored here
* @size: Number of bytes to read
*
* Reads retimer NVM and copies the contents to @buf. Returns %0 if the
* read was successful and negative errno in case of failure.
* Specifically returns %-ENODEV if there is no retimer at @index.
*/
int usb4_port_retimer_nvm_read(struct tb_port *port, u8 index,
unsigned int address, void *buf, size_t size)
{
struct retimer_info info = { .port = port, .index = index };
return usb4_do_read_data(address, buf, size,
usb4_port_retimer_nvm_read_block, &info);
}
/**
* usb4_usb3_port_max_link_rate() - Maximum support USB3 link rate
* @port: USB3 adapter port
*
* Return maximum supported link rate of a USB3 adapter in Mb/s.
* Negative errno in case of error.
*/
int usb4_usb3_port_max_link_rate(struct tb_port *port)
{
int ret, lr;
u32 val;
if (!tb_port_is_usb3_down(port) && !tb_port_is_usb3_up(port))
return -EINVAL;
ret = tb_port_read(port, &val, TB_CFG_PORT,
port->cap_adap + ADP_USB3_CS_4, 1);
if (ret)
return ret;
lr = (val & ADP_USB3_CS_4_MSLR_MASK) >> ADP_USB3_CS_4_MSLR_SHIFT;
return lr == ADP_USB3_CS_4_MSLR_20G ? 20000 : 10000;
}
/**
* usb4_usb3_port_actual_link_rate() - Established USB3 link rate
* @port: USB3 adapter port
*
* Return actual established link rate of a USB3 adapter in Mb/s. If the
* link is not up returns %0 and negative errno in case of failure.
*/
int usb4_usb3_port_actual_link_rate(struct tb_port *port)
{
int ret, lr;
u32 val;
if (!tb_port_is_usb3_down(port) && !tb_port_is_usb3_up(port))
return -EINVAL;
ret = tb_port_read(port, &val, TB_CFG_PORT,
port->cap_adap + ADP_USB3_CS_4, 1);
if (ret)
return ret;
if (!(val & ADP_USB3_CS_4_ULV))
return 0;
lr = val & ADP_USB3_CS_4_ALR_MASK;
return lr == ADP_USB3_CS_4_ALR_20G ? 20000 : 10000;
}
static int usb4_usb3_port_cm_request(struct tb_port *port, bool request)
{
int ret;
u32 val;
if (!tb_port_is_usb3_down(port))
return -EINVAL;
if (tb_route(port->sw))
return -EINVAL;
ret = tb_port_read(port, &val, TB_CFG_PORT,
port->cap_adap + ADP_USB3_CS_2, 1);
if (ret)
return ret;
if (request)
val |= ADP_USB3_CS_2_CMR;
else
val &= ~ADP_USB3_CS_2_CMR;
ret = tb_port_write(port, &val, TB_CFG_PORT,
port->cap_adap + ADP_USB3_CS_2, 1);
if (ret)
return ret;
/*
* We can use val here directly as the CMR bit is in the same place
* as HCA. Just mask out others.
*/
val &= ADP_USB3_CS_2_CMR;
return usb4_port_wait_for_bit(port, port->cap_adap + ADP_USB3_CS_1,
ADP_USB3_CS_1_HCA, val, 1500);
}
static inline int usb4_usb3_port_set_cm_request(struct tb_port *port)
{
return usb4_usb3_port_cm_request(port, true);
}
static inline int usb4_usb3_port_clear_cm_request(struct tb_port *port)
{
return usb4_usb3_port_cm_request(port, false);
}
static unsigned int usb3_bw_to_mbps(u32 bw, u8 scale)
{
unsigned long uframes;
uframes = bw * 512UL << scale;
return DIV_ROUND_CLOSEST(uframes * 8000, 1000 * 1000);
}
static u32 mbps_to_usb3_bw(unsigned int mbps, u8 scale)
{
unsigned long uframes;
/* 1 uframe is 1/8 ms (125 us) -> 1 / 8000 s */
uframes = ((unsigned long)mbps * 1000 * 1000) / 8000;
return DIV_ROUND_UP(uframes, 512UL << scale);
}
static int usb4_usb3_port_read_allocated_bandwidth(struct tb_port *port,
int *upstream_bw,
int *downstream_bw)
{
u32 val, bw, scale;
int ret;
ret = tb_port_read(port, &val, TB_CFG_PORT,
port->cap_adap + ADP_USB3_CS_2, 1);
if (ret)
return ret;
ret = tb_port_read(port, &scale, TB_CFG_PORT,
port->cap_adap + ADP_USB3_CS_3, 1);
if (ret)
return ret;
scale &= ADP_USB3_CS_3_SCALE_MASK;
bw = val & ADP_USB3_CS_2_AUBW_MASK;
*upstream_bw = usb3_bw_to_mbps(bw, scale);
bw = (val & ADP_USB3_CS_2_ADBW_MASK) >> ADP_USB3_CS_2_ADBW_SHIFT;
*downstream_bw = usb3_bw_to_mbps(bw, scale);
return 0;
}
/**
* usb4_usb3_port_allocated_bandwidth() - Bandwidth allocated for USB3
* @port: USB3 adapter port
* @upstream_bw: Allocated upstream bandwidth is stored here
* @downstream_bw: Allocated downstream bandwidth is stored here
*
* Stores currently allocated USB3 bandwidth into @upstream_bw and
* @downstream_bw in Mb/s. Returns %0 in case of success and negative
* errno in failure.
*/
int usb4_usb3_port_allocated_bandwidth(struct tb_port *port, int *upstream_bw,
int *downstream_bw)
{
int ret;
ret = usb4_usb3_port_set_cm_request(port);
if (ret)
return ret;
ret = usb4_usb3_port_read_allocated_bandwidth(port, upstream_bw,
downstream_bw);
usb4_usb3_port_clear_cm_request(port);
return ret;
}
static int usb4_usb3_port_read_consumed_bandwidth(struct tb_port *port,
int *upstream_bw,
int *downstream_bw)
{
u32 val, bw, scale;
int ret;
ret = tb_port_read(port, &val, TB_CFG_PORT,
port->cap_adap + ADP_USB3_CS_1, 1);
if (ret)
return ret;
ret = tb_port_read(port, &scale, TB_CFG_PORT,
port->cap_adap + ADP_USB3_CS_3, 1);
if (ret)
return ret;
scale &= ADP_USB3_CS_3_SCALE_MASK;
bw = val & ADP_USB3_CS_1_CUBW_MASK;
*upstream_bw = usb3_bw_to_mbps(bw, scale);
bw = (val & ADP_USB3_CS_1_CDBW_MASK) >> ADP_USB3_CS_1_CDBW_SHIFT;
*downstream_bw = usb3_bw_to_mbps(bw, scale);
return 0;
}
static int usb4_usb3_port_write_allocated_bandwidth(struct tb_port *port,
int upstream_bw,
int downstream_bw)
{
u32 val, ubw, dbw, scale;
int ret;
/* Read the used scale, hardware default is 0 */
ret = tb_port_read(port, &scale, TB_CFG_PORT,
port->cap_adap + ADP_USB3_CS_3, 1);
if (ret)
return ret;
scale &= ADP_USB3_CS_3_SCALE_MASK;
ubw = mbps_to_usb3_bw(upstream_bw, scale);
dbw = mbps_to_usb3_bw(downstream_bw, scale);
ret = tb_port_read(port, &val, TB_CFG_PORT,
port->cap_adap + ADP_USB3_CS_2, 1);
if (ret)
return ret;
val &= ~(ADP_USB3_CS_2_AUBW_MASK | ADP_USB3_CS_2_ADBW_MASK);
val |= dbw << ADP_USB3_CS_2_ADBW_SHIFT;
val |= ubw;
return tb_port_write(port, &val, TB_CFG_PORT,
port->cap_adap + ADP_USB3_CS_2, 1);
}
/**
* usb4_usb3_port_allocate_bandwidth() - Allocate bandwidth for USB3
* @port: USB3 adapter port
* @upstream_bw: New upstream bandwidth
* @downstream_bw: New downstream bandwidth
*
* This can be used to set how much bandwidth is allocated for the USB3
* tunneled isochronous traffic. @upstream_bw and @downstream_bw are the
* new values programmed to the USB3 adapter allocation registers. If
* the values are lower than what is currently consumed the allocation
* is set to what is currently consumed instead (consumed bandwidth
* cannot be taken away by CM). The actual new values are returned in
* @upstream_bw and @downstream_bw.
*
* Returns %0 in case of success and negative errno if there was a
* failure.
*/
int usb4_usb3_port_allocate_bandwidth(struct tb_port *port, int *upstream_bw,
int *downstream_bw)
{
int ret, consumed_up, consumed_down, allocate_up, allocate_down;
ret = usb4_usb3_port_set_cm_request(port);
if (ret)
return ret;
ret = usb4_usb3_port_read_consumed_bandwidth(port, &consumed_up,
&consumed_down);
if (ret)
goto err_request;
/* Don't allow it go lower than what is consumed */
allocate_up = max(*upstream_bw, consumed_up);
allocate_down = max(*downstream_bw, consumed_down);
ret = usb4_usb3_port_write_allocated_bandwidth(port, allocate_up,
allocate_down);
if (ret)
goto err_request;
*upstream_bw = allocate_up;
*downstream_bw = allocate_down;
err_request:
usb4_usb3_port_clear_cm_request(port);
return ret;
}
/**
* usb4_usb3_port_release_bandwidth() - Release allocated USB3 bandwidth
* @port: USB3 adapter port
* @upstream_bw: New allocated upstream bandwidth
* @downstream_bw: New allocated downstream bandwidth
*
* Releases USB3 allocated bandwidth down to what is actually consumed.
* The new bandwidth is returned in @upstream_bw and @downstream_bw.
*
* Returns 0% in success and negative errno in case of failure.
*/
int usb4_usb3_port_release_bandwidth(struct tb_port *port, int *upstream_bw,
int *downstream_bw)
{
int ret, consumed_up, consumed_down;
ret = usb4_usb3_port_set_cm_request(port);
if (ret)
return ret;
ret = usb4_usb3_port_read_consumed_bandwidth(port, &consumed_up,
&consumed_down);
if (ret)
goto err_request;
/*
* Always keep 1000 Mb/s to make sure xHCI has at least some
* bandwidth available for isochronous traffic.
*/
if (consumed_up < 1000)
consumed_up = 1000;
if (consumed_down < 1000)
consumed_down = 1000;
ret = usb4_usb3_port_write_allocated_bandwidth(port, consumed_up,
consumed_down);
if (ret)
goto err_request;
*upstream_bw = consumed_up;
*downstream_bw = consumed_down;
err_request:
usb4_usb3_port_clear_cm_request(port);
return ret;
}