linux/drivers/android/binder.c
Christian Brauner 5b9633af29 binderfs: remove separate device_initcall()
binderfs should not have a separate device_initcall(). When a kernel is
compiled with CONFIG_ANDROID_BINDERFS register the filesystem alongside
CONFIG_ANDROID_IPC. This use-case is especially sensible when users specify
CONFIG_ANDROID_IPC=y, CONFIG_ANDROID_BINDERFS=y and
ANDROID_BINDER_DEVICES="".
When CONFIG_ANDROID_BINDERFS=n then this always succeeds so there's no
regression potential for legacy workloads.

Signed-off-by: Christian Brauner <christian@brauner.io>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-02-01 15:50:26 +01:00

5948 lines
170 KiB
C

/* binder.c
*
* Android IPC Subsystem
*
* Copyright (C) 2007-2008 Google, Inc.
*
* This software is licensed under the terms of the GNU General Public
* License version 2, as published by the Free Software Foundation, and
* may be copied, distributed, and modified under those terms.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
*/
/*
* Locking overview
*
* There are 3 main spinlocks which must be acquired in the
* order shown:
*
* 1) proc->outer_lock : protects binder_ref
* binder_proc_lock() and binder_proc_unlock() are
* used to acq/rel.
* 2) node->lock : protects most fields of binder_node.
* binder_node_lock() and binder_node_unlock() are
* used to acq/rel
* 3) proc->inner_lock : protects the thread and node lists
* (proc->threads, proc->waiting_threads, proc->nodes)
* and all todo lists associated with the binder_proc
* (proc->todo, thread->todo, proc->delivered_death and
* node->async_todo), as well as thread->transaction_stack
* binder_inner_proc_lock() and binder_inner_proc_unlock()
* are used to acq/rel
*
* Any lock under procA must never be nested under any lock at the same
* level or below on procB.
*
* Functions that require a lock held on entry indicate which lock
* in the suffix of the function name:
*
* foo_olocked() : requires node->outer_lock
* foo_nlocked() : requires node->lock
* foo_ilocked() : requires proc->inner_lock
* foo_oilocked(): requires proc->outer_lock and proc->inner_lock
* foo_nilocked(): requires node->lock and proc->inner_lock
* ...
*/
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <linux/fdtable.h>
#include <linux/file.h>
#include <linux/freezer.h>
#include <linux/fs.h>
#include <linux/list.h>
#include <linux/miscdevice.h>
#include <linux/module.h>
#include <linux/mutex.h>
#include <linux/nsproxy.h>
#include <linux/poll.h>
#include <linux/debugfs.h>
#include <linux/rbtree.h>
#include <linux/sched/signal.h>
#include <linux/sched/mm.h>
#include <linux/seq_file.h>
#include <linux/uaccess.h>
#include <linux/pid_namespace.h>
#include <linux/security.h>
#include <linux/spinlock.h>
#include <linux/ratelimit.h>
#include <linux/syscalls.h>
#include <linux/task_work.h>
#include <uapi/linux/android/binder.h>
#include <asm/cacheflush.h>
#include "binder_alloc.h"
#include "binder_internal.h"
#include "binder_trace.h"
static HLIST_HEAD(binder_deferred_list);
static DEFINE_MUTEX(binder_deferred_lock);
static HLIST_HEAD(binder_devices);
static HLIST_HEAD(binder_procs);
static DEFINE_MUTEX(binder_procs_lock);
static HLIST_HEAD(binder_dead_nodes);
static DEFINE_SPINLOCK(binder_dead_nodes_lock);
static struct dentry *binder_debugfs_dir_entry_root;
static struct dentry *binder_debugfs_dir_entry_proc;
static atomic_t binder_last_id;
static int proc_show(struct seq_file *m, void *unused);
DEFINE_SHOW_ATTRIBUTE(proc);
/* This is only defined in include/asm-arm/sizes.h */
#ifndef SZ_1K
#define SZ_1K 0x400
#endif
#ifndef SZ_4M
#define SZ_4M 0x400000
#endif
#define FORBIDDEN_MMAP_FLAGS (VM_WRITE)
enum {
BINDER_DEBUG_USER_ERROR = 1U << 0,
BINDER_DEBUG_FAILED_TRANSACTION = 1U << 1,
BINDER_DEBUG_DEAD_TRANSACTION = 1U << 2,
BINDER_DEBUG_OPEN_CLOSE = 1U << 3,
BINDER_DEBUG_DEAD_BINDER = 1U << 4,
BINDER_DEBUG_DEATH_NOTIFICATION = 1U << 5,
BINDER_DEBUG_READ_WRITE = 1U << 6,
BINDER_DEBUG_USER_REFS = 1U << 7,
BINDER_DEBUG_THREADS = 1U << 8,
BINDER_DEBUG_TRANSACTION = 1U << 9,
BINDER_DEBUG_TRANSACTION_COMPLETE = 1U << 10,
BINDER_DEBUG_FREE_BUFFER = 1U << 11,
BINDER_DEBUG_INTERNAL_REFS = 1U << 12,
BINDER_DEBUG_PRIORITY_CAP = 1U << 13,
BINDER_DEBUG_SPINLOCKS = 1U << 14,
};
static uint32_t binder_debug_mask = BINDER_DEBUG_USER_ERROR |
BINDER_DEBUG_FAILED_TRANSACTION | BINDER_DEBUG_DEAD_TRANSACTION;
module_param_named(debug_mask, binder_debug_mask, uint, 0644);
static char *binder_devices_param = CONFIG_ANDROID_BINDER_DEVICES;
module_param_named(devices, binder_devices_param, charp, 0444);
static DECLARE_WAIT_QUEUE_HEAD(binder_user_error_wait);
static int binder_stop_on_user_error;
static int binder_set_stop_on_user_error(const char *val,
const struct kernel_param *kp)
{
int ret;
ret = param_set_int(val, kp);
if (binder_stop_on_user_error < 2)
wake_up(&binder_user_error_wait);
return ret;
}
module_param_call(stop_on_user_error, binder_set_stop_on_user_error,
param_get_int, &binder_stop_on_user_error, 0644);
#define binder_debug(mask, x...) \
do { \
if (binder_debug_mask & mask) \
pr_info_ratelimited(x); \
} while (0)
#define binder_user_error(x...) \
do { \
if (binder_debug_mask & BINDER_DEBUG_USER_ERROR) \
pr_info_ratelimited(x); \
if (binder_stop_on_user_error) \
binder_stop_on_user_error = 2; \
} while (0)
#define to_flat_binder_object(hdr) \
container_of(hdr, struct flat_binder_object, hdr)
#define to_binder_fd_object(hdr) container_of(hdr, struct binder_fd_object, hdr)
#define to_binder_buffer_object(hdr) \
container_of(hdr, struct binder_buffer_object, hdr)
#define to_binder_fd_array_object(hdr) \
container_of(hdr, struct binder_fd_array_object, hdr)
enum binder_stat_types {
BINDER_STAT_PROC,
BINDER_STAT_THREAD,
BINDER_STAT_NODE,
BINDER_STAT_REF,
BINDER_STAT_DEATH,
BINDER_STAT_TRANSACTION,
BINDER_STAT_TRANSACTION_COMPLETE,
BINDER_STAT_COUNT
};
struct binder_stats {
atomic_t br[_IOC_NR(BR_FAILED_REPLY) + 1];
atomic_t bc[_IOC_NR(BC_REPLY_SG) + 1];
atomic_t obj_created[BINDER_STAT_COUNT];
atomic_t obj_deleted[BINDER_STAT_COUNT];
};
static struct binder_stats binder_stats;
static inline void binder_stats_deleted(enum binder_stat_types type)
{
atomic_inc(&binder_stats.obj_deleted[type]);
}
static inline void binder_stats_created(enum binder_stat_types type)
{
atomic_inc(&binder_stats.obj_created[type]);
}
struct binder_transaction_log_entry {
int debug_id;
int debug_id_done;
int call_type;
int from_proc;
int from_thread;
int target_handle;
int to_proc;
int to_thread;
int to_node;
int data_size;
int offsets_size;
int return_error_line;
uint32_t return_error;
uint32_t return_error_param;
const char *context_name;
};
struct binder_transaction_log {
atomic_t cur;
bool full;
struct binder_transaction_log_entry entry[32];
};
static struct binder_transaction_log binder_transaction_log;
static struct binder_transaction_log binder_transaction_log_failed;
static struct binder_transaction_log_entry *binder_transaction_log_add(
struct binder_transaction_log *log)
{
struct binder_transaction_log_entry *e;
unsigned int cur = atomic_inc_return(&log->cur);
if (cur >= ARRAY_SIZE(log->entry))
log->full = true;
e = &log->entry[cur % ARRAY_SIZE(log->entry)];
WRITE_ONCE(e->debug_id_done, 0);
/*
* write-barrier to synchronize access to e->debug_id_done.
* We make sure the initialized 0 value is seen before
* memset() other fields are zeroed by memset.
*/
smp_wmb();
memset(e, 0, sizeof(*e));
return e;
}
/**
* struct binder_work - work enqueued on a worklist
* @entry: node enqueued on list
* @type: type of work to be performed
*
* There are separate work lists for proc, thread, and node (async).
*/
struct binder_work {
struct list_head entry;
enum {
BINDER_WORK_TRANSACTION = 1,
BINDER_WORK_TRANSACTION_COMPLETE,
BINDER_WORK_RETURN_ERROR,
BINDER_WORK_NODE,
BINDER_WORK_DEAD_BINDER,
BINDER_WORK_DEAD_BINDER_AND_CLEAR,
BINDER_WORK_CLEAR_DEATH_NOTIFICATION,
} type;
};
struct binder_error {
struct binder_work work;
uint32_t cmd;
};
/**
* struct binder_node - binder node bookkeeping
* @debug_id: unique ID for debugging
* (invariant after initialized)
* @lock: lock for node fields
* @work: worklist element for node work
* (protected by @proc->inner_lock)
* @rb_node: element for proc->nodes tree
* (protected by @proc->inner_lock)
* @dead_node: element for binder_dead_nodes list
* (protected by binder_dead_nodes_lock)
* @proc: binder_proc that owns this node
* (invariant after initialized)
* @refs: list of references on this node
* (protected by @lock)
* @internal_strong_refs: used to take strong references when
* initiating a transaction
* (protected by @proc->inner_lock if @proc
* and by @lock)
* @local_weak_refs: weak user refs from local process
* (protected by @proc->inner_lock if @proc
* and by @lock)
* @local_strong_refs: strong user refs from local process
* (protected by @proc->inner_lock if @proc
* and by @lock)
* @tmp_refs: temporary kernel refs
* (protected by @proc->inner_lock while @proc
* is valid, and by binder_dead_nodes_lock
* if @proc is NULL. During inc/dec and node release
* it is also protected by @lock to provide safety
* as the node dies and @proc becomes NULL)
* @ptr: userspace pointer for node
* (invariant, no lock needed)
* @cookie: userspace cookie for node
* (invariant, no lock needed)
* @has_strong_ref: userspace notified of strong ref
* (protected by @proc->inner_lock if @proc
* and by @lock)
* @pending_strong_ref: userspace has acked notification of strong ref
* (protected by @proc->inner_lock if @proc
* and by @lock)
* @has_weak_ref: userspace notified of weak ref
* (protected by @proc->inner_lock if @proc
* and by @lock)
* @pending_weak_ref: userspace has acked notification of weak ref
* (protected by @proc->inner_lock if @proc
* and by @lock)
* @has_async_transaction: async transaction to node in progress
* (protected by @lock)
* @accept_fds: file descriptor operations supported for node
* (invariant after initialized)
* @min_priority: minimum scheduling priority
* (invariant after initialized)
* @async_todo: list of async work items
* (protected by @proc->inner_lock)
*
* Bookkeeping structure for binder nodes.
*/
struct binder_node {
int debug_id;
spinlock_t lock;
struct binder_work work;
union {
struct rb_node rb_node;
struct hlist_node dead_node;
};
struct binder_proc *proc;
struct hlist_head refs;
int internal_strong_refs;
int local_weak_refs;
int local_strong_refs;
int tmp_refs;
binder_uintptr_t ptr;
binder_uintptr_t cookie;
struct {
/*
* bitfield elements protected by
* proc inner_lock
*/
u8 has_strong_ref:1;
u8 pending_strong_ref:1;
u8 has_weak_ref:1;
u8 pending_weak_ref:1;
};
struct {
/*
* invariant after initialization
*/
u8 accept_fds:1;
u8 min_priority;
};
bool has_async_transaction;
struct list_head async_todo;
};
struct binder_ref_death {
/**
* @work: worklist element for death notifications
* (protected by inner_lock of the proc that
* this ref belongs to)
*/
struct binder_work work;
binder_uintptr_t cookie;
};
/**
* struct binder_ref_data - binder_ref counts and id
* @debug_id: unique ID for the ref
* @desc: unique userspace handle for ref
* @strong: strong ref count (debugging only if not locked)
* @weak: weak ref count (debugging only if not locked)
*
* Structure to hold ref count and ref id information. Since
* the actual ref can only be accessed with a lock, this structure
* is used to return information about the ref to callers of
* ref inc/dec functions.
*/
struct binder_ref_data {
int debug_id;
uint32_t desc;
int strong;
int weak;
};
/**
* struct binder_ref - struct to track references on nodes
* @data: binder_ref_data containing id, handle, and current refcounts
* @rb_node_desc: node for lookup by @data.desc in proc's rb_tree
* @rb_node_node: node for lookup by @node in proc's rb_tree
* @node_entry: list entry for node->refs list in target node
* (protected by @node->lock)
* @proc: binder_proc containing ref
* @node: binder_node of target node. When cleaning up a
* ref for deletion in binder_cleanup_ref, a non-NULL
* @node indicates the node must be freed
* @death: pointer to death notification (ref_death) if requested
* (protected by @node->lock)
*
* Structure to track references from procA to target node (on procB). This
* structure is unsafe to access without holding @proc->outer_lock.
*/
struct binder_ref {
/* Lookups needed: */
/* node + proc => ref (transaction) */
/* desc + proc => ref (transaction, inc/dec ref) */
/* node => refs + procs (proc exit) */
struct binder_ref_data data;
struct rb_node rb_node_desc;
struct rb_node rb_node_node;
struct hlist_node node_entry;
struct binder_proc *proc;
struct binder_node *node;
struct binder_ref_death *death;
};
enum binder_deferred_state {
BINDER_DEFERRED_FLUSH = 0x01,
BINDER_DEFERRED_RELEASE = 0x02,
};
/**
* struct binder_proc - binder process bookkeeping
* @proc_node: element for binder_procs list
* @threads: rbtree of binder_threads in this proc
* (protected by @inner_lock)
* @nodes: rbtree of binder nodes associated with
* this proc ordered by node->ptr
* (protected by @inner_lock)
* @refs_by_desc: rbtree of refs ordered by ref->desc
* (protected by @outer_lock)
* @refs_by_node: rbtree of refs ordered by ref->node
* (protected by @outer_lock)
* @waiting_threads: threads currently waiting for proc work
* (protected by @inner_lock)
* @pid PID of group_leader of process
* (invariant after initialized)
* @tsk task_struct for group_leader of process
* (invariant after initialized)
* @deferred_work_node: element for binder_deferred_list
* (protected by binder_deferred_lock)
* @deferred_work: bitmap of deferred work to perform
* (protected by binder_deferred_lock)
* @is_dead: process is dead and awaiting free
* when outstanding transactions are cleaned up
* (protected by @inner_lock)
* @todo: list of work for this process
* (protected by @inner_lock)
* @stats: per-process binder statistics
* (atomics, no lock needed)
* @delivered_death: list of delivered death notification
* (protected by @inner_lock)
* @max_threads: cap on number of binder threads
* (protected by @inner_lock)
* @requested_threads: number of binder threads requested but not
* yet started. In current implementation, can
* only be 0 or 1.
* (protected by @inner_lock)
* @requested_threads_started: number binder threads started
* (protected by @inner_lock)
* @tmp_ref: temporary reference to indicate proc is in use
* (protected by @inner_lock)
* @default_priority: default scheduler priority
* (invariant after initialized)
* @debugfs_entry: debugfs node
* @alloc: binder allocator bookkeeping
* @context: binder_context for this proc
* (invariant after initialized)
* @inner_lock: can nest under outer_lock and/or node lock
* @outer_lock: no nesting under innor or node lock
* Lock order: 1) outer, 2) node, 3) inner
*
* Bookkeeping structure for binder processes
*/
struct binder_proc {
struct hlist_node proc_node;
struct rb_root threads;
struct rb_root nodes;
struct rb_root refs_by_desc;
struct rb_root refs_by_node;
struct list_head waiting_threads;
int pid;
struct task_struct *tsk;
struct hlist_node deferred_work_node;
int deferred_work;
bool is_dead;
struct list_head todo;
struct binder_stats stats;
struct list_head delivered_death;
int max_threads;
int requested_threads;
int requested_threads_started;
int tmp_ref;
long default_priority;
struct dentry *debugfs_entry;
struct binder_alloc alloc;
struct binder_context *context;
spinlock_t inner_lock;
spinlock_t outer_lock;
};
enum {
BINDER_LOOPER_STATE_REGISTERED = 0x01,
BINDER_LOOPER_STATE_ENTERED = 0x02,
BINDER_LOOPER_STATE_EXITED = 0x04,
BINDER_LOOPER_STATE_INVALID = 0x08,
BINDER_LOOPER_STATE_WAITING = 0x10,
BINDER_LOOPER_STATE_POLL = 0x20,
};
/**
* struct binder_thread - binder thread bookkeeping
* @proc: binder process for this thread
* (invariant after initialization)
* @rb_node: element for proc->threads rbtree
* (protected by @proc->inner_lock)
* @waiting_thread_node: element for @proc->waiting_threads list
* (protected by @proc->inner_lock)
* @pid: PID for this thread
* (invariant after initialization)
* @looper: bitmap of looping state
* (only accessed by this thread)
* @looper_needs_return: looping thread needs to exit driver
* (no lock needed)
* @transaction_stack: stack of in-progress transactions for this thread
* (protected by @proc->inner_lock)
* @todo: list of work to do for this thread
* (protected by @proc->inner_lock)
* @process_todo: whether work in @todo should be processed
* (protected by @proc->inner_lock)
* @return_error: transaction errors reported by this thread
* (only accessed by this thread)
* @reply_error: transaction errors reported by target thread
* (protected by @proc->inner_lock)
* @wait: wait queue for thread work
* @stats: per-thread statistics
* (atomics, no lock needed)
* @tmp_ref: temporary reference to indicate thread is in use
* (atomic since @proc->inner_lock cannot
* always be acquired)
* @is_dead: thread is dead and awaiting free
* when outstanding transactions are cleaned up
* (protected by @proc->inner_lock)
*
* Bookkeeping structure for binder threads.
*/
struct binder_thread {
struct binder_proc *proc;
struct rb_node rb_node;
struct list_head waiting_thread_node;
int pid;
int looper; /* only modified by this thread */
bool looper_need_return; /* can be written by other thread */
struct binder_transaction *transaction_stack;
struct list_head todo;
bool process_todo;
struct binder_error return_error;
struct binder_error reply_error;
wait_queue_head_t wait;
struct binder_stats stats;
atomic_t tmp_ref;
bool is_dead;
};
/**
* struct binder_txn_fd_fixup - transaction fd fixup list element
* @fixup_entry: list entry
* @file: struct file to be associated with new fd
* @offset: offset in buffer data to this fixup
*
* List element for fd fixups in a transaction. Since file
* descriptors need to be allocated in the context of the
* target process, we pass each fd to be processed in this
* struct.
*/
struct binder_txn_fd_fixup {
struct list_head fixup_entry;
struct file *file;
size_t offset;
};
struct binder_transaction {
int debug_id;
struct binder_work work;
struct binder_thread *from;
struct binder_transaction *from_parent;
struct binder_proc *to_proc;
struct binder_thread *to_thread;
struct binder_transaction *to_parent;
unsigned need_reply:1;
/* unsigned is_dead:1; */ /* not used at the moment */
struct binder_buffer *buffer;
unsigned int code;
unsigned int flags;
long priority;
long saved_priority;
kuid_t sender_euid;
struct list_head fd_fixups;
/**
* @lock: protects @from, @to_proc, and @to_thread
*
* @from, @to_proc, and @to_thread can be set to NULL
* during thread teardown
*/
spinlock_t lock;
};
/**
* binder_proc_lock() - Acquire outer lock for given binder_proc
* @proc: struct binder_proc to acquire
*
* Acquires proc->outer_lock. Used to protect binder_ref
* structures associated with the given proc.
*/
#define binder_proc_lock(proc) _binder_proc_lock(proc, __LINE__)
static void
_binder_proc_lock(struct binder_proc *proc, int line)
__acquires(&proc->outer_lock)
{
binder_debug(BINDER_DEBUG_SPINLOCKS,
"%s: line=%d\n", __func__, line);
spin_lock(&proc->outer_lock);
}
/**
* binder_proc_unlock() - Release spinlock for given binder_proc
* @proc: struct binder_proc to acquire
*
* Release lock acquired via binder_proc_lock()
*/
#define binder_proc_unlock(_proc) _binder_proc_unlock(_proc, __LINE__)
static void
_binder_proc_unlock(struct binder_proc *proc, int line)
__releases(&proc->outer_lock)
{
binder_debug(BINDER_DEBUG_SPINLOCKS,
"%s: line=%d\n", __func__, line);
spin_unlock(&proc->outer_lock);
}
/**
* binder_inner_proc_lock() - Acquire inner lock for given binder_proc
* @proc: struct binder_proc to acquire
*
* Acquires proc->inner_lock. Used to protect todo lists
*/
#define binder_inner_proc_lock(proc) _binder_inner_proc_lock(proc, __LINE__)
static void
_binder_inner_proc_lock(struct binder_proc *proc, int line)
__acquires(&proc->inner_lock)
{
binder_debug(BINDER_DEBUG_SPINLOCKS,
"%s: line=%d\n", __func__, line);
spin_lock(&proc->inner_lock);
}
/**
* binder_inner_proc_unlock() - Release inner lock for given binder_proc
* @proc: struct binder_proc to acquire
*
* Release lock acquired via binder_inner_proc_lock()
*/
#define binder_inner_proc_unlock(proc) _binder_inner_proc_unlock(proc, __LINE__)
static void
_binder_inner_proc_unlock(struct binder_proc *proc, int line)
__releases(&proc->inner_lock)
{
binder_debug(BINDER_DEBUG_SPINLOCKS,
"%s: line=%d\n", __func__, line);
spin_unlock(&proc->inner_lock);
}
/**
* binder_node_lock() - Acquire spinlock for given binder_node
* @node: struct binder_node to acquire
*
* Acquires node->lock. Used to protect binder_node fields
*/
#define binder_node_lock(node) _binder_node_lock(node, __LINE__)
static void
_binder_node_lock(struct binder_node *node, int line)
__acquires(&node->lock)
{
binder_debug(BINDER_DEBUG_SPINLOCKS,
"%s: line=%d\n", __func__, line);
spin_lock(&node->lock);
}
/**
* binder_node_unlock() - Release spinlock for given binder_proc
* @node: struct binder_node to acquire
*
* Release lock acquired via binder_node_lock()
*/
#define binder_node_unlock(node) _binder_node_unlock(node, __LINE__)
static void
_binder_node_unlock(struct binder_node *node, int line)
__releases(&node->lock)
{
binder_debug(BINDER_DEBUG_SPINLOCKS,
"%s: line=%d\n", __func__, line);
spin_unlock(&node->lock);
}
/**
* binder_node_inner_lock() - Acquire node and inner locks
* @node: struct binder_node to acquire
*
* Acquires node->lock. If node->proc also acquires
* proc->inner_lock. Used to protect binder_node fields
*/
#define binder_node_inner_lock(node) _binder_node_inner_lock(node, __LINE__)
static void
_binder_node_inner_lock(struct binder_node *node, int line)
__acquires(&node->lock) __acquires(&node->proc->inner_lock)
{
binder_debug(BINDER_DEBUG_SPINLOCKS,
"%s: line=%d\n", __func__, line);
spin_lock(&node->lock);
if (node->proc)
binder_inner_proc_lock(node->proc);
else
/* annotation for sparse */
__acquire(&node->proc->inner_lock);
}
/**
* binder_node_unlock() - Release node and inner locks
* @node: struct binder_node to acquire
*
* Release lock acquired via binder_node_lock()
*/
#define binder_node_inner_unlock(node) _binder_node_inner_unlock(node, __LINE__)
static void
_binder_node_inner_unlock(struct binder_node *node, int line)
__releases(&node->lock) __releases(&node->proc->inner_lock)
{
struct binder_proc *proc = node->proc;
binder_debug(BINDER_DEBUG_SPINLOCKS,
"%s: line=%d\n", __func__, line);
if (proc)
binder_inner_proc_unlock(proc);
else
/* annotation for sparse */
__release(&node->proc->inner_lock);
spin_unlock(&node->lock);
}
static bool binder_worklist_empty_ilocked(struct list_head *list)
{
return list_empty(list);
}
/**
* binder_worklist_empty() - Check if no items on the work list
* @proc: binder_proc associated with list
* @list: list to check
*
* Return: true if there are no items on list, else false
*/
static bool binder_worklist_empty(struct binder_proc *proc,
struct list_head *list)
{
bool ret;
binder_inner_proc_lock(proc);
ret = binder_worklist_empty_ilocked(list);
binder_inner_proc_unlock(proc);
return ret;
}
/**
* binder_enqueue_work_ilocked() - Add an item to the work list
* @work: struct binder_work to add to list
* @target_list: list to add work to
*
* Adds the work to the specified list. Asserts that work
* is not already on a list.
*
* Requires the proc->inner_lock to be held.
*/
static void
binder_enqueue_work_ilocked(struct binder_work *work,
struct list_head *target_list)
{
BUG_ON(target_list == NULL);
BUG_ON(work->entry.next && !list_empty(&work->entry));
list_add_tail(&work->entry, target_list);
}
/**
* binder_enqueue_deferred_thread_work_ilocked() - Add deferred thread work
* @thread: thread to queue work to
* @work: struct binder_work to add to list
*
* Adds the work to the todo list of the thread. Doesn't set the process_todo
* flag, which means that (if it wasn't already set) the thread will go to
* sleep without handling this work when it calls read.
*
* Requires the proc->inner_lock to be held.
*/
static void
binder_enqueue_deferred_thread_work_ilocked(struct binder_thread *thread,
struct binder_work *work)
{
WARN_ON(!list_empty(&thread->waiting_thread_node));
binder_enqueue_work_ilocked(work, &thread->todo);
}
/**
* binder_enqueue_thread_work_ilocked() - Add an item to the thread work list
* @thread: thread to queue work to
* @work: struct binder_work to add to list
*
* Adds the work to the todo list of the thread, and enables processing
* of the todo queue.
*
* Requires the proc->inner_lock to be held.
*/
static void
binder_enqueue_thread_work_ilocked(struct binder_thread *thread,
struct binder_work *work)
{
WARN_ON(!list_empty(&thread->waiting_thread_node));
binder_enqueue_work_ilocked(work, &thread->todo);
thread->process_todo = true;
}
/**
* binder_enqueue_thread_work() - Add an item to the thread work list
* @thread: thread to queue work to
* @work: struct binder_work to add to list
*
* Adds the work to the todo list of the thread, and enables processing
* of the todo queue.
*/
static void
binder_enqueue_thread_work(struct binder_thread *thread,
struct binder_work *work)
{
binder_inner_proc_lock(thread->proc);
binder_enqueue_thread_work_ilocked(thread, work);
binder_inner_proc_unlock(thread->proc);
}
static void
binder_dequeue_work_ilocked(struct binder_work *work)
{
list_del_init(&work->entry);
}
/**
* binder_dequeue_work() - Removes an item from the work list
* @proc: binder_proc associated with list
* @work: struct binder_work to remove from list
*
* Removes the specified work item from whatever list it is on.
* Can safely be called if work is not on any list.
*/
static void
binder_dequeue_work(struct binder_proc *proc, struct binder_work *work)
{
binder_inner_proc_lock(proc);
binder_dequeue_work_ilocked(work);
binder_inner_proc_unlock(proc);
}
static struct binder_work *binder_dequeue_work_head_ilocked(
struct list_head *list)
{
struct binder_work *w;
w = list_first_entry_or_null(list, struct binder_work, entry);
if (w)
list_del_init(&w->entry);
return w;
}
/**
* binder_dequeue_work_head() - Dequeues the item at head of list
* @proc: binder_proc associated with list
* @list: list to dequeue head
*
* Removes the head of the list if there are items on the list
*
* Return: pointer dequeued binder_work, NULL if list was empty
*/
static struct binder_work *binder_dequeue_work_head(
struct binder_proc *proc,
struct list_head *list)
{
struct binder_work *w;
binder_inner_proc_lock(proc);
w = binder_dequeue_work_head_ilocked(list);
binder_inner_proc_unlock(proc);
return w;
}
static void
binder_defer_work(struct binder_proc *proc, enum binder_deferred_state defer);
static void binder_free_thread(struct binder_thread *thread);
static void binder_free_proc(struct binder_proc *proc);
static void binder_inc_node_tmpref_ilocked(struct binder_node *node);
static bool binder_has_work_ilocked(struct binder_thread *thread,
bool do_proc_work)
{
return thread->process_todo ||
thread->looper_need_return ||
(do_proc_work &&
!binder_worklist_empty_ilocked(&thread->proc->todo));
}
static bool binder_has_work(struct binder_thread *thread, bool do_proc_work)
{
bool has_work;
binder_inner_proc_lock(thread->proc);
has_work = binder_has_work_ilocked(thread, do_proc_work);
binder_inner_proc_unlock(thread->proc);
return has_work;
}
static bool binder_available_for_proc_work_ilocked(struct binder_thread *thread)
{
return !thread->transaction_stack &&
binder_worklist_empty_ilocked(&thread->todo) &&
(thread->looper & (BINDER_LOOPER_STATE_ENTERED |
BINDER_LOOPER_STATE_REGISTERED));
}
static void binder_wakeup_poll_threads_ilocked(struct binder_proc *proc,
bool sync)
{
struct rb_node *n;
struct binder_thread *thread;
for (n = rb_first(&proc->threads); n != NULL; n = rb_next(n)) {
thread = rb_entry(n, struct binder_thread, rb_node);
if (thread->looper & BINDER_LOOPER_STATE_POLL &&
binder_available_for_proc_work_ilocked(thread)) {
if (sync)
wake_up_interruptible_sync(&thread->wait);
else
wake_up_interruptible(&thread->wait);
}
}
}
/**
* binder_select_thread_ilocked() - selects a thread for doing proc work.
* @proc: process to select a thread from
*
* Note that calling this function moves the thread off the waiting_threads
* list, so it can only be woken up by the caller of this function, or a
* signal. Therefore, callers *should* always wake up the thread this function
* returns.
*
* Return: If there's a thread currently waiting for process work,
* returns that thread. Otherwise returns NULL.
*/
static struct binder_thread *
binder_select_thread_ilocked(struct binder_proc *proc)
{
struct binder_thread *thread;
assert_spin_locked(&proc->inner_lock);
thread = list_first_entry_or_null(&proc->waiting_threads,
struct binder_thread,
waiting_thread_node);
if (thread)
list_del_init(&thread->waiting_thread_node);
return thread;
}
/**
* binder_wakeup_thread_ilocked() - wakes up a thread for doing proc work.
* @proc: process to wake up a thread in
* @thread: specific thread to wake-up (may be NULL)
* @sync: whether to do a synchronous wake-up
*
* This function wakes up a thread in the @proc process.
* The caller may provide a specific thread to wake-up in
* the @thread parameter. If @thread is NULL, this function
* will wake up threads that have called poll().
*
* Note that for this function to work as expected, callers
* should first call binder_select_thread() to find a thread
* to handle the work (if they don't have a thread already),
* and pass the result into the @thread parameter.
*/
static void binder_wakeup_thread_ilocked(struct binder_proc *proc,
struct binder_thread *thread,
bool sync)
{
assert_spin_locked(&proc->inner_lock);
if (thread) {
if (sync)
wake_up_interruptible_sync(&thread->wait);
else
wake_up_interruptible(&thread->wait);
return;
}
/* Didn't find a thread waiting for proc work; this can happen
* in two scenarios:
* 1. All threads are busy handling transactions
* In that case, one of those threads should call back into
* the kernel driver soon and pick up this work.
* 2. Threads are using the (e)poll interface, in which case
* they may be blocked on the waitqueue without having been
* added to waiting_threads. For this case, we just iterate
* over all threads not handling transaction work, and
* wake them all up. We wake all because we don't know whether
* a thread that called into (e)poll is handling non-binder
* work currently.
*/
binder_wakeup_poll_threads_ilocked(proc, sync);
}
static void binder_wakeup_proc_ilocked(struct binder_proc *proc)
{
struct binder_thread *thread = binder_select_thread_ilocked(proc);
binder_wakeup_thread_ilocked(proc, thread, /* sync = */false);
}
static void binder_set_nice(long nice)
{
long min_nice;
if (can_nice(current, nice)) {
set_user_nice(current, nice);
return;
}
min_nice = rlimit_to_nice(rlimit(RLIMIT_NICE));
binder_debug(BINDER_DEBUG_PRIORITY_CAP,
"%d: nice value %ld not allowed use %ld instead\n",
current->pid, nice, min_nice);
set_user_nice(current, min_nice);
if (min_nice <= MAX_NICE)
return;
binder_user_error("%d RLIMIT_NICE not set\n", current->pid);
}
static struct binder_node *binder_get_node_ilocked(struct binder_proc *proc,
binder_uintptr_t ptr)
{
struct rb_node *n = proc->nodes.rb_node;
struct binder_node *node;
assert_spin_locked(&proc->inner_lock);
while (n) {
node = rb_entry(n, struct binder_node, rb_node);
if (ptr < node->ptr)
n = n->rb_left;
else if (ptr > node->ptr)
n = n->rb_right;
else {
/*
* take an implicit weak reference
* to ensure node stays alive until
* call to binder_put_node()
*/
binder_inc_node_tmpref_ilocked(node);
return node;
}
}
return NULL;
}
static struct binder_node *binder_get_node(struct binder_proc *proc,
binder_uintptr_t ptr)
{
struct binder_node *node;
binder_inner_proc_lock(proc);
node = binder_get_node_ilocked(proc, ptr);
binder_inner_proc_unlock(proc);
return node;
}
static struct binder_node *binder_init_node_ilocked(
struct binder_proc *proc,
struct binder_node *new_node,
struct flat_binder_object *fp)
{
struct rb_node **p = &proc->nodes.rb_node;
struct rb_node *parent = NULL;
struct binder_node *node;
binder_uintptr_t ptr = fp ? fp->binder : 0;
binder_uintptr_t cookie = fp ? fp->cookie : 0;
__u32 flags = fp ? fp->flags : 0;
assert_spin_locked(&proc->inner_lock);
while (*p) {
parent = *p;
node = rb_entry(parent, struct binder_node, rb_node);
if (ptr < node->ptr)
p = &(*p)->rb_left;
else if (ptr > node->ptr)
p = &(*p)->rb_right;
else {
/*
* A matching node is already in
* the rb tree. Abandon the init
* and return it.
*/
binder_inc_node_tmpref_ilocked(node);
return node;
}
}
node = new_node;
binder_stats_created(BINDER_STAT_NODE);
node->tmp_refs++;
rb_link_node(&node->rb_node, parent, p);
rb_insert_color(&node->rb_node, &proc->nodes);
node->debug_id = atomic_inc_return(&binder_last_id);
node->proc = proc;
node->ptr = ptr;
node->cookie = cookie;
node->work.type = BINDER_WORK_NODE;
node->min_priority = flags & FLAT_BINDER_FLAG_PRIORITY_MASK;
node->accept_fds = !!(flags & FLAT_BINDER_FLAG_ACCEPTS_FDS);
spin_lock_init(&node->lock);
INIT_LIST_HEAD(&node->work.entry);
INIT_LIST_HEAD(&node->async_todo);
binder_debug(BINDER_DEBUG_INTERNAL_REFS,
"%d:%d node %d u%016llx c%016llx created\n",
proc->pid, current->pid, node->debug_id,
(u64)node->ptr, (u64)node->cookie);
return node;
}
static struct binder_node *binder_new_node(struct binder_proc *proc,
struct flat_binder_object *fp)
{
struct binder_node *node;
struct binder_node *new_node = kzalloc(sizeof(*node), GFP_KERNEL);
if (!new_node)
return NULL;
binder_inner_proc_lock(proc);
node = binder_init_node_ilocked(proc, new_node, fp);
binder_inner_proc_unlock(proc);
if (node != new_node)
/*
* The node was already added by another thread
*/
kfree(new_node);
return node;
}
static void binder_free_node(struct binder_node *node)
{
kfree(node);
binder_stats_deleted(BINDER_STAT_NODE);
}
static int binder_inc_node_nilocked(struct binder_node *node, int strong,
int internal,
struct list_head *target_list)
{
struct binder_proc *proc = node->proc;
assert_spin_locked(&node->lock);
if (proc)
assert_spin_locked(&proc->inner_lock);
if (strong) {
if (internal) {
if (target_list == NULL &&
node->internal_strong_refs == 0 &&
!(node->proc &&
node == node->proc->context->binder_context_mgr_node &&
node->has_strong_ref)) {
pr_err("invalid inc strong node for %d\n",
node->debug_id);
return -EINVAL;
}
node->internal_strong_refs++;
} else
node->local_strong_refs++;
if (!node->has_strong_ref && target_list) {
struct binder_thread *thread = container_of(target_list,
struct binder_thread, todo);
binder_dequeue_work_ilocked(&node->work);
BUG_ON(&thread->todo != target_list);
binder_enqueue_deferred_thread_work_ilocked(thread,
&node->work);
}
} else {
if (!internal)
node->local_weak_refs++;
if (!node->has_weak_ref && list_empty(&node->work.entry)) {
if (target_list == NULL) {
pr_err("invalid inc weak node for %d\n",
node->debug_id);
return -EINVAL;
}
/*
* See comment above
*/
binder_enqueue_work_ilocked(&node->work, target_list);
}
}
return 0;
}
static int binder_inc_node(struct binder_node *node, int strong, int internal,
struct list_head *target_list)
{
int ret;
binder_node_inner_lock(node);
ret = binder_inc_node_nilocked(node, strong, internal, target_list);
binder_node_inner_unlock(node);
return ret;
}
static bool binder_dec_node_nilocked(struct binder_node *node,
int strong, int internal)
{
struct binder_proc *proc = node->proc;
assert_spin_locked(&node->lock);
if (proc)
assert_spin_locked(&proc->inner_lock);
if (strong) {
if (internal)
node->internal_strong_refs--;
else
node->local_strong_refs--;
if (node->local_strong_refs || node->internal_strong_refs)
return false;
} else {
if (!internal)
node->local_weak_refs--;
if (node->local_weak_refs || node->tmp_refs ||
!hlist_empty(&node->refs))
return false;
}
if (proc && (node->has_strong_ref || node->has_weak_ref)) {
if (list_empty(&node->work.entry)) {
binder_enqueue_work_ilocked(&node->work, &proc->todo);
binder_wakeup_proc_ilocked(proc);
}
} else {
if (hlist_empty(&node->refs) && !node->local_strong_refs &&
!node->local_weak_refs && !node->tmp_refs) {
if (proc) {
binder_dequeue_work_ilocked(&node->work);
rb_erase(&node->rb_node, &proc->nodes);
binder_debug(BINDER_DEBUG_INTERNAL_REFS,
"refless node %d deleted\n",
node->debug_id);
} else {
BUG_ON(!list_empty(&node->work.entry));
spin_lock(&binder_dead_nodes_lock);
/*
* tmp_refs could have changed so
* check it again
*/
if (node->tmp_refs) {
spin_unlock(&binder_dead_nodes_lock);
return false;
}
hlist_del(&node->dead_node);
spin_unlock(&binder_dead_nodes_lock);
binder_debug(BINDER_DEBUG_INTERNAL_REFS,
"dead node %d deleted\n",
node->debug_id);
}
return true;
}
}
return false;
}
static void binder_dec_node(struct binder_node *node, int strong, int internal)
{
bool free_node;
binder_node_inner_lock(node);
free_node = binder_dec_node_nilocked(node, strong, internal);
binder_node_inner_unlock(node);
if (free_node)
binder_free_node(node);
}
static void binder_inc_node_tmpref_ilocked(struct binder_node *node)
{
/*
* No call to binder_inc_node() is needed since we
* don't need to inform userspace of any changes to
* tmp_refs
*/
node->tmp_refs++;
}
/**
* binder_inc_node_tmpref() - take a temporary reference on node
* @node: node to reference
*
* Take reference on node to prevent the node from being freed
* while referenced only by a local variable. The inner lock is
* needed to serialize with the node work on the queue (which
* isn't needed after the node is dead). If the node is dead
* (node->proc is NULL), use binder_dead_nodes_lock to protect
* node->tmp_refs against dead-node-only cases where the node
* lock cannot be acquired (eg traversing the dead node list to
* print nodes)
*/
static void binder_inc_node_tmpref(struct binder_node *node)
{
binder_node_lock(node);
if (node->proc)
binder_inner_proc_lock(node->proc);
else
spin_lock(&binder_dead_nodes_lock);
binder_inc_node_tmpref_ilocked(node);
if (node->proc)
binder_inner_proc_unlock(node->proc);
else
spin_unlock(&binder_dead_nodes_lock);
binder_node_unlock(node);
}
/**
* binder_dec_node_tmpref() - remove a temporary reference on node
* @node: node to reference
*
* Release temporary reference on node taken via binder_inc_node_tmpref()
*/
static void binder_dec_node_tmpref(struct binder_node *node)
{
bool free_node;
binder_node_inner_lock(node);
if (!node->proc)
spin_lock(&binder_dead_nodes_lock);
else
__acquire(&binder_dead_nodes_lock);
node->tmp_refs--;
BUG_ON(node->tmp_refs < 0);
if (!node->proc)
spin_unlock(&binder_dead_nodes_lock);
else
__release(&binder_dead_nodes_lock);
/*
* Call binder_dec_node() to check if all refcounts are 0
* and cleanup is needed. Calling with strong=0 and internal=1
* causes no actual reference to be released in binder_dec_node().
* If that changes, a change is needed here too.
*/
free_node = binder_dec_node_nilocked(node, 0, 1);
binder_node_inner_unlock(node);
if (free_node)
binder_free_node(node);
}
static void binder_put_node(struct binder_node *node)
{
binder_dec_node_tmpref(node);
}
static struct binder_ref *binder_get_ref_olocked(struct binder_proc *proc,
u32 desc, bool need_strong_ref)
{
struct rb_node *n = proc->refs_by_desc.rb_node;
struct binder_ref *ref;
while (n) {
ref = rb_entry(n, struct binder_ref, rb_node_desc);
if (desc < ref->data.desc) {
n = n->rb_left;
} else if (desc > ref->data.desc) {
n = n->rb_right;
} else if (need_strong_ref && !ref->data.strong) {
binder_user_error("tried to use weak ref as strong ref\n");
return NULL;
} else {
return ref;
}
}
return NULL;
}
/**
* binder_get_ref_for_node_olocked() - get the ref associated with given node
* @proc: binder_proc that owns the ref
* @node: binder_node of target
* @new_ref: newly allocated binder_ref to be initialized or %NULL
*
* Look up the ref for the given node and return it if it exists
*
* If it doesn't exist and the caller provides a newly allocated
* ref, initialize the fields of the newly allocated ref and insert
* into the given proc rb_trees and node refs list.
*
* Return: the ref for node. It is possible that another thread
* allocated/initialized the ref first in which case the
* returned ref would be different than the passed-in
* new_ref. new_ref must be kfree'd by the caller in
* this case.
*/
static struct binder_ref *binder_get_ref_for_node_olocked(
struct binder_proc *proc,
struct binder_node *node,
struct binder_ref *new_ref)
{
struct binder_context *context = proc->context;
struct rb_node **p = &proc->refs_by_node.rb_node;
struct rb_node *parent = NULL;
struct binder_ref *ref;
struct rb_node *n;
while (*p) {
parent = *p;
ref = rb_entry(parent, struct binder_ref, rb_node_node);
if (node < ref->node)
p = &(*p)->rb_left;
else if (node > ref->node)
p = &(*p)->rb_right;
else
return ref;
}
if (!new_ref)
return NULL;
binder_stats_created(BINDER_STAT_REF);
new_ref->data.debug_id = atomic_inc_return(&binder_last_id);
new_ref->proc = proc;
new_ref->node = node;
rb_link_node(&new_ref->rb_node_node, parent, p);
rb_insert_color(&new_ref->rb_node_node, &proc->refs_by_node);
new_ref->data.desc = (node == context->binder_context_mgr_node) ? 0 : 1;
for (n = rb_first(&proc->refs_by_desc); n != NULL; n = rb_next(n)) {
ref = rb_entry(n, struct binder_ref, rb_node_desc);
if (ref->data.desc > new_ref->data.desc)
break;
new_ref->data.desc = ref->data.desc + 1;
}
p = &proc->refs_by_desc.rb_node;
while (*p) {
parent = *p;
ref = rb_entry(parent, struct binder_ref, rb_node_desc);
if (new_ref->data.desc < ref->data.desc)
p = &(*p)->rb_left;
else if (new_ref->data.desc > ref->data.desc)
p = &(*p)->rb_right;
else
BUG();
}
rb_link_node(&new_ref->rb_node_desc, parent, p);
rb_insert_color(&new_ref->rb_node_desc, &proc->refs_by_desc);
binder_node_lock(node);
hlist_add_head(&new_ref->node_entry, &node->refs);
binder_debug(BINDER_DEBUG_INTERNAL_REFS,
"%d new ref %d desc %d for node %d\n",
proc->pid, new_ref->data.debug_id, new_ref->data.desc,
node->debug_id);
binder_node_unlock(node);
return new_ref;
}
static void binder_cleanup_ref_olocked(struct binder_ref *ref)
{
bool delete_node = false;
binder_debug(BINDER_DEBUG_INTERNAL_REFS,
"%d delete ref %d desc %d for node %d\n",
ref->proc->pid, ref->data.debug_id, ref->data.desc,
ref->node->debug_id);
rb_erase(&ref->rb_node_desc, &ref->proc->refs_by_desc);
rb_erase(&ref->rb_node_node, &ref->proc->refs_by_node);
binder_node_inner_lock(ref->node);
if (ref->data.strong)
binder_dec_node_nilocked(ref->node, 1, 1);
hlist_del(&ref->node_entry);
delete_node = binder_dec_node_nilocked(ref->node, 0, 1);
binder_node_inner_unlock(ref->node);
/*
* Clear ref->node unless we want the caller to free the node
*/
if (!delete_node) {
/*
* The caller uses ref->node to determine
* whether the node needs to be freed. Clear
* it since the node is still alive.
*/
ref->node = NULL;
}
if (ref->death) {
binder_debug(BINDER_DEBUG_DEAD_BINDER,
"%d delete ref %d desc %d has death notification\n",
ref->proc->pid, ref->data.debug_id,
ref->data.desc);
binder_dequeue_work(ref->proc, &ref->death->work);
binder_stats_deleted(BINDER_STAT_DEATH);
}
binder_stats_deleted(BINDER_STAT_REF);
}
/**
* binder_inc_ref_olocked() - increment the ref for given handle
* @ref: ref to be incremented
* @strong: if true, strong increment, else weak
* @target_list: list to queue node work on
*
* Increment the ref. @ref->proc->outer_lock must be held on entry
*
* Return: 0, if successful, else errno
*/
static int binder_inc_ref_olocked(struct binder_ref *ref, int strong,
struct list_head *target_list)
{
int ret;
if (strong) {
if (ref->data.strong == 0) {
ret = binder_inc_node(ref->node, 1, 1, target_list);
if (ret)
return ret;
}
ref->data.strong++;
} else {
if (ref->data.weak == 0) {
ret = binder_inc_node(ref->node, 0, 1, target_list);
if (ret)
return ret;
}
ref->data.weak++;
}
return 0;
}
/**
* binder_dec_ref() - dec the ref for given handle
* @ref: ref to be decremented
* @strong: if true, strong decrement, else weak
*
* Decrement the ref.
*
* Return: true if ref is cleaned up and ready to be freed
*/
static bool binder_dec_ref_olocked(struct binder_ref *ref, int strong)
{
if (strong) {
if (ref->data.strong == 0) {
binder_user_error("%d invalid dec strong, ref %d desc %d s %d w %d\n",
ref->proc->pid, ref->data.debug_id,
ref->data.desc, ref->data.strong,
ref->data.weak);
return false;
}
ref->data.strong--;
if (ref->data.strong == 0)
binder_dec_node(ref->node, strong, 1);
} else {
if (ref->data.weak == 0) {
binder_user_error("%d invalid dec weak, ref %d desc %d s %d w %d\n",
ref->proc->pid, ref->data.debug_id,
ref->data.desc, ref->data.strong,
ref->data.weak);
return false;
}
ref->data.weak--;
}
if (ref->data.strong == 0 && ref->data.weak == 0) {
binder_cleanup_ref_olocked(ref);
return true;
}
return false;
}
/**
* binder_get_node_from_ref() - get the node from the given proc/desc
* @proc: proc containing the ref
* @desc: the handle associated with the ref
* @need_strong_ref: if true, only return node if ref is strong
* @rdata: the id/refcount data for the ref
*
* Given a proc and ref handle, return the associated binder_node
*
* Return: a binder_node or NULL if not found or not strong when strong required
*/
static struct binder_node *binder_get_node_from_ref(
struct binder_proc *proc,
u32 desc, bool need_strong_ref,
struct binder_ref_data *rdata)
{
struct binder_node *node;
struct binder_ref *ref;
binder_proc_lock(proc);
ref = binder_get_ref_olocked(proc, desc, need_strong_ref);
if (!ref)
goto err_no_ref;
node = ref->node;
/*
* Take an implicit reference on the node to ensure
* it stays alive until the call to binder_put_node()
*/
binder_inc_node_tmpref(node);
if (rdata)
*rdata = ref->data;
binder_proc_unlock(proc);
return node;
err_no_ref:
binder_proc_unlock(proc);
return NULL;
}
/**
* binder_free_ref() - free the binder_ref
* @ref: ref to free
*
* Free the binder_ref. Free the binder_node indicated by ref->node
* (if non-NULL) and the binder_ref_death indicated by ref->death.
*/
static void binder_free_ref(struct binder_ref *ref)
{
if (ref->node)
binder_free_node(ref->node);
kfree(ref->death);
kfree(ref);
}
/**
* binder_update_ref_for_handle() - inc/dec the ref for given handle
* @proc: proc containing the ref
* @desc: the handle associated with the ref
* @increment: true=inc reference, false=dec reference
* @strong: true=strong reference, false=weak reference
* @rdata: the id/refcount data for the ref
*
* Given a proc and ref handle, increment or decrement the ref
* according to "increment" arg.
*
* Return: 0 if successful, else errno
*/
static int binder_update_ref_for_handle(struct binder_proc *proc,
uint32_t desc, bool increment, bool strong,
struct binder_ref_data *rdata)
{
int ret = 0;
struct binder_ref *ref;
bool delete_ref = false;
binder_proc_lock(proc);
ref = binder_get_ref_olocked(proc, desc, strong);
if (!ref) {
ret = -EINVAL;
goto err_no_ref;
}
if (increment)
ret = binder_inc_ref_olocked(ref, strong, NULL);
else
delete_ref = binder_dec_ref_olocked(ref, strong);
if (rdata)
*rdata = ref->data;
binder_proc_unlock(proc);
if (delete_ref)
binder_free_ref(ref);
return ret;
err_no_ref:
binder_proc_unlock(proc);
return ret;
}
/**
* binder_dec_ref_for_handle() - dec the ref for given handle
* @proc: proc containing the ref
* @desc: the handle associated with the ref
* @strong: true=strong reference, false=weak reference
* @rdata: the id/refcount data for the ref
*
* Just calls binder_update_ref_for_handle() to decrement the ref.
*
* Return: 0 if successful, else errno
*/
static int binder_dec_ref_for_handle(struct binder_proc *proc,
uint32_t desc, bool strong, struct binder_ref_data *rdata)
{
return binder_update_ref_for_handle(proc, desc, false, strong, rdata);
}
/**
* binder_inc_ref_for_node() - increment the ref for given proc/node
* @proc: proc containing the ref
* @node: target node
* @strong: true=strong reference, false=weak reference
* @target_list: worklist to use if node is incremented
* @rdata: the id/refcount data for the ref
*
* Given a proc and node, increment the ref. Create the ref if it
* doesn't already exist
*
* Return: 0 if successful, else errno
*/
static int binder_inc_ref_for_node(struct binder_proc *proc,
struct binder_node *node,
bool strong,
struct list_head *target_list,
struct binder_ref_data *rdata)
{
struct binder_ref *ref;
struct binder_ref *new_ref = NULL;
int ret = 0;
binder_proc_lock(proc);
ref = binder_get_ref_for_node_olocked(proc, node, NULL);
if (!ref) {
binder_proc_unlock(proc);
new_ref = kzalloc(sizeof(*ref), GFP_KERNEL);
if (!new_ref)
return -ENOMEM;
binder_proc_lock(proc);
ref = binder_get_ref_for_node_olocked(proc, node, new_ref);
}
ret = binder_inc_ref_olocked(ref, strong, target_list);
*rdata = ref->data;
binder_proc_unlock(proc);
if (new_ref && ref != new_ref)
/*
* Another thread created the ref first so
* free the one we allocated
*/
kfree(new_ref);
return ret;
}
static void binder_pop_transaction_ilocked(struct binder_thread *target_thread,
struct binder_transaction *t)
{
BUG_ON(!target_thread);
assert_spin_locked(&target_thread->proc->inner_lock);
BUG_ON(target_thread->transaction_stack != t);
BUG_ON(target_thread->transaction_stack->from != target_thread);
target_thread->transaction_stack =
target_thread->transaction_stack->from_parent;
t->from = NULL;
}
/**
* binder_thread_dec_tmpref() - decrement thread->tmp_ref
* @thread: thread to decrement
*
* A thread needs to be kept alive while being used to create or
* handle a transaction. binder_get_txn_from() is used to safely
* extract t->from from a binder_transaction and keep the thread
* indicated by t->from from being freed. When done with that
* binder_thread, this function is called to decrement the
* tmp_ref and free if appropriate (thread has been released
* and no transaction being processed by the driver)
*/
static void binder_thread_dec_tmpref(struct binder_thread *thread)
{
/*
* atomic is used to protect the counter value while
* it cannot reach zero or thread->is_dead is false
*/
binder_inner_proc_lock(thread->proc);
atomic_dec(&thread->tmp_ref);
if (thread->is_dead && !atomic_read(&thread->tmp_ref)) {
binder_inner_proc_unlock(thread->proc);
binder_free_thread(thread);
return;
}
binder_inner_proc_unlock(thread->proc);
}
/**
* binder_proc_dec_tmpref() - decrement proc->tmp_ref
* @proc: proc to decrement
*
* A binder_proc needs to be kept alive while being used to create or
* handle a transaction. proc->tmp_ref is incremented when
* creating a new transaction or the binder_proc is currently in-use
* by threads that are being released. When done with the binder_proc,
* this function is called to decrement the counter and free the
* proc if appropriate (proc has been released, all threads have
* been released and not currenly in-use to process a transaction).
*/
static void binder_proc_dec_tmpref(struct binder_proc *proc)
{
binder_inner_proc_lock(proc);
proc->tmp_ref--;
if (proc->is_dead && RB_EMPTY_ROOT(&proc->threads) &&
!proc->tmp_ref) {
binder_inner_proc_unlock(proc);
binder_free_proc(proc);
return;
}
binder_inner_proc_unlock(proc);
}
/**
* binder_get_txn_from() - safely extract the "from" thread in transaction
* @t: binder transaction for t->from
*
* Atomically return the "from" thread and increment the tmp_ref
* count for the thread to ensure it stays alive until
* binder_thread_dec_tmpref() is called.
*
* Return: the value of t->from
*/
static struct binder_thread *binder_get_txn_from(
struct binder_transaction *t)
{
struct binder_thread *from;
spin_lock(&t->lock);
from = t->from;
if (from)
atomic_inc(&from->tmp_ref);
spin_unlock(&t->lock);
return from;
}
/**
* binder_get_txn_from_and_acq_inner() - get t->from and acquire inner lock
* @t: binder transaction for t->from
*
* Same as binder_get_txn_from() except it also acquires the proc->inner_lock
* to guarantee that the thread cannot be released while operating on it.
* The caller must call binder_inner_proc_unlock() to release the inner lock
* as well as call binder_dec_thread_txn() to release the reference.
*
* Return: the value of t->from
*/
static struct binder_thread *binder_get_txn_from_and_acq_inner(
struct binder_transaction *t)
__acquires(&t->from->proc->inner_lock)
{
struct binder_thread *from;
from = binder_get_txn_from(t);
if (!from) {
__acquire(&from->proc->inner_lock);
return NULL;
}
binder_inner_proc_lock(from->proc);
if (t->from) {
BUG_ON(from != t->from);
return from;
}
binder_inner_proc_unlock(from->proc);
__acquire(&from->proc->inner_lock);
binder_thread_dec_tmpref(from);
return NULL;
}
/**
* binder_free_txn_fixups() - free unprocessed fd fixups
* @t: binder transaction for t->from
*
* If the transaction is being torn down prior to being
* processed by the target process, free all of the
* fd fixups and fput the file structs. It is safe to
* call this function after the fixups have been
* processed -- in that case, the list will be empty.
*/
static void binder_free_txn_fixups(struct binder_transaction *t)
{
struct binder_txn_fd_fixup *fixup, *tmp;
list_for_each_entry_safe(fixup, tmp, &t->fd_fixups, fixup_entry) {
fput(fixup->file);
list_del(&fixup->fixup_entry);
kfree(fixup);
}
}
static void binder_free_transaction(struct binder_transaction *t)
{
if (t->buffer)
t->buffer->transaction = NULL;
binder_free_txn_fixups(t);
kfree(t);
binder_stats_deleted(BINDER_STAT_TRANSACTION);
}
static void binder_send_failed_reply(struct binder_transaction *t,
uint32_t error_code)
{
struct binder_thread *target_thread;
struct binder_transaction *next;
BUG_ON(t->flags & TF_ONE_WAY);
while (1) {
target_thread = binder_get_txn_from_and_acq_inner(t);
if (target_thread) {
binder_debug(BINDER_DEBUG_FAILED_TRANSACTION,
"send failed reply for transaction %d to %d:%d\n",
t->debug_id,
target_thread->proc->pid,
target_thread->pid);
binder_pop_transaction_ilocked(target_thread, t);
if (target_thread->reply_error.cmd == BR_OK) {
target_thread->reply_error.cmd = error_code;
binder_enqueue_thread_work_ilocked(
target_thread,
&target_thread->reply_error.work);
wake_up_interruptible(&target_thread->wait);
} else {
/*
* Cannot get here for normal operation, but
* we can if multiple synchronous transactions
* are sent without blocking for responses.
* Just ignore the 2nd error in this case.
*/
pr_warn("Unexpected reply error: %u\n",
target_thread->reply_error.cmd);
}
binder_inner_proc_unlock(target_thread->proc);
binder_thread_dec_tmpref(target_thread);
binder_free_transaction(t);
return;
} else {
__release(&target_thread->proc->inner_lock);
}
next = t->from_parent;
binder_debug(BINDER_DEBUG_FAILED_TRANSACTION,
"send failed reply for transaction %d, target dead\n",
t->debug_id);
binder_free_transaction(t);
if (next == NULL) {
binder_debug(BINDER_DEBUG_DEAD_BINDER,
"reply failed, no target thread at root\n");
return;
}
t = next;
binder_debug(BINDER_DEBUG_DEAD_BINDER,
"reply failed, no target thread -- retry %d\n",
t->debug_id);
}
}
/**
* binder_cleanup_transaction() - cleans up undelivered transaction
* @t: transaction that needs to be cleaned up
* @reason: reason the transaction wasn't delivered
* @error_code: error to return to caller (if synchronous call)
*/
static void binder_cleanup_transaction(struct binder_transaction *t,
const char *reason,
uint32_t error_code)
{
if (t->buffer->target_node && !(t->flags & TF_ONE_WAY)) {
binder_send_failed_reply(t, error_code);
} else {
binder_debug(BINDER_DEBUG_DEAD_TRANSACTION,
"undelivered transaction %d, %s\n",
t->debug_id, reason);
binder_free_transaction(t);
}
}
/**
* binder_validate_object() - checks for a valid metadata object in a buffer.
* @buffer: binder_buffer that we're parsing.
* @offset: offset in the buffer at which to validate an object.
*
* Return: If there's a valid metadata object at @offset in @buffer, the
* size of that object. Otherwise, it returns zero.
*/
static size_t binder_validate_object(struct binder_buffer *buffer, u64 offset)
{
/* Check if we can read a header first */
struct binder_object_header *hdr;
size_t object_size = 0;
if (buffer->data_size < sizeof(*hdr) ||
offset > buffer->data_size - sizeof(*hdr) ||
!IS_ALIGNED(offset, sizeof(u32)))
return 0;
/* Ok, now see if we can read a complete object. */
hdr = (struct binder_object_header *)(buffer->data + offset);
switch (hdr->type) {
case BINDER_TYPE_BINDER:
case BINDER_TYPE_WEAK_BINDER:
case BINDER_TYPE_HANDLE:
case BINDER_TYPE_WEAK_HANDLE:
object_size = sizeof(struct flat_binder_object);
break;
case BINDER_TYPE_FD:
object_size = sizeof(struct binder_fd_object);
break;
case BINDER_TYPE_PTR:
object_size = sizeof(struct binder_buffer_object);
break;
case BINDER_TYPE_FDA:
object_size = sizeof(struct binder_fd_array_object);
break;
default:
return 0;
}
if (offset <= buffer->data_size - object_size &&
buffer->data_size >= object_size)
return object_size;
else
return 0;
}
/**
* binder_validate_ptr() - validates binder_buffer_object in a binder_buffer.
* @b: binder_buffer containing the object
* @index: index in offset array at which the binder_buffer_object is
* located
* @start: points to the start of the offset array
* @num_valid: the number of valid offsets in the offset array
*
* Return: If @index is within the valid range of the offset array
* described by @start and @num_valid, and if there's a valid
* binder_buffer_object at the offset found in index @index
* of the offset array, that object is returned. Otherwise,
* %NULL is returned.
* Note that the offset found in index @index itself is not
* verified; this function assumes that @num_valid elements
* from @start were previously verified to have valid offsets.
*/
static struct binder_buffer_object *binder_validate_ptr(struct binder_buffer *b,
binder_size_t index,
binder_size_t *start,
binder_size_t num_valid)
{
struct binder_buffer_object *buffer_obj;
binder_size_t *offp;
if (index >= num_valid)
return NULL;
offp = start + index;
buffer_obj = (struct binder_buffer_object *)(b->data + *offp);
if (buffer_obj->hdr.type != BINDER_TYPE_PTR)
return NULL;
return buffer_obj;
}
/**
* binder_validate_fixup() - validates pointer/fd fixups happen in order.
* @b: transaction buffer
* @objects_start start of objects buffer
* @buffer: binder_buffer_object in which to fix up
* @offset: start offset in @buffer to fix up
* @last_obj: last binder_buffer_object that we fixed up in
* @last_min_offset: minimum fixup offset in @last_obj
*
* Return: %true if a fixup in buffer @buffer at offset @offset is
* allowed.
*
* For safety reasons, we only allow fixups inside a buffer to happen
* at increasing offsets; additionally, we only allow fixup on the last
* buffer object that was verified, or one of its parents.
*
* Example of what is allowed:
*
* A
* B (parent = A, offset = 0)
* C (parent = A, offset = 16)
* D (parent = C, offset = 0)
* E (parent = A, offset = 32) // min_offset is 16 (C.parent_offset)
*
* Examples of what is not allowed:
*
* Decreasing offsets within the same parent:
* A
* C (parent = A, offset = 16)
* B (parent = A, offset = 0) // decreasing offset within A
*
* Referring to a parent that wasn't the last object or any of its parents:
* A
* B (parent = A, offset = 0)
* C (parent = A, offset = 0)
* C (parent = A, offset = 16)
* D (parent = B, offset = 0) // B is not A or any of A's parents
*/
static bool binder_validate_fixup(struct binder_buffer *b,
binder_size_t *objects_start,
struct binder_buffer_object *buffer,
binder_size_t fixup_offset,
struct binder_buffer_object *last_obj,
binder_size_t last_min_offset)
{
if (!last_obj) {
/* Nothing to fix up in */
return false;
}
while (last_obj != buffer) {
/*
* Safe to retrieve the parent of last_obj, since it
* was already previously verified by the driver.
*/
if ((last_obj->flags & BINDER_BUFFER_FLAG_HAS_PARENT) == 0)
return false;
last_min_offset = last_obj->parent_offset + sizeof(uintptr_t);
last_obj = (struct binder_buffer_object *)
(b->data + *(objects_start + last_obj->parent));
}
return (fixup_offset >= last_min_offset);
}
/**
* struct binder_task_work_cb - for deferred close
*
* @twork: callback_head for task work
* @fd: fd to close
*
* Structure to pass task work to be handled after
* returning from binder_ioctl() via task_work_add().
*/
struct binder_task_work_cb {
struct callback_head twork;
struct file *file;
};
/**
* binder_do_fd_close() - close list of file descriptors
* @twork: callback head for task work
*
* It is not safe to call ksys_close() during the binder_ioctl()
* function if there is a chance that binder's own file descriptor
* might be closed. This is to meet the requirements for using
* fdget() (see comments for __fget_light()). Therefore use
* task_work_add() to schedule the close operation once we have
* returned from binder_ioctl(). This function is a callback
* for that mechanism and does the actual ksys_close() on the
* given file descriptor.
*/
static void binder_do_fd_close(struct callback_head *twork)
{
struct binder_task_work_cb *twcb = container_of(twork,
struct binder_task_work_cb, twork);
fput(twcb->file);
kfree(twcb);
}
/**
* binder_deferred_fd_close() - schedule a close for the given file-descriptor
* @fd: file-descriptor to close
*
* See comments in binder_do_fd_close(). This function is used to schedule
* a file-descriptor to be closed after returning from binder_ioctl().
*/
static void binder_deferred_fd_close(int fd)
{
struct binder_task_work_cb *twcb;
twcb = kzalloc(sizeof(*twcb), GFP_KERNEL);
if (!twcb)
return;
init_task_work(&twcb->twork, binder_do_fd_close);
__close_fd_get_file(fd, &twcb->file);
if (twcb->file)
task_work_add(current, &twcb->twork, true);
else
kfree(twcb);
}
static void binder_transaction_buffer_release(struct binder_proc *proc,
struct binder_buffer *buffer,
binder_size_t *failed_at)
{
binder_size_t *offp, *off_start, *off_end;
int debug_id = buffer->debug_id;
binder_debug(BINDER_DEBUG_TRANSACTION,
"%d buffer release %d, size %zd-%zd, failed at %pK\n",
proc->pid, buffer->debug_id,
buffer->data_size, buffer->offsets_size, failed_at);
if (buffer->target_node)
binder_dec_node(buffer->target_node, 1, 0);
off_start = (binder_size_t *)(buffer->data +
ALIGN(buffer->data_size, sizeof(void *)));
if (failed_at)
off_end = failed_at;
else
off_end = (void *)off_start + buffer->offsets_size;
for (offp = off_start; offp < off_end; offp++) {
struct binder_object_header *hdr;
size_t object_size = binder_validate_object(buffer, *offp);
if (object_size == 0) {
pr_err("transaction release %d bad object at offset %lld, size %zd\n",
debug_id, (u64)*offp, buffer->data_size);
continue;
}
hdr = (struct binder_object_header *)(buffer->data + *offp);
switch (hdr->type) {
case BINDER_TYPE_BINDER:
case BINDER_TYPE_WEAK_BINDER: {
struct flat_binder_object *fp;
struct binder_node *node;
fp = to_flat_binder_object(hdr);
node = binder_get_node(proc, fp->binder);
if (node == NULL) {
pr_err("transaction release %d bad node %016llx\n",
debug_id, (u64)fp->binder);
break;
}
binder_debug(BINDER_DEBUG_TRANSACTION,
" node %d u%016llx\n",
node->debug_id, (u64)node->ptr);
binder_dec_node(node, hdr->type == BINDER_TYPE_BINDER,
0);
binder_put_node(node);
} break;
case BINDER_TYPE_HANDLE:
case BINDER_TYPE_WEAK_HANDLE: {
struct flat_binder_object *fp;
struct binder_ref_data rdata;
int ret;
fp = to_flat_binder_object(hdr);
ret = binder_dec_ref_for_handle(proc, fp->handle,
hdr->type == BINDER_TYPE_HANDLE, &rdata);
if (ret) {
pr_err("transaction release %d bad handle %d, ret = %d\n",
debug_id, fp->handle, ret);
break;
}
binder_debug(BINDER_DEBUG_TRANSACTION,
" ref %d desc %d\n",
rdata.debug_id, rdata.desc);
} break;
case BINDER_TYPE_FD: {
/*
* No need to close the file here since user-space
* closes it for for successfully delivered
* transactions. For transactions that weren't
* delivered, the new fd was never allocated so
* there is no need to close and the fput on the
* file is done when the transaction is torn
* down.
*/
WARN_ON(failed_at &&
proc->tsk == current->group_leader);
} break;
case BINDER_TYPE_PTR:
/*
* Nothing to do here, this will get cleaned up when the
* transaction buffer gets freed
*/
break;
case BINDER_TYPE_FDA: {
struct binder_fd_array_object *fda;
struct binder_buffer_object *parent;
uintptr_t parent_buffer;
u32 *fd_array;
size_t fd_index;
binder_size_t fd_buf_size;
if (proc->tsk != current->group_leader) {
/*
* Nothing to do if running in sender context
* The fd fixups have not been applied so no
* fds need to be closed.
*/
continue;
}
fda = to_binder_fd_array_object(hdr);
parent = binder_validate_ptr(buffer, fda->parent,
off_start,
offp - off_start);
if (!parent) {
pr_err("transaction release %d bad parent offset\n",
debug_id);
continue;
}
/*
* Since the parent was already fixed up, convert it
* back to kernel address space to access it
*/
parent_buffer = parent->buffer -
binder_alloc_get_user_buffer_offset(
&proc->alloc);
fd_buf_size = sizeof(u32) * fda->num_fds;
if (fda->num_fds >= SIZE_MAX / sizeof(u32)) {
pr_err("transaction release %d invalid number of fds (%lld)\n",
debug_id, (u64)fda->num_fds);
continue;
}
if (fd_buf_size > parent->length ||
fda->parent_offset > parent->length - fd_buf_size) {
/* No space for all file descriptors here. */
pr_err("transaction release %d not enough space for %lld fds in buffer\n",
debug_id, (u64)fda->num_fds);
continue;
}
fd_array = (u32 *)(parent_buffer + (uintptr_t)fda->parent_offset);
for (fd_index = 0; fd_index < fda->num_fds; fd_index++)
binder_deferred_fd_close(fd_array[fd_index]);
} break;
default:
pr_err("transaction release %d bad object type %x\n",
debug_id, hdr->type);
break;
}
}
}
static int binder_translate_binder(struct flat_binder_object *fp,
struct binder_transaction *t,
struct binder_thread *thread)
{
struct binder_node *node;
struct binder_proc *proc = thread->proc;
struct binder_proc *target_proc = t->to_proc;
struct binder_ref_data rdata;
int ret = 0;
node = binder_get_node(proc, fp->binder);
if (!node) {
node = binder_new_node(proc, fp);
if (!node)
return -ENOMEM;
}
if (fp->cookie != node->cookie) {
binder_user_error("%d:%d sending u%016llx node %d, cookie mismatch %016llx != %016llx\n",
proc->pid, thread->pid, (u64)fp->binder,
node->debug_id, (u64)fp->cookie,
(u64)node->cookie);
ret = -EINVAL;
goto done;
}
if (security_binder_transfer_binder(proc->tsk, target_proc->tsk)) {
ret = -EPERM;
goto done;
}
ret = binder_inc_ref_for_node(target_proc, node,
fp->hdr.type == BINDER_TYPE_BINDER,
&thread->todo, &rdata);
if (ret)
goto done;
if (fp->hdr.type == BINDER_TYPE_BINDER)
fp->hdr.type = BINDER_TYPE_HANDLE;
else
fp->hdr.type = BINDER_TYPE_WEAK_HANDLE;
fp->binder = 0;
fp->handle = rdata.desc;
fp->cookie = 0;
trace_binder_transaction_node_to_ref(t, node, &rdata);
binder_debug(BINDER_DEBUG_TRANSACTION,
" node %d u%016llx -> ref %d desc %d\n",
node->debug_id, (u64)node->ptr,
rdata.debug_id, rdata.desc);
done:
binder_put_node(node);
return ret;
}
static int binder_translate_handle(struct flat_binder_object *fp,
struct binder_transaction *t,
struct binder_thread *thread)
{
struct binder_proc *proc = thread->proc;
struct binder_proc *target_proc = t->to_proc;
struct binder_node *node;
struct binder_ref_data src_rdata;
int ret = 0;
node = binder_get_node_from_ref(proc, fp->handle,
fp->hdr.type == BINDER_TYPE_HANDLE, &src_rdata);
if (!node) {
binder_user_error("%d:%d got transaction with invalid handle, %d\n",
proc->pid, thread->pid, fp->handle);
return -EINVAL;
}
if (security_binder_transfer_binder(proc->tsk, target_proc->tsk)) {
ret = -EPERM;
goto done;
}
binder_node_lock(node);
if (node->proc == target_proc) {
if (fp->hdr.type == BINDER_TYPE_HANDLE)
fp->hdr.type = BINDER_TYPE_BINDER;
else
fp->hdr.type = BINDER_TYPE_WEAK_BINDER;
fp->binder = node->ptr;
fp->cookie = node->cookie;
if (node->proc)
binder_inner_proc_lock(node->proc);
else
__acquire(&node->proc->inner_lock);
binder_inc_node_nilocked(node,
fp->hdr.type == BINDER_TYPE_BINDER,
0, NULL);
if (node->proc)
binder_inner_proc_unlock(node->proc);
else
__release(&node->proc->inner_lock);
trace_binder_transaction_ref_to_node(t, node, &src_rdata);
binder_debug(BINDER_DEBUG_TRANSACTION,
" ref %d desc %d -> node %d u%016llx\n",
src_rdata.debug_id, src_rdata.desc, node->debug_id,
(u64)node->ptr);
binder_node_unlock(node);
} else {
struct binder_ref_data dest_rdata;
binder_node_unlock(node);
ret = binder_inc_ref_for_node(target_proc, node,
fp->hdr.type == BINDER_TYPE_HANDLE,
NULL, &dest_rdata);
if (ret)
goto done;
fp->binder = 0;
fp->handle = dest_rdata.desc;
fp->cookie = 0;
trace_binder_transaction_ref_to_ref(t, node, &src_rdata,
&dest_rdata);
binder_debug(BINDER_DEBUG_TRANSACTION,
" ref %d desc %d -> ref %d desc %d (node %d)\n",
src_rdata.debug_id, src_rdata.desc,
dest_rdata.debug_id, dest_rdata.desc,
node->debug_id);
}
done:
binder_put_node(node);
return ret;
}
static int binder_translate_fd(u32 *fdp,
struct binder_transaction *t,
struct binder_thread *thread,
struct binder_transaction *in_reply_to)
{
struct binder_proc *proc = thread->proc;
struct binder_proc *target_proc = t->to_proc;
struct binder_txn_fd_fixup *fixup;
struct file *file;
int ret = 0;
bool target_allows_fd;
int fd = *fdp;
if (in_reply_to)
target_allows_fd = !!(in_reply_to->flags & TF_ACCEPT_FDS);
else
target_allows_fd = t->buffer->target_node->accept_fds;
if (!target_allows_fd) {
binder_user_error("%d:%d got %s with fd, %d, but target does not allow fds\n",
proc->pid, thread->pid,
in_reply_to ? "reply" : "transaction",
fd);
ret = -EPERM;
goto err_fd_not_accepted;
}
file = fget(fd);
if (!file) {
binder_user_error("%d:%d got transaction with invalid fd, %d\n",
proc->pid, thread->pid, fd);
ret = -EBADF;
goto err_fget;
}
ret = security_binder_transfer_file(proc->tsk, target_proc->tsk, file);
if (ret < 0) {
ret = -EPERM;
goto err_security;
}
/*
* Add fixup record for this transaction. The allocation
* of the fd in the target needs to be done from a
* target thread.
*/
fixup = kzalloc(sizeof(*fixup), GFP_KERNEL);
if (!fixup) {
ret = -ENOMEM;
goto err_alloc;
}
fixup->file = file;
fixup->offset = (uintptr_t)fdp - (uintptr_t)t->buffer->data;
trace_binder_transaction_fd_send(t, fd, fixup->offset);
list_add_tail(&fixup->fixup_entry, &t->fd_fixups);
return ret;
err_alloc:
err_security:
fput(file);
err_fget:
err_fd_not_accepted:
return ret;
}
static int binder_translate_fd_array(struct binder_fd_array_object *fda,
struct binder_buffer_object *parent,
struct binder_transaction *t,
struct binder_thread *thread,
struct binder_transaction *in_reply_to)
{
binder_size_t fdi, fd_buf_size;
uintptr_t parent_buffer;
u32 *fd_array;
struct binder_proc *proc = thread->proc;
struct binder_proc *target_proc = t->to_proc;
fd_buf_size = sizeof(u32) * fda->num_fds;
if (fda->num_fds >= SIZE_MAX / sizeof(u32)) {
binder_user_error("%d:%d got transaction with invalid number of fds (%lld)\n",
proc->pid, thread->pid, (u64)fda->num_fds);
return -EINVAL;
}
if (fd_buf_size > parent->length ||
fda->parent_offset > parent->length - fd_buf_size) {
/* No space for all file descriptors here. */
binder_user_error("%d:%d not enough space to store %lld fds in buffer\n",
proc->pid, thread->pid, (u64)fda->num_fds);
return -EINVAL;
}
/*
* Since the parent was already fixed up, convert it
* back to the kernel address space to access it
*/
parent_buffer = parent->buffer -
binder_alloc_get_user_buffer_offset(&target_proc->alloc);
fd_array = (u32 *)(parent_buffer + (uintptr_t)fda->parent_offset);
if (!IS_ALIGNED((unsigned long)fd_array, sizeof(u32))) {
binder_user_error("%d:%d parent offset not aligned correctly.\n",
proc->pid, thread->pid);
return -EINVAL;
}
for (fdi = 0; fdi < fda->num_fds; fdi++) {
int ret = binder_translate_fd(&fd_array[fdi], t, thread,
in_reply_to);
if (ret < 0)
return ret;
}
return 0;
}
static int binder_fixup_parent(struct binder_transaction *t,
struct binder_thread *thread,
struct binder_buffer_object *bp,
binder_size_t *off_start,
binder_size_t num_valid,
struct binder_buffer_object *last_fixup_obj,
binder_size_t last_fixup_min_off)
{
struct binder_buffer_object *parent;
u8 *parent_buffer;
struct binder_buffer *b = t->buffer;
struct binder_proc *proc = thread->proc;
struct binder_proc *target_proc = t->to_proc;
if (!(bp->flags & BINDER_BUFFER_FLAG_HAS_PARENT))
return 0;
parent = binder_validate_ptr(b, bp->parent, off_start, num_valid);
if (!parent) {
binder_user_error("%d:%d got transaction with invalid parent offset or type\n",
proc->pid, thread->pid);
return -EINVAL;
}
if (!binder_validate_fixup(b, off_start,
parent, bp->parent_offset,
last_fixup_obj,
last_fixup_min_off)) {
binder_user_error("%d:%d got transaction with out-of-order buffer fixup\n",
proc->pid, thread->pid);
return -EINVAL;
}
if (parent->length < sizeof(binder_uintptr_t) ||
bp->parent_offset > parent->length - sizeof(binder_uintptr_t)) {
/* No space for a pointer here! */
binder_user_error("%d:%d got transaction with invalid parent offset\n",
proc->pid, thread->pid);
return -EINVAL;
}
parent_buffer = (u8 *)((uintptr_t)parent->buffer -
binder_alloc_get_user_buffer_offset(
&target_proc->alloc));
*(binder_uintptr_t *)(parent_buffer + bp->parent_offset) = bp->buffer;
return 0;
}
/**
* binder_proc_transaction() - sends a transaction to a process and wakes it up
* @t: transaction to send
* @proc: process to send the transaction to
* @thread: thread in @proc to send the transaction to (may be NULL)
*
* This function queues a transaction to the specified process. It will try
* to find a thread in the target process to handle the transaction and
* wake it up. If no thread is found, the work is queued to the proc
* waitqueue.
*
* If the @thread parameter is not NULL, the transaction is always queued
* to the waitlist of that specific thread.
*
* Return: true if the transactions was successfully queued
* false if the target process or thread is dead
*/
static bool binder_proc_transaction(struct binder_transaction *t,
struct binder_proc *proc,
struct binder_thread *thread)
{
struct binder_node *node = t->buffer->target_node;
bool oneway = !!(t->flags & TF_ONE_WAY);
bool pending_async = false;
BUG_ON(!node);
binder_node_lock(node);
if (oneway) {
BUG_ON(thread);
if (node->has_async_transaction) {
pending_async = true;
} else {
node->has_async_transaction = true;
}
}
binder_inner_proc_lock(proc);
if (proc->is_dead || (thread && thread->is_dead)) {
binder_inner_proc_unlock(proc);
binder_node_unlock(node);
return false;
}
if (!thread && !pending_async)
thread = binder_select_thread_ilocked(proc);
if (thread)
binder_enqueue_thread_work_ilocked(thread, &t->work);
else if (!pending_async)
binder_enqueue_work_ilocked(&t->work, &proc->todo);
else
binder_enqueue_work_ilocked(&t->work, &node->async_todo);
if (!pending_async)
binder_wakeup_thread_ilocked(proc, thread, !oneway /* sync */);
binder_inner_proc_unlock(proc);
binder_node_unlock(node);
return true;
}
/**
* binder_get_node_refs_for_txn() - Get required refs on node for txn
* @node: struct binder_node for which to get refs
* @proc: returns @node->proc if valid
* @error: if no @proc then returns BR_DEAD_REPLY
*
* User-space normally keeps the node alive when creating a transaction
* since it has a reference to the target. The local strong ref keeps it
* alive if the sending process dies before the target process processes
* the transaction. If the source process is malicious or has a reference
* counting bug, relying on the local strong ref can fail.
*
* Since user-space can cause the local strong ref to go away, we also take
* a tmpref on the node to ensure it survives while we are constructing
* the transaction. We also need a tmpref on the proc while we are
* constructing the transaction, so we take that here as well.
*
* Return: The target_node with refs taken or NULL if no @node->proc is NULL.
* Also sets @proc if valid. If the @node->proc is NULL indicating that the
* target proc has died, @error is set to BR_DEAD_REPLY
*/
static struct binder_node *binder_get_node_refs_for_txn(
struct binder_node *node,
struct binder_proc **procp,
uint32_t *error)
{
struct binder_node *target_node = NULL;
binder_node_inner_lock(node);
if (node->proc) {
target_node = node;
binder_inc_node_nilocked(node, 1, 0, NULL);
binder_inc_node_tmpref_ilocked(node);
node->proc->tmp_ref++;
*procp = node->proc;
} else
*error = BR_DEAD_REPLY;
binder_node_inner_unlock(node);
return target_node;
}
static void binder_transaction(struct binder_proc *proc,
struct binder_thread *thread,
struct binder_transaction_data *tr, int reply,
binder_size_t extra_buffers_size)
{
int ret;
struct binder_transaction *t;
struct binder_work *w;
struct binder_work *tcomplete;
binder_size_t *offp, *off_end, *off_start;
binder_size_t off_min;
u8 *sg_bufp, *sg_buf_end;
struct binder_proc *target_proc = NULL;
struct binder_thread *target_thread = NULL;
struct binder_node *target_node = NULL;
struct binder_transaction *in_reply_to = NULL;
struct binder_transaction_log_entry *e;
uint32_t return_error = 0;
uint32_t return_error_param = 0;
uint32_t return_error_line = 0;
struct binder_buffer_object *last_fixup_obj = NULL;
binder_size_t last_fixup_min_off = 0;
struct binder_context *context = proc->context;
int t_debug_id = atomic_inc_return(&binder_last_id);
e = binder_transaction_log_add(&binder_transaction_log);
e->debug_id = t_debug_id;
e->call_type = reply ? 2 : !!(tr->flags & TF_ONE_WAY);
e->from_proc = proc->pid;
e->from_thread = thread->pid;
e->target_handle = tr->target.handle;
e->data_size = tr->data_size;
e->offsets_size = tr->offsets_size;
e->context_name = proc->context->name;
if (reply) {
binder_inner_proc_lock(proc);
in_reply_to = thread->transaction_stack;
if (in_reply_to == NULL) {
binder_inner_proc_unlock(proc);
binder_user_error("%d:%d got reply transaction with no transaction stack\n",
proc->pid, thread->pid);
return_error = BR_FAILED_REPLY;
return_error_param = -EPROTO;
return_error_line = __LINE__;
goto err_empty_call_stack;
}
if (in_reply_to->to_thread != thread) {
spin_lock(&in_reply_to->lock);
binder_user_error("%d:%d got reply transaction with bad transaction stack, transaction %d has target %d:%d\n",
proc->pid, thread->pid, in_reply_to->debug_id,
in_reply_to->to_proc ?
in_reply_to->to_proc->pid : 0,
in_reply_to->to_thread ?
in_reply_to->to_thread->pid : 0);
spin_unlock(&in_reply_to->lock);
binder_inner_proc_unlock(proc);
return_error = BR_FAILED_REPLY;
return_error_param = -EPROTO;
return_error_line = __LINE__;
in_reply_to = NULL;
goto err_bad_call_stack;
}
thread->transaction_stack = in_reply_to->to_parent;
binder_inner_proc_unlock(proc);
binder_set_nice(in_reply_to->saved_priority);
target_thread = binder_get_txn_from_and_acq_inner(in_reply_to);
if (target_thread == NULL) {
/* annotation for sparse */
__release(&target_thread->proc->inner_lock);
return_error = BR_DEAD_REPLY;
return_error_line = __LINE__;
goto err_dead_binder;
}
if (target_thread->transaction_stack != in_reply_to) {
binder_user_error("%d:%d got reply transaction with bad target transaction stack %d, expected %d\n",
proc->pid, thread->pid,
target_thread->transaction_stack ?
target_thread->transaction_stack->debug_id : 0,
in_reply_to->debug_id);
binder_inner_proc_unlock(target_thread->proc);
return_error = BR_FAILED_REPLY;
return_error_param = -EPROTO;
return_error_line = __LINE__;
in_reply_to = NULL;
target_thread = NULL;
goto err_dead_binder;
}
target_proc = target_thread->proc;
target_proc->tmp_ref++;
binder_inner_proc_unlock(target_thread->proc);
} else {
if (tr->target.handle) {
struct binder_ref *ref;
/*
* There must already be a strong ref
* on this node. If so, do a strong
* increment on the node to ensure it
* stays alive until the transaction is
* done.
*/
binder_proc_lock(proc);
ref = binder_get_ref_olocked(proc, tr->target.handle,
true);
if (ref) {
target_node = binder_get_node_refs_for_txn(
ref->node, &target_proc,
&return_error);
} else {
binder_user_error("%d:%d got transaction to invalid handle\n",
proc->pid, thread->pid);
return_error = BR_FAILED_REPLY;
}
binder_proc_unlock(proc);
} else {
mutex_lock(&context->context_mgr_node_lock);
target_node = context->binder_context_mgr_node;
if (target_node)
target_node = binder_get_node_refs_for_txn(
target_node, &target_proc,
&return_error);
else
return_error = BR_DEAD_REPLY;
mutex_unlock(&context->context_mgr_node_lock);
if (target_node && target_proc == proc) {
binder_user_error("%d:%d got transaction to context manager from process owning it\n",
proc->pid, thread->pid);
return_error = BR_FAILED_REPLY;
return_error_param = -EINVAL;
return_error_line = __LINE__;
goto err_invalid_target_handle;
}
}
if (!target_node) {
/*
* return_error is set above
*/
return_error_param = -EINVAL;
return_error_line = __LINE__;
goto err_dead_binder;
}
e->to_node = target_node->debug_id;
if (security_binder_transaction(proc->tsk,
target_proc->tsk) < 0) {
return_error = BR_FAILED_REPLY;
return_error_param = -EPERM;
return_error_line = __LINE__;
goto err_invalid_target_handle;
}
binder_inner_proc_lock(proc);
w = list_first_entry_or_null(&thread->todo,
struct binder_work, entry);
if (!(tr->flags & TF_ONE_WAY) && w &&
w->type == BINDER_WORK_TRANSACTION) {
/*
* Do not allow new outgoing transaction from a
* thread that has a transaction at the head of
* its todo list. Only need to check the head
* because binder_select_thread_ilocked picks a
* thread from proc->waiting_threads to enqueue
* the transaction, and nothing is queued to the
* todo list while the thread is on waiting_threads.
*/
binder_user_error("%d:%d new transaction not allowed when there is a transaction on thread todo\n",
proc->pid, thread->pid);
binder_inner_proc_unlock(proc);
return_error = BR_FAILED_REPLY;
return_error_param = -EPROTO;
return_error_line = __LINE__;
goto err_bad_todo_list;
}
if (!(tr->flags & TF_ONE_WAY) && thread->transaction_stack) {
struct binder_transaction *tmp;
tmp = thread->transaction_stack;
if (tmp->to_thread != thread) {
spin_lock(&tmp->lock);
binder_user_error("%d:%d got new transaction with bad transaction stack, transaction %d has target %d:%d\n",
proc->pid, thread->pid, tmp->debug_id,
tmp->to_proc ? tmp->to_proc->pid : 0,
tmp->to_thread ?
tmp->to_thread->pid : 0);
spin_unlock(&tmp->lock);
binder_inner_proc_unlock(proc);
return_error = BR_FAILED_REPLY;
return_error_param = -EPROTO;
return_error_line = __LINE__;
goto err_bad_call_stack;
}
while (tmp) {
struct binder_thread *from;
spin_lock(&tmp->lock);
from = tmp->from;
if (from && from->proc == target_proc) {
atomic_inc(&from->tmp_ref);
target_thread = from;
spin_unlock(&tmp->lock);
break;
}
spin_unlock(&tmp->lock);
tmp = tmp->from_parent;
}
}
binder_inner_proc_unlock(proc);
}
if (target_thread)
e->to_thread = target_thread->pid;
e->to_proc = target_proc->pid;
/* TODO: reuse incoming transaction for reply */
t = kzalloc(sizeof(*t), GFP_KERNEL);
if (t == NULL) {
return_error = BR_FAILED_REPLY;
return_error_param = -ENOMEM;
return_error_line = __LINE__;
goto err_alloc_t_failed;
}
INIT_LIST_HEAD(&t->fd_fixups);
binder_stats_created(BINDER_STAT_TRANSACTION);
spin_lock_init(&t->lock);
tcomplete = kzalloc(sizeof(*tcomplete), GFP_KERNEL);
if (tcomplete == NULL) {
return_error = BR_FAILED_REPLY;
return_error_param = -ENOMEM;
return_error_line = __LINE__;
goto err_alloc_tcomplete_failed;
}
binder_stats_created(BINDER_STAT_TRANSACTION_COMPLETE);
t->debug_id = t_debug_id;
if (reply)
binder_debug(BINDER_DEBUG_TRANSACTION,
"%d:%d BC_REPLY %d -> %d:%d, data %016llx-%016llx size %lld-%lld-%lld\n",
proc->pid, thread->pid, t->debug_id,
target_proc->pid, target_thread->pid,
(u64)tr->data.ptr.buffer,
(u64)tr->data.ptr.offsets,
(u64)tr->data_size, (u64)tr->offsets_size,
(u64)extra_buffers_size);
else
binder_debug(BINDER_DEBUG_TRANSACTION,
"%d:%d BC_TRANSACTION %d -> %d - node %d, data %016llx-%016llx size %lld-%lld-%lld\n",
proc->pid, thread->pid, t->debug_id,
target_proc->pid, target_node->debug_id,
(u64)tr->data.ptr.buffer,
(u64)tr->data.ptr.offsets,
(u64)tr->data_size, (u64)tr->offsets_size,
(u64)extra_buffers_size);
if (!reply && !(tr->flags & TF_ONE_WAY))
t->from = thread;
else
t->from = NULL;
t->sender_euid = task_euid(proc->tsk);
t->to_proc = target_proc;
t->to_thread = target_thread;
t->code = tr->code;
t->flags = tr->flags;
t->priority = task_nice(current);
trace_binder_transaction(reply, t, target_node);
t->buffer = binder_alloc_new_buf(&target_proc->alloc, tr->data_size,
tr->offsets_size, extra_buffers_size,
!reply && (t->flags & TF_ONE_WAY));
if (IS_ERR(t->buffer)) {
/*
* -ESRCH indicates VMA cleared. The target is dying.
*/
return_error_param = PTR_ERR(t->buffer);
return_error = return_error_param == -ESRCH ?
BR_DEAD_REPLY : BR_FAILED_REPLY;
return_error_line = __LINE__;
t->buffer = NULL;
goto err_binder_alloc_buf_failed;
}
t->buffer->debug_id = t->debug_id;
t->buffer->transaction = t;
t->buffer->target_node = target_node;
trace_binder_transaction_alloc_buf(t->buffer);
off_start = (binder_size_t *)(t->buffer->data +
ALIGN(tr->data_size, sizeof(void *)));
offp = off_start;
if (copy_from_user(t->buffer->data, (const void __user *)(uintptr_t)
tr->data.ptr.buffer, tr->data_size)) {
binder_user_error("%d:%d got transaction with invalid data ptr\n",
proc->pid, thread->pid);
return_error = BR_FAILED_REPLY;
return_error_param = -EFAULT;
return_error_line = __LINE__;
goto err_copy_data_failed;
}
if (copy_from_user(offp, (const void __user *)(uintptr_t)
tr->data.ptr.offsets, tr->offsets_size)) {
binder_user_error("%d:%d got transaction with invalid offsets ptr\n",
proc->pid, thread->pid);
return_error = BR_FAILED_REPLY;
return_error_param = -EFAULT;
return_error_line = __LINE__;
goto err_copy_data_failed;
}
if (!IS_ALIGNED(tr->offsets_size, sizeof(binder_size_t))) {
binder_user_error("%d:%d got transaction with invalid offsets size, %lld\n",
proc->pid, thread->pid, (u64)tr->offsets_size);
return_error = BR_FAILED_REPLY;
return_error_param = -EINVAL;
return_error_line = __LINE__;
goto err_bad_offset;
}
if (!IS_ALIGNED(extra_buffers_size, sizeof(u64))) {
binder_user_error("%d:%d got transaction with unaligned buffers size, %lld\n",
proc->pid, thread->pid,
(u64)extra_buffers_size);
return_error = BR_FAILED_REPLY;
return_error_param = -EINVAL;
return_error_line = __LINE__;
goto err_bad_offset;
}
off_end = (void *)off_start + tr->offsets_size;
sg_bufp = (u8 *)(PTR_ALIGN(off_end, sizeof(void *)));
sg_buf_end = sg_bufp + extra_buffers_size;
off_min = 0;
for (; offp < off_end; offp++) {
struct binder_object_header *hdr;
size_t object_size = binder_validate_object(t->buffer, *offp);
if (object_size == 0 || *offp < off_min) {
binder_user_error("%d:%d got transaction with invalid offset (%lld, min %lld max %lld) or object.\n",
proc->pid, thread->pid, (u64)*offp,
(u64)off_min,
(u64)t->buffer->data_size);
return_error = BR_FAILED_REPLY;
return_error_param = -EINVAL;
return_error_line = __LINE__;
goto err_bad_offset;
}
hdr = (struct binder_object_header *)(t->buffer->data + *offp);
off_min = *offp + object_size;
switch (hdr->type) {
case BINDER_TYPE_BINDER:
case BINDER_TYPE_WEAK_BINDER: {
struct flat_binder_object *fp;
fp = to_flat_binder_object(hdr);
ret = binder_translate_binder(fp, t, thread);
if (ret < 0) {
return_error = BR_FAILED_REPLY;
return_error_param = ret;
return_error_line = __LINE__;
goto err_translate_failed;
}
} break;
case BINDER_TYPE_HANDLE:
case BINDER_TYPE_WEAK_HANDLE: {
struct flat_binder_object *fp;
fp = to_flat_binder_object(hdr);
ret = binder_translate_handle(fp, t, thread);
if (ret < 0) {
return_error = BR_FAILED_REPLY;
return_error_param = ret;
return_error_line = __LINE__;
goto err_translate_failed;
}
} break;
case BINDER_TYPE_FD: {
struct binder_fd_object *fp = to_binder_fd_object(hdr);
int ret = binder_translate_fd(&fp->fd, t, thread,
in_reply_to);
if (ret < 0) {
return_error = BR_FAILED_REPLY;
return_error_param = ret;
return_error_line = __LINE__;
goto err_translate_failed;
}
fp->pad_binder = 0;
} break;
case BINDER_TYPE_FDA: {
struct binder_fd_array_object *fda =
to_binder_fd_array_object(hdr);
struct binder_buffer_object *parent =
binder_validate_ptr(t->buffer, fda->parent,
off_start,
offp - off_start);
if (!parent) {
binder_user_error("%d:%d got transaction with invalid parent offset or type\n",
proc->pid, thread->pid);
return_error = BR_FAILED_REPLY;
return_error_param = -EINVAL;
return_error_line = __LINE__;
goto err_bad_parent;
}
if (!binder_validate_fixup(t->buffer, off_start,
parent, fda->parent_offset,
last_fixup_obj,
last_fixup_min_off)) {
binder_user_error("%d:%d got transaction with out-of-order buffer fixup\n",
proc->pid, thread->pid);
return_error = BR_FAILED_REPLY;
return_error_param = -EINVAL;
return_error_line = __LINE__;
goto err_bad_parent;
}
ret = binder_translate_fd_array(fda, parent, t, thread,
in_reply_to);
if (ret < 0) {
return_error = BR_FAILED_REPLY;
return_error_param = ret;
return_error_line = __LINE__;
goto err_translate_failed;
}
last_fixup_obj = parent;
last_fixup_min_off =
fda->parent_offset + sizeof(u32) * fda->num_fds;
} break;
case BINDER_TYPE_PTR: {
struct binder_buffer_object *bp =
to_binder_buffer_object(hdr);
size_t buf_left = sg_buf_end - sg_bufp;
if (bp->length > buf_left) {
binder_user_error("%d:%d got transaction with too large buffer\n",
proc->pid, thread->pid);
return_error = BR_FAILED_REPLY;
return_error_param = -EINVAL;
return_error_line = __LINE__;
goto err_bad_offset;
}
if (copy_from_user(sg_bufp,
(const void __user *)(uintptr_t)
bp->buffer, bp->length)) {
binder_user_error("%d:%d got transaction with invalid offsets ptr\n",
proc->pid, thread->pid);
return_error_param = -EFAULT;
return_error = BR_FAILED_REPLY;
return_error_line = __LINE__;
goto err_copy_data_failed;
}
/* Fixup buffer pointer to target proc address space */
bp->buffer = (uintptr_t)sg_bufp +
binder_alloc_get_user_buffer_offset(
&target_proc->alloc);
sg_bufp += ALIGN(bp->length, sizeof(u64));
ret = binder_fixup_parent(t, thread, bp, off_start,
offp - off_start,
last_fixup_obj,
last_fixup_min_off);
if (ret < 0) {
return_error = BR_FAILED_REPLY;
return_error_param = ret;
return_error_line = __LINE__;
goto err_translate_failed;
}
last_fixup_obj = bp;
last_fixup_min_off = 0;
} break;
default:
binder_user_error("%d:%d got transaction with invalid object type, %x\n",
proc->pid, thread->pid, hdr->type);
return_error = BR_FAILED_REPLY;
return_error_param = -EINVAL;
return_error_line = __LINE__;
goto err_bad_object_type;
}
}
tcomplete->type = BINDER_WORK_TRANSACTION_COMPLETE;
t->work.type = BINDER_WORK_TRANSACTION;
if (reply) {
binder_enqueue_thread_work(thread, tcomplete);
binder_inner_proc_lock(target_proc);
if (target_thread->is_dead) {
binder_inner_proc_unlock(target_proc);
goto err_dead_proc_or_thread;
}
BUG_ON(t->buffer->async_transaction != 0);
binder_pop_transaction_ilocked(target_thread, in_reply_to);
binder_enqueue_thread_work_ilocked(target_thread, &t->work);
binder_inner_proc_unlock(target_proc);
wake_up_interruptible_sync(&target_thread->wait);
binder_free_transaction(in_reply_to);
} else if (!(t->flags & TF_ONE_WAY)) {
BUG_ON(t->buffer->async_transaction != 0);
binder_inner_proc_lock(proc);
/*
* Defer the TRANSACTION_COMPLETE, so we don't return to
* userspace immediately; this allows the target process to
* immediately start processing this transaction, reducing
* latency. We will then return the TRANSACTION_COMPLETE when
* the target replies (or there is an error).
*/
binder_enqueue_deferred_thread_work_ilocked(thread, tcomplete);
t->need_reply = 1;
t->from_parent = thread->transaction_stack;
thread->transaction_stack = t;
binder_inner_proc_unlock(proc);
if (!binder_proc_transaction(t, target_proc, target_thread)) {
binder_inner_proc_lock(proc);
binder_pop_transaction_ilocked(thread, t);
binder_inner_proc_unlock(proc);
goto err_dead_proc_or_thread;
}
} else {
BUG_ON(target_node == NULL);
BUG_ON(t->buffer->async_transaction != 1);
binder_enqueue_thread_work(thread, tcomplete);
if (!binder_proc_transaction(t, target_proc, NULL))
goto err_dead_proc_or_thread;
}
if (target_thread)
binder_thread_dec_tmpref(target_thread);
binder_proc_dec_tmpref(target_proc);
if (target_node)
binder_dec_node_tmpref(target_node);
/*
* write barrier to synchronize with initialization
* of log entry
*/
smp_wmb();
WRITE_ONCE(e->debug_id_done, t_debug_id);
return;
err_dead_proc_or_thread:
return_error = BR_DEAD_REPLY;
return_error_line = __LINE__;
binder_dequeue_work(proc, tcomplete);
err_translate_failed:
err_bad_object_type:
err_bad_offset:
err_bad_parent:
err_copy_data_failed:
binder_free_txn_fixups(t);
trace_binder_transaction_failed_buffer_release(t->buffer);
binder_transaction_buffer_release(target_proc, t->buffer, offp);
if (target_node)
binder_dec_node_tmpref(target_node);
target_node = NULL;
t->buffer->transaction = NULL;
binder_alloc_free_buf(&target_proc->alloc, t->buffer);
err_binder_alloc_buf_failed:
kfree(tcomplete);
binder_stats_deleted(BINDER_STAT_TRANSACTION_COMPLETE);
err_alloc_tcomplete_failed:
kfree(t);
binder_stats_deleted(BINDER_STAT_TRANSACTION);
err_alloc_t_failed:
err_bad_todo_list:
err_bad_call_stack:
err_empty_call_stack:
err_dead_binder:
err_invalid_target_handle:
if (target_thread)
binder_thread_dec_tmpref(target_thread);
if (target_proc)
binder_proc_dec_tmpref(target_proc);
if (target_node) {
binder_dec_node(target_node, 1, 0);
binder_dec_node_tmpref(target_node);
}
binder_debug(BINDER_DEBUG_FAILED_TRANSACTION,
"%d:%d transaction failed %d/%d, size %lld-%lld line %d\n",
proc->pid, thread->pid, return_error, return_error_param,
(u64)tr->data_size, (u64)tr->offsets_size,
return_error_line);
{
struct binder_transaction_log_entry *fe;
e->return_error = return_error;
e->return_error_param = return_error_param;
e->return_error_line = return_error_line;
fe = binder_transaction_log_add(&binder_transaction_log_failed);
*fe = *e;
/*
* write barrier to synchronize with initialization
* of log entry
*/
smp_wmb();
WRITE_ONCE(e->debug_id_done, t_debug_id);
WRITE_ONCE(fe->debug_id_done, t_debug_id);
}
BUG_ON(thread->return_error.cmd != BR_OK);
if (in_reply_to) {
thread->return_error.cmd = BR_TRANSACTION_COMPLETE;
binder_enqueue_thread_work(thread, &thread->return_error.work);
binder_send_failed_reply(in_reply_to, return_error);
} else {
thread->return_error.cmd = return_error;
binder_enqueue_thread_work(thread, &thread->return_error.work);
}
}
/**
* binder_free_buf() - free the specified buffer
* @proc: binder proc that owns buffer
* @buffer: buffer to be freed
*
* If buffer for an async transaction, enqueue the next async
* transaction from the node.
*
* Cleanup buffer and free it.
*/
static void
binder_free_buf(struct binder_proc *proc, struct binder_buffer *buffer)
{
if (buffer->transaction) {
buffer->transaction->buffer = NULL;
buffer->transaction = NULL;
}
if (buffer->async_transaction && buffer->target_node) {
struct binder_node *buf_node;
struct binder_work *w;
buf_node = buffer->target_node;
binder_node_inner_lock(buf_node);
BUG_ON(!buf_node->has_async_transaction);
BUG_ON(buf_node->proc != proc);
w = binder_dequeue_work_head_ilocked(
&buf_node->async_todo);
if (!w) {
buf_node->has_async_transaction = false;
} else {
binder_enqueue_work_ilocked(
w, &proc->todo);
binder_wakeup_proc_ilocked(proc);
}
binder_node_inner_unlock(buf_node);
}
trace_binder_transaction_buffer_release(buffer);
binder_transaction_buffer_release(proc, buffer, NULL);
binder_alloc_free_buf(&proc->alloc, buffer);
}
static int binder_thread_write(struct binder_proc *proc,
struct binder_thread *thread,
binder_uintptr_t binder_buffer, size_t size,
binder_size_t *consumed)
{
uint32_t cmd;
struct binder_context *context = proc->context;
void __user *buffer = (void __user *)(uintptr_t)binder_buffer;
void __user *ptr = buffer + *consumed;
void __user *end = buffer + size;
while (ptr < end && thread->return_error.cmd == BR_OK) {
int ret;
if (get_user(cmd, (uint32_t __user *)ptr))
return -EFAULT;
ptr += sizeof(uint32_t);
trace_binder_command(cmd);
if (_IOC_NR(cmd) < ARRAY_SIZE(binder_stats.bc)) {
atomic_inc(&binder_stats.bc[_IOC_NR(cmd)]);
atomic_inc(&proc->stats.bc[_IOC_NR(cmd)]);
atomic_inc(&thread->stats.bc[_IOC_NR(cmd)]);
}
switch (cmd) {
case BC_INCREFS:
case BC_ACQUIRE:
case BC_RELEASE:
case BC_DECREFS: {
uint32_t target;
const char *debug_string;
bool strong = cmd == BC_ACQUIRE || cmd == BC_RELEASE;
bool increment = cmd == BC_INCREFS || cmd == BC_ACQUIRE;
struct binder_ref_data rdata;
if (get_user(target, (uint32_t __user *)ptr))
return -EFAULT;
ptr += sizeof(uint32_t);
ret = -1;
if (increment && !target) {
struct binder_node *ctx_mgr_node;
mutex_lock(&context->context_mgr_node_lock);
ctx_mgr_node = context->binder_context_mgr_node;
if (ctx_mgr_node)
ret = binder_inc_ref_for_node(
proc, ctx_mgr_node,
strong, NULL, &rdata);
mutex_unlock(&context->context_mgr_node_lock);
}
if (ret)
ret = binder_update_ref_for_handle(
proc, target, increment, strong,
&rdata);
if (!ret && rdata.desc != target) {
binder_user_error("%d:%d tried to acquire reference to desc %d, got %d instead\n",
proc->pid, thread->pid,
target, rdata.desc);
}
switch (cmd) {
case BC_INCREFS:
debug_string = "IncRefs";
break;
case BC_ACQUIRE:
debug_string = "Acquire";
break;
case BC_RELEASE:
debug_string = "Release";
break;
case BC_DECREFS:
default:
debug_string = "DecRefs";
break;
}
if (ret) {
binder_user_error("%d:%d %s %d refcount change on invalid ref %d ret %d\n",
proc->pid, thread->pid, debug_string,
strong, target, ret);
break;
}
binder_debug(BINDER_DEBUG_USER_REFS,
"%d:%d %s ref %d desc %d s %d w %d\n",
proc->pid, thread->pid, debug_string,
rdata.debug_id, rdata.desc, rdata.strong,
rdata.weak);
break;
}
case BC_INCREFS_DONE:
case BC_ACQUIRE_DONE: {
binder_uintptr_t node_ptr;
binder_uintptr_t cookie;
struct binder_node *node;
bool free_node;
if (get_user(node_ptr, (binder_uintptr_t __user *)ptr))
return -EFAULT;
ptr += sizeof(binder_uintptr_t);
if (get_user(cookie, (binder_uintptr_t __user *)ptr))
return -EFAULT;
ptr += sizeof(binder_uintptr_t);
node = binder_get_node(proc, node_ptr);
if (node == NULL) {
binder_user_error("%d:%d %s u%016llx no match\n",
proc->pid, thread->pid,
cmd == BC_INCREFS_DONE ?
"BC_INCREFS_DONE" :
"BC_ACQUIRE_DONE",
(u64)node_ptr);
break;
}
if (cookie != node->cookie) {
binder_user_error("%d:%d %s u%016llx node %d cookie mismatch %016llx != %016llx\n",
proc->pid, thread->pid,
cmd == BC_INCREFS_DONE ?
"BC_INCREFS_DONE" : "BC_ACQUIRE_DONE",
(u64)node_ptr, node->debug_id,
(u64)cookie, (u64)node->cookie);
binder_put_node(node);
break;
}
binder_node_inner_lock(node);
if (cmd == BC_ACQUIRE_DONE) {
if (node->pending_strong_ref == 0) {
binder_user_error("%d:%d BC_ACQUIRE_DONE node %d has no pending acquire request\n",
proc->pid, thread->pid,
node->debug_id);
binder_node_inner_unlock(node);
binder_put_node(node);
break;
}
node->pending_strong_ref = 0;
} else {
if (node->pending_weak_ref == 0) {
binder_user_error("%d:%d BC_INCREFS_DONE node %d has no pending increfs request\n",
proc->pid, thread->pid,
node->debug_id);
binder_node_inner_unlock(node);
binder_put_node(node);
break;
}
node->pending_weak_ref = 0;
}
free_node = binder_dec_node_nilocked(node,
cmd == BC_ACQUIRE_DONE, 0);
WARN_ON(free_node);
binder_debug(BINDER_DEBUG_USER_REFS,
"%d:%d %s node %d ls %d lw %d tr %d\n",
proc->pid, thread->pid,
cmd == BC_INCREFS_DONE ? "BC_INCREFS_DONE" : "BC_ACQUIRE_DONE",
node->debug_id, node->local_strong_refs,
node->local_weak_refs, node->tmp_refs);
binder_node_inner_unlock(node);
binder_put_node(node);
break;
}
case BC_ATTEMPT_ACQUIRE:
pr_err("BC_ATTEMPT_ACQUIRE not supported\n");
return -EINVAL;
case BC_ACQUIRE_RESULT:
pr_err("BC_ACQUIRE_RESULT not supported\n");
return -EINVAL;
case BC_FREE_BUFFER: {
binder_uintptr_t data_ptr;
struct binder_buffer *buffer;
if (get_user(data_ptr, (binder_uintptr_t __user *)ptr))
return -EFAULT;
ptr += sizeof(binder_uintptr_t);
buffer = binder_alloc_prepare_to_free(&proc->alloc,
data_ptr);
if (IS_ERR_OR_NULL(buffer)) {
if (PTR_ERR(buffer) == -EPERM) {
binder_user_error(
"%d:%d BC_FREE_BUFFER u%016llx matched unreturned or currently freeing buffer\n",
proc->pid, thread->pid,
(u64)data_ptr);
} else {
binder_user_error(
"%d:%d BC_FREE_BUFFER u%016llx no match\n",
proc->pid, thread->pid,
(u64)data_ptr);
}
break;
}
binder_debug(BINDER_DEBUG_FREE_BUFFER,
"%d:%d BC_FREE_BUFFER u%016llx found buffer %d for %s transaction\n",
proc->pid, thread->pid, (u64)data_ptr,
buffer->debug_id,
buffer->transaction ? "active" : "finished");
binder_free_buf(proc, buffer);
break;
}
case BC_TRANSACTION_SG:
case BC_REPLY_SG: {
struct binder_transaction_data_sg tr;
if (copy_from_user(&tr, ptr, sizeof(tr)))
return -EFAULT;
ptr += sizeof(tr);
binder_transaction(proc, thread, &tr.transaction_data,
cmd == BC_REPLY_SG, tr.buffers_size);
break;
}
case BC_TRANSACTION:
case BC_REPLY: {
struct binder_transaction_data tr;
if (copy_from_user(&tr, ptr, sizeof(tr)))
return -EFAULT;
ptr += sizeof(tr);
binder_transaction(proc, thread, &tr,
cmd == BC_REPLY, 0);
break;
}
case BC_REGISTER_LOOPER:
binder_debug(BINDER_DEBUG_THREADS,
"%d:%d BC_REGISTER_LOOPER\n",
proc->pid, thread->pid);
binder_inner_proc_lock(proc);
if (thread->looper & BINDER_LOOPER_STATE_ENTERED) {
thread->looper |= BINDER_LOOPER_STATE_INVALID;
binder_user_error("%d:%d ERROR: BC_REGISTER_LOOPER called after BC_ENTER_LOOPER\n",
proc->pid, thread->pid);
} else if (proc->requested_threads == 0) {
thread->looper |= BINDER_LOOPER_STATE_INVALID;
binder_user_error("%d:%d ERROR: BC_REGISTER_LOOPER called without request\n",
proc->pid, thread->pid);
} else {
proc->requested_threads--;
proc->requested_threads_started++;
}
thread->looper |= BINDER_LOOPER_STATE_REGISTERED;
binder_inner_proc_unlock(proc);
break;
case BC_ENTER_LOOPER:
binder_debug(BINDER_DEBUG_THREADS,
"%d:%d BC_ENTER_LOOPER\n",
proc->pid, thread->pid);
if (thread->looper & BINDER_LOOPER_STATE_REGISTERED) {
thread->looper |= BINDER_LOOPER_STATE_INVALID;
binder_user_error("%d:%d ERROR: BC_ENTER_LOOPER called after BC_REGISTER_LOOPER\n",
proc->pid, thread->pid);
}
thread->looper |= BINDER_LOOPER_STATE_ENTERED;
break;
case BC_EXIT_LOOPER:
binder_debug(BINDER_DEBUG_THREADS,
"%d:%d BC_EXIT_LOOPER\n",
proc->pid, thread->pid);
thread->looper |= BINDER_LOOPER_STATE_EXITED;
break;
case BC_REQUEST_DEATH_NOTIFICATION:
case BC_CLEAR_DEATH_NOTIFICATION: {
uint32_t target;
binder_uintptr_t cookie;
struct binder_ref *ref;
struct binder_ref_death *death = NULL;
if (get_user(target, (uint32_t __user *)ptr))
return -EFAULT;
ptr += sizeof(uint32_t);
if (get_user(cookie, (binder_uintptr_t __user *)ptr))
return -EFAULT;
ptr += sizeof(binder_uintptr_t);
if (cmd == BC_REQUEST_DEATH_NOTIFICATION) {
/*
* Allocate memory for death notification
* before taking lock
*/
death = kzalloc(sizeof(*death), GFP_KERNEL);
if (death == NULL) {
WARN_ON(thread->return_error.cmd !=
BR_OK);
thread->return_error.cmd = BR_ERROR;
binder_enqueue_thread_work(
thread,
&thread->return_error.work);
binder_debug(
BINDER_DEBUG_FAILED_TRANSACTION,
"%d:%d BC_REQUEST_DEATH_NOTIFICATION failed\n",
proc->pid, thread->pid);
break;
}
}
binder_proc_lock(proc);
ref = binder_get_ref_olocked(proc, target, false);
if (ref == NULL) {
binder_user_error("%d:%d %s invalid ref %d\n",
proc->pid, thread->pid,
cmd == BC_REQUEST_DEATH_NOTIFICATION ?
"BC_REQUEST_DEATH_NOTIFICATION" :
"BC_CLEAR_DEATH_NOTIFICATION",
target);
binder_proc_unlock(proc);
kfree(death);
break;
}
binder_debug(BINDER_DEBUG_DEATH_NOTIFICATION,
"%d:%d %s %016llx ref %d desc %d s %d w %d for node %d\n",
proc->pid, thread->pid,
cmd == BC_REQUEST_DEATH_NOTIFICATION ?
"BC_REQUEST_DEATH_NOTIFICATION" :
"BC_CLEAR_DEATH_NOTIFICATION",
(u64)cookie, ref->data.debug_id,
ref->data.desc, ref->data.strong,
ref->data.weak, ref->node->debug_id);
binder_node_lock(ref->node);
if (cmd == BC_REQUEST_DEATH_NOTIFICATION) {
if (ref->death) {
binder_user_error("%d:%d BC_REQUEST_DEATH_NOTIFICATION death notification already set\n",
proc->pid, thread->pid);
binder_node_unlock(ref->node);
binder_proc_unlock(proc);
kfree(death);
break;
}
binder_stats_created(BINDER_STAT_DEATH);
INIT_LIST_HEAD(&death->work.entry);
death->cookie = cookie;
ref->death = death;
if (ref->node->proc == NULL) {
ref->death->work.type = BINDER_WORK_DEAD_BINDER;
binder_inner_proc_lock(proc);
binder_enqueue_work_ilocked(
&ref->death->work, &proc->todo);
binder_wakeup_proc_ilocked(proc);
binder_inner_proc_unlock(proc);
}
} else {
if (ref->death == NULL) {
binder_user_error("%d:%d BC_CLEAR_DEATH_NOTIFICATION death notification not active\n",
proc->pid, thread->pid);
binder_node_unlock(ref->node);
binder_proc_unlock(proc);
break;
}
death = ref->death;
if (death->cookie != cookie) {
binder_user_error("%d:%d BC_CLEAR_DEATH_NOTIFICATION death notification cookie mismatch %016llx != %016llx\n",
proc->pid, thread->pid,
(u64)death->cookie,
(u64)cookie);
binder_node_unlock(ref->node);
binder_proc_unlock(proc);
break;
}
ref->death = NULL;
binder_inner_proc_lock(proc);
if (list_empty(&death->work.entry)) {
death->work.type = BINDER_WORK_CLEAR_DEATH_NOTIFICATION;
if (thread->looper &
(BINDER_LOOPER_STATE_REGISTERED |
BINDER_LOOPER_STATE_ENTERED))
binder_enqueue_thread_work_ilocked(
thread,
&death->work);
else {
binder_enqueue_work_ilocked(
&death->work,
&proc->todo);
binder_wakeup_proc_ilocked(
proc);
}
} else {
BUG_ON(death->work.type != BINDER_WORK_DEAD_BINDER);
death->work.type = BINDER_WORK_DEAD_BINDER_AND_CLEAR;
}
binder_inner_proc_unlock(proc);
}
binder_node_unlock(ref->node);
binder_proc_unlock(proc);
} break;
case BC_DEAD_BINDER_DONE: {
struct binder_work *w;
binder_uintptr_t cookie;
struct binder_ref_death *death = NULL;
if (get_user(cookie, (binder_uintptr_t __user *)ptr))
return -EFAULT;
ptr += sizeof(cookie);
binder_inner_proc_lock(proc);
list_for_each_entry(w, &proc->delivered_death,
entry) {
struct binder_ref_death *tmp_death =
container_of(w,
struct binder_ref_death,
work);
if (tmp_death->cookie == cookie) {
death = tmp_death;
break;
}
}
binder_debug(BINDER_DEBUG_DEAD_BINDER,
"%d:%d BC_DEAD_BINDER_DONE %016llx found %pK\n",
proc->pid, thread->pid, (u64)cookie,
death);
if (death == NULL) {
binder_user_error("%d:%d BC_DEAD_BINDER_DONE %016llx not found\n",
proc->pid, thread->pid, (u64)cookie);
binder_inner_proc_unlock(proc);
break;
}
binder_dequeue_work_ilocked(&death->work);
if (death->work.type == BINDER_WORK_DEAD_BINDER_AND_CLEAR) {
death->work.type = BINDER_WORK_CLEAR_DEATH_NOTIFICATION;
if (thread->looper &
(BINDER_LOOPER_STATE_REGISTERED |
BINDER_LOOPER_STATE_ENTERED))
binder_enqueue_thread_work_ilocked(
thread, &death->work);
else {
binder_enqueue_work_ilocked(
&death->work,
&proc->todo);
binder_wakeup_proc_ilocked(proc);
}
}
binder_inner_proc_unlock(proc);
} break;
default:
pr_err("%d:%d unknown command %d\n",
proc->pid, thread->pid, cmd);
return -EINVAL;
}
*consumed = ptr - buffer;
}
return 0;
}
static void binder_stat_br(struct binder_proc *proc,
struct binder_thread *thread, uint32_t cmd)
{
trace_binder_return(cmd);
if (_IOC_NR(cmd) < ARRAY_SIZE(binder_stats.br)) {
atomic_inc(&binder_stats.br[_IOC_NR(cmd)]);
atomic_inc(&proc->stats.br[_IOC_NR(cmd)]);
atomic_inc(&thread->stats.br[_IOC_NR(cmd)]);
}
}
static int binder_put_node_cmd(struct binder_proc *proc,
struct binder_thread *thread,
void __user **ptrp,
binder_uintptr_t node_ptr,
binder_uintptr_t node_cookie,
int node_debug_id,
uint32_t cmd, const char *cmd_name)
{
void __user *ptr = *ptrp;
if (put_user(cmd, (uint32_t __user *)ptr))
return -EFAULT;
ptr += sizeof(uint32_t);
if (put_user(node_ptr, (binder_uintptr_t __user *)ptr))
return -EFAULT;
ptr += sizeof(binder_uintptr_t);
if (put_user(node_cookie, (binder_uintptr_t __user *)ptr))
return -EFAULT;
ptr += sizeof(binder_uintptr_t);
binder_stat_br(proc, thread, cmd);
binder_debug(BINDER_DEBUG_USER_REFS, "%d:%d %s %d u%016llx c%016llx\n",
proc->pid, thread->pid, cmd_name, node_debug_id,
(u64)node_ptr, (u64)node_cookie);
*ptrp = ptr;
return 0;
}
static int binder_wait_for_work(struct binder_thread *thread,
bool do_proc_work)
{
DEFINE_WAIT(wait);
struct binder_proc *proc = thread->proc;
int ret = 0;
freezer_do_not_count();
binder_inner_proc_lock(proc);
for (;;) {
prepare_to_wait(&thread->wait, &wait, TASK_INTERRUPTIBLE);
if (binder_has_work_ilocked(thread, do_proc_work))
break;
if (do_proc_work)
list_add(&thread->waiting_thread_node,
&proc->waiting_threads);
binder_inner_proc_unlock(proc);
schedule();
binder_inner_proc_lock(proc);
list_del_init(&thread->waiting_thread_node);
if (signal_pending(current)) {
ret = -ERESTARTSYS;
break;
}
}
finish_wait(&thread->wait, &wait);
binder_inner_proc_unlock(proc);
freezer_count();
return ret;
}
/**
* binder_apply_fd_fixups() - finish fd translation
* @t: binder transaction with list of fd fixups
*
* Now that we are in the context of the transaction target
* process, we can allocate and install fds. Process the
* list of fds to translate and fixup the buffer with the
* new fds.
*
* If we fail to allocate an fd, then free the resources by
* fput'ing files that have not been processed and ksys_close'ing
* any fds that have already been allocated.
*/
static int binder_apply_fd_fixups(struct binder_transaction *t)
{
struct binder_txn_fd_fixup *fixup, *tmp;
int ret = 0;
list_for_each_entry(fixup, &t->fd_fixups, fixup_entry) {
int fd = get_unused_fd_flags(O_CLOEXEC);
u32 *fdp;
if (fd < 0) {
binder_debug(BINDER_DEBUG_TRANSACTION,
"failed fd fixup txn %d fd %d\n",
t->debug_id, fd);
ret = -ENOMEM;
break;
}
binder_debug(BINDER_DEBUG_TRANSACTION,
"fd fixup txn %d fd %d\n",
t->debug_id, fd);
trace_binder_transaction_fd_recv(t, fd, fixup->offset);
fd_install(fd, fixup->file);
fixup->file = NULL;
fdp = (u32 *)(t->buffer->data + fixup->offset);
/*
* This store can cause problems for CPUs with a
* VIVT cache (eg ARMv5) since the cache cannot
* detect virtual aliases to the same physical cacheline.
* To support VIVT, this address and the user-space VA
* would both need to be flushed. Since this kernel
* VA is not constructed via page_to_virt(), we can't
* use flush_dcache_page() on it, so we'd have to use
* an internal function. If devices with VIVT ever
* need to run Android, we'll either need to go back
* to patching the translated fd from the sender side
* (using the non-standard kernel functions), or rework
* how the kernel uses the buffer to use page_to_virt()
* addresses instead of allocating in our own vm area.
*
* For now, we disable compilation if CONFIG_CPU_CACHE_VIVT.
*/
*fdp = fd;
}
list_for_each_entry_safe(fixup, tmp, &t->fd_fixups, fixup_entry) {
if (fixup->file) {
fput(fixup->file);
} else if (ret) {
u32 *fdp = (u32 *)(t->buffer->data + fixup->offset);
binder_deferred_fd_close(*fdp);
}
list_del(&fixup->fixup_entry);
kfree(fixup);
}
return ret;
}
static int binder_thread_read(struct binder_proc *proc,
struct binder_thread *thread,
binder_uintptr_t binder_buffer, size_t size,
binder_size_t *consumed, int non_block)
{
void __user *buffer = (void __user *)(uintptr_t)binder_buffer;
void __user *ptr = buffer + *consumed;
void __user *end = buffer + size;
int ret = 0;
int wait_for_proc_work;
if (*consumed == 0) {
if (put_user(BR_NOOP, (uint32_t __user *)ptr))
return -EFAULT;
ptr += sizeof(uint32_t);
}
retry:
binder_inner_proc_lock(proc);
wait_for_proc_work = binder_available_for_proc_work_ilocked(thread);
binder_inner_proc_unlock(proc);
thread->looper |= BINDER_LOOPER_STATE_WAITING;
trace_binder_wait_for_work(wait_for_proc_work,
!!thread->transaction_stack,
!binder_worklist_empty(proc, &thread->todo));
if (wait_for_proc_work) {
if (!(thread->looper & (BINDER_LOOPER_STATE_REGISTERED |
BINDER_LOOPER_STATE_ENTERED))) {
binder_user_error("%d:%d ERROR: Thread waiting for process work before calling BC_REGISTER_LOOPER or BC_ENTER_LOOPER (state %x)\n",
proc->pid, thread->pid, thread->looper);
wait_event_interruptible(binder_user_error_wait,
binder_stop_on_user_error < 2);
}
binder_set_nice(proc->default_priority);
}
if (non_block) {
if (!binder_has_work(thread, wait_for_proc_work))
ret = -EAGAIN;
} else {
ret = binder_wait_for_work(thread, wait_for_proc_work);
}
thread->looper &= ~BINDER_LOOPER_STATE_WAITING;
if (ret)
return ret;
while (1) {
uint32_t cmd;
struct binder_transaction_data tr;
struct binder_work *w = NULL;
struct list_head *list = NULL;
struct binder_transaction *t = NULL;
struct binder_thread *t_from;
binder_inner_proc_lock(proc);
if (!binder_worklist_empty_ilocked(&thread->todo))
list = &thread->todo;
else if (!binder_worklist_empty_ilocked(&proc->todo) &&
wait_for_proc_work)
list = &proc->todo;
else {
binder_inner_proc_unlock(proc);
/* no data added */
if (ptr - buffer == 4 && !thread->looper_need_return)
goto retry;
break;
}
if (end - ptr < sizeof(tr) + 4) {
binder_inner_proc_unlock(proc);
break;
}
w = binder_dequeue_work_head_ilocked(list);
if (binder_worklist_empty_ilocked(&thread->todo))
thread->process_todo = false;
switch (w->type) {
case BINDER_WORK_TRANSACTION: {
binder_inner_proc_unlock(proc);
t = container_of(w, struct binder_transaction, work);
} break;
case BINDER_WORK_RETURN_ERROR: {
struct binder_error *e = container_of(
w, struct binder_error, work);
WARN_ON(e->cmd == BR_OK);
binder_inner_proc_unlock(proc);
if (put_user(e->cmd, (uint32_t __user *)ptr))
return -EFAULT;
cmd = e->cmd;
e->cmd = BR_OK;
ptr += sizeof(uint32_t);
binder_stat_br(proc, thread, cmd);
} break;
case BINDER_WORK_TRANSACTION_COMPLETE: {
binder_inner_proc_unlock(proc);
cmd = BR_TRANSACTION_COMPLETE;
if (put_user(cmd, (uint32_t __user *)ptr))
return -EFAULT;
ptr += sizeof(uint32_t);
binder_stat_br(proc, thread, cmd);
binder_debug(BINDER_DEBUG_TRANSACTION_COMPLETE,
"%d:%d BR_TRANSACTION_COMPLETE\n",
proc->pid, thread->pid);
kfree(w);
binder_stats_deleted(BINDER_STAT_TRANSACTION_COMPLETE);
} break;
case BINDER_WORK_NODE: {
struct binder_node *node = container_of(w, struct binder_node, work);
int strong, weak;
binder_uintptr_t node_ptr = node->ptr;
binder_uintptr_t node_cookie = node->cookie;
int node_debug_id = node->debug_id;
int has_weak_ref;
int has_strong_ref;
void __user *orig_ptr = ptr;
BUG_ON(proc != node->proc);
strong = node->internal_strong_refs ||
node->local_strong_refs;
weak = !hlist_empty(&node->refs) ||
node->local_weak_refs ||
node->tmp_refs || strong;
has_strong_ref = node->has_strong_ref;
has_weak_ref = node->has_weak_ref;
if (weak && !has_weak_ref) {
node->has_weak_ref = 1;
node->pending_weak_ref = 1;
node->local_weak_refs++;
}
if (strong && !has_strong_ref) {
node->has_strong_ref = 1;
node->pending_strong_ref = 1;
node->local_strong_refs++;
}
if (!strong && has_strong_ref)
node->has_strong_ref = 0;
if (!weak && has_weak_ref)
node->has_weak_ref = 0;
if (!weak && !strong) {
binder_debug(BINDER_DEBUG_INTERNAL_REFS,
"%d:%d node %d u%016llx c%016llx deleted\n",
proc->pid, thread->pid,
node_debug_id,
(u64)node_ptr,
(u64)node_cookie);
rb_erase(&node->rb_node, &proc->nodes);
binder_inner_proc_unlock(proc);
binder_node_lock(node);
/*
* Acquire the node lock before freeing the
* node to serialize with other threads that
* may have been holding the node lock while
* decrementing this node (avoids race where
* this thread frees while the other thread
* is unlocking the node after the final
* decrement)
*/
binder_node_unlock(node);
binder_free_node(node);
} else
binder_inner_proc_unlock(proc);
if (weak && !has_weak_ref)
ret = binder_put_node_cmd(
proc, thread, &ptr, node_ptr,
node_cookie, node_debug_id,
BR_INCREFS, "BR_INCREFS");
if (!ret && strong && !has_strong_ref)
ret = binder_put_node_cmd(
proc, thread, &ptr, node_ptr,
node_cookie, node_debug_id,
BR_ACQUIRE, "BR_ACQUIRE");
if (!ret && !strong && has_strong_ref)
ret = binder_put_node_cmd(
proc, thread, &ptr, node_ptr,
node_cookie, node_debug_id,
BR_RELEASE, "BR_RELEASE");
if (!ret && !weak && has_weak_ref)
ret = binder_put_node_cmd(
proc, thread, &ptr, node_ptr,
node_cookie, node_debug_id,
BR_DECREFS, "BR_DECREFS");
if (orig_ptr == ptr)
binder_debug(BINDER_DEBUG_INTERNAL_REFS,
"%d:%d node %d u%016llx c%016llx state unchanged\n",
proc->pid, thread->pid,
node_debug_id,
(u64)node_ptr,
(u64)node_cookie);
if (ret)
return ret;
} break;
case BINDER_WORK_DEAD_BINDER:
case BINDER_WORK_DEAD_BINDER_AND_CLEAR:
case BINDER_WORK_CLEAR_DEATH_NOTIFICATION: {
struct binder_ref_death *death;
uint32_t cmd;
binder_uintptr_t cookie;
death = container_of(w, struct binder_ref_death, work);
if (w->type == BINDER_WORK_CLEAR_DEATH_NOTIFICATION)
cmd = BR_CLEAR_DEATH_NOTIFICATION_DONE;
else
cmd = BR_DEAD_BINDER;
cookie = death->cookie;
binder_debug(BINDER_DEBUG_DEATH_NOTIFICATION,
"%d:%d %s %016llx\n",
proc->pid, thread->pid,
cmd == BR_DEAD_BINDER ?
"BR_DEAD_BINDER" :
"BR_CLEAR_DEATH_NOTIFICATION_DONE",
(u64)cookie);
if (w->type == BINDER_WORK_CLEAR_DEATH_NOTIFICATION) {
binder_inner_proc_unlock(proc);
kfree(death);
binder_stats_deleted(BINDER_STAT_DEATH);
} else {
binder_enqueue_work_ilocked(
w, &proc->delivered_death);
binder_inner_proc_unlock(proc);
}
if (put_user(cmd, (uint32_t __user *)ptr))
return -EFAULT;
ptr += sizeof(uint32_t);
if (put_user(cookie,
(binder_uintptr_t __user *)ptr))
return -EFAULT;
ptr += sizeof(binder_uintptr_t);
binder_stat_br(proc, thread, cmd);
if (cmd == BR_DEAD_BINDER)
goto done; /* DEAD_BINDER notifications can cause transactions */
} break;
default:
binder_inner_proc_unlock(proc);
pr_err("%d:%d: bad work type %d\n",
proc->pid, thread->pid, w->type);
break;
}
if (!t)
continue;
BUG_ON(t->buffer == NULL);
if (t->buffer->target_node) {
struct binder_node *target_node = t->buffer->target_node;
tr.target.ptr = target_node->ptr;
tr.cookie = target_node->cookie;
t->saved_priority = task_nice(current);
if (t->priority < target_node->min_priority &&
!(t->flags & TF_ONE_WAY))
binder_set_nice(t->priority);
else if (!(t->flags & TF_ONE_WAY) ||
t->saved_priority > target_node->min_priority)
binder_set_nice(target_node->min_priority);
cmd = BR_TRANSACTION;
} else {
tr.target.ptr = 0;
tr.cookie = 0;
cmd = BR_REPLY;
}
tr.code = t->code;
tr.flags = t->flags;
tr.sender_euid = from_kuid(current_user_ns(), t->sender_euid);
t_from = binder_get_txn_from(t);
if (t_from) {
struct task_struct *sender = t_from->proc->tsk;
tr.sender_pid = task_tgid_nr_ns(sender,
task_active_pid_ns(current));
} else {
tr.sender_pid = 0;
}
ret = binder_apply_fd_fixups(t);
if (ret) {
struct binder_buffer *buffer = t->buffer;
bool oneway = !!(t->flags & TF_ONE_WAY);
int tid = t->debug_id;
if (t_from)
binder_thread_dec_tmpref(t_from);
buffer->transaction = NULL;
binder_cleanup_transaction(t, "fd fixups failed",
BR_FAILED_REPLY);
binder_free_buf(proc, buffer);
binder_debug(BINDER_DEBUG_FAILED_TRANSACTION,
"%d:%d %stransaction %d fd fixups failed %d/%d, line %d\n",
proc->pid, thread->pid,
oneway ? "async " :
(cmd == BR_REPLY ? "reply " : ""),
tid, BR_FAILED_REPLY, ret, __LINE__);
if (cmd == BR_REPLY) {
cmd = BR_FAILED_REPLY;
if (put_user(cmd, (uint32_t __user *)ptr))
return -EFAULT;
ptr += sizeof(uint32_t);
binder_stat_br(proc, thread, cmd);
break;
}
continue;
}
tr.data_size = t->buffer->data_size;
tr.offsets_size = t->buffer->offsets_size;
tr.data.ptr.buffer = (binder_uintptr_t)
((uintptr_t)t->buffer->data +
binder_alloc_get_user_buffer_offset(&proc->alloc));
tr.data.ptr.offsets = tr.data.ptr.buffer +
ALIGN(t->buffer->data_size,
sizeof(void *));
if (put_user(cmd, (uint32_t __user *)ptr)) {
if (t_from)
binder_thread_dec_tmpref(t_from);
binder_cleanup_transaction(t, "put_user failed",
BR_FAILED_REPLY);
return -EFAULT;
}
ptr += sizeof(uint32_t);
if (copy_to_user(ptr, &tr, sizeof(tr))) {
if (t_from)
binder_thread_dec_tmpref(t_from);
binder_cleanup_transaction(t, "copy_to_user failed",
BR_FAILED_REPLY);
return -EFAULT;
}
ptr += sizeof(tr);
trace_binder_transaction_received(t);
binder_stat_br(proc, thread, cmd);
binder_debug(BINDER_DEBUG_TRANSACTION,
"%d:%d %s %d %d:%d, cmd %d size %zd-%zd ptr %016llx-%016llx\n",
proc->pid, thread->pid,
(cmd == BR_TRANSACTION) ? "BR_TRANSACTION" :
"BR_REPLY",
t->debug_id, t_from ? t_from->proc->pid : 0,
t_from ? t_from->pid : 0, cmd,
t->buffer->data_size, t->buffer->offsets_size,
(u64)tr.data.ptr.buffer, (u64)tr.data.ptr.offsets);
if (t_from)
binder_thread_dec_tmpref(t_from);
t->buffer->allow_user_free = 1;
if (cmd == BR_TRANSACTION && !(t->flags & TF_ONE_WAY)) {
binder_inner_proc_lock(thread->proc);
t->to_parent = thread->transaction_stack;
t->to_thread = thread;
thread->transaction_stack = t;
binder_inner_proc_unlock(thread->proc);
} else {
binder_free_transaction(t);
}
break;
}
done:
*consumed = ptr - buffer;
binder_inner_proc_lock(proc);
if (proc->requested_threads == 0 &&
list_empty(&thread->proc->waiting_threads) &&
proc->requested_threads_started < proc->max_threads &&
(thread->looper & (BINDER_LOOPER_STATE_REGISTERED |
BINDER_LOOPER_STATE_ENTERED)) /* the user-space code fails to */
/*spawn a new thread if we leave this out */) {
proc->requested_threads++;
binder_inner_proc_unlock(proc);
binder_debug(BINDER_DEBUG_THREADS,
"%d:%d BR_SPAWN_LOOPER\n",
proc->pid, thread->pid);
if (put_user(BR_SPAWN_LOOPER, (uint32_t __user *)buffer))
return -EFAULT;
binder_stat_br(proc, thread, BR_SPAWN_LOOPER);
} else
binder_inner_proc_unlock(proc);
return 0;
}
static void binder_release_work(struct binder_proc *proc,
struct list_head *list)
{
struct binder_work *w;
while (1) {
w = binder_dequeue_work_head(proc, list);
if (!w)
return;
switch (w->type) {
case BINDER_WORK_TRANSACTION: {
struct binder_transaction *t;
t = container_of(w, struct binder_transaction, work);
binder_cleanup_transaction(t, "process died.",
BR_DEAD_REPLY);
} break;
case BINDER_WORK_RETURN_ERROR: {
struct binder_error *e = container_of(
w, struct binder_error, work);
binder_debug(BINDER_DEBUG_DEAD_TRANSACTION,
"undelivered TRANSACTION_ERROR: %u\n",
e->cmd);
} break;
case BINDER_WORK_TRANSACTION_COMPLETE: {
binder_debug(BINDER_DEBUG_DEAD_TRANSACTION,
"undelivered TRANSACTION_COMPLETE\n");
kfree(w);
binder_stats_deleted(BINDER_STAT_TRANSACTION_COMPLETE);
} break;
case BINDER_WORK_DEAD_BINDER_AND_CLEAR:
case BINDER_WORK_CLEAR_DEATH_NOTIFICATION: {
struct binder_ref_death *death;
death = container_of(w, struct binder_ref_death, work);
binder_debug(BINDER_DEBUG_DEAD_TRANSACTION,
"undelivered death notification, %016llx\n",
(u64)death->cookie);
kfree(death);
binder_stats_deleted(BINDER_STAT_DEATH);
} break;
default:
pr_err("unexpected work type, %d, not freed\n",
w->type);
break;
}
}
}
static struct binder_thread *binder_get_thread_ilocked(
struct binder_proc *proc, struct binder_thread *new_thread)
{
struct binder_thread *thread = NULL;
struct rb_node *parent = NULL;
struct rb_node **p = &proc->threads.rb_node;
while (*p) {
parent = *p;
thread = rb_entry(parent, struct binder_thread, rb_node);
if (current->pid < thread->pid)
p = &(*p)->rb_left;
else if (current->pid > thread->pid)
p = &(*p)->rb_right;
else
return thread;
}
if (!new_thread)
return NULL;
thread = new_thread;
binder_stats_created(BINDER_STAT_THREAD);
thread->proc = proc;
thread->pid = current->pid;
atomic_set(&thread->tmp_ref, 0);
init_waitqueue_head(&thread->wait);
INIT_LIST_HEAD(&thread->todo);
rb_link_node(&thread->rb_node, parent, p);
rb_insert_color(&thread->rb_node, &proc->threads);
thread->looper_need_return = true;
thread->return_error.work.type = BINDER_WORK_RETURN_ERROR;
thread->return_error.cmd = BR_OK;
thread->reply_error.work.type = BINDER_WORK_RETURN_ERROR;
thread->reply_error.cmd = BR_OK;
INIT_LIST_HEAD(&new_thread->waiting_thread_node);
return thread;
}
static struct binder_thread *binder_get_thread(struct binder_proc *proc)
{
struct binder_thread *thread;
struct binder_thread *new_thread;
binder_inner_proc_lock(proc);
thread = binder_get_thread_ilocked(proc, NULL);
binder_inner_proc_unlock(proc);
if (!thread) {
new_thread = kzalloc(sizeof(*thread), GFP_KERNEL);
if (new_thread == NULL)
return NULL;
binder_inner_proc_lock(proc);
thread = binder_get_thread_ilocked(proc, new_thread);
binder_inner_proc_unlock(proc);
if (thread != new_thread)
kfree(new_thread);
}
return thread;
}
static void binder_free_proc(struct binder_proc *proc)
{
BUG_ON(!list_empty(&proc->todo));
BUG_ON(!list_empty(&proc->delivered_death));
binder_alloc_deferred_release(&proc->alloc);
put_task_struct(proc->tsk);
binder_stats_deleted(BINDER_STAT_PROC);
kfree(proc);
}
static void binder_free_thread(struct binder_thread *thread)
{
BUG_ON(!list_empty(&thread->todo));
binder_stats_deleted(BINDER_STAT_THREAD);
binder_proc_dec_tmpref(thread->proc);
kfree(thread);
}
static int binder_thread_release(struct binder_proc *proc,
struct binder_thread *thread)
{
struct binder_transaction *t;
struct binder_transaction *send_reply = NULL;
int active_transactions = 0;
struct binder_transaction *last_t = NULL;
binder_inner_proc_lock(thread->proc);
/*
* take a ref on the proc so it survives
* after we remove this thread from proc->threads.
* The corresponding dec is when we actually
* free the thread in binder_free_thread()
*/
proc->tmp_ref++;
/*
* take a ref on this thread to ensure it
* survives while we are releasing it
*/
atomic_inc(&thread->tmp_ref);
rb_erase(&thread->rb_node, &proc->threads);
t = thread->transaction_stack;
if (t) {
spin_lock(&t->lock);
if (t->to_thread == thread)
send_reply = t;
} else {
__acquire(&t->lock);
}
thread->is_dead = true;
while (t) {
last_t = t;
active_transactions++;
binder_debug(BINDER_DEBUG_DEAD_TRANSACTION,
"release %d:%d transaction %d %s, still active\n",
proc->pid, thread->pid,
t->debug_id,
(t->to_thread == thread) ? "in" : "out");
if (t->to_thread == thread) {
t->to_proc = NULL;
t->to_thread = NULL;
if (t->buffer) {
t->buffer->transaction = NULL;
t->buffer = NULL;
}
t = t->to_parent;
} else if (t->from == thread) {
t->from = NULL;
t = t->from_parent;
} else
BUG();
spin_unlock(&last_t->lock);
if (t)
spin_lock(&t->lock);
else
__acquire(&t->lock);
}
/* annotation for sparse, lock not acquired in last iteration above */
__release(&t->lock);
/*
* If this thread used poll, make sure we remove the waitqueue
* from any epoll data structures holding it with POLLFREE.
* waitqueue_active() is safe to use here because we're holding
* the inner lock.
*/
if ((thread->looper & BINDER_LOOPER_STATE_POLL) &&
waitqueue_active(&thread->wait)) {
wake_up_poll(&thread->wait, EPOLLHUP | POLLFREE);
}
binder_inner_proc_unlock(thread->proc);
/*
* This is needed to avoid races between wake_up_poll() above and
* and ep_remove_waitqueue() called for other reasons (eg the epoll file
* descriptor being closed); ep_remove_waitqueue() holds an RCU read
* lock, so we can be sure it's done after calling synchronize_rcu().
*/
if (thread->looper & BINDER_LOOPER_STATE_POLL)
synchronize_rcu();
if (send_reply)
binder_send_failed_reply(send_reply, BR_DEAD_REPLY);
binder_release_work(proc, &thread->todo);
binder_thread_dec_tmpref(thread);
return active_transactions;
}
static __poll_t binder_poll(struct file *filp,
struct poll_table_struct *wait)
{
struct binder_proc *proc = filp->private_data;
struct binder_thread *thread = NULL;
bool wait_for_proc_work;
thread = binder_get_thread(proc);
if (!thread)
return POLLERR;
binder_inner_proc_lock(thread->proc);
thread->looper |= BINDER_LOOPER_STATE_POLL;
wait_for_proc_work = binder_available_for_proc_work_ilocked(thread);
binder_inner_proc_unlock(thread->proc);
poll_wait(filp, &thread->wait, wait);
if (binder_has_work(thread, wait_for_proc_work))
return EPOLLIN;
return 0;
}
static int binder_ioctl_write_read(struct file *filp,
unsigned int cmd, unsigned long arg,
struct binder_thread *thread)
{
int ret = 0;
struct binder_proc *proc = filp->private_data;
unsigned int size = _IOC_SIZE(cmd);
void __user *ubuf = (void __user *)arg;
struct binder_write_read bwr;
if (size != sizeof(struct binder_write_read)) {
ret = -EINVAL;
goto out;
}
if (copy_from_user(&bwr, ubuf, sizeof(bwr))) {
ret = -EFAULT;
goto out;
}
binder_debug(BINDER_DEBUG_READ_WRITE,
"%d:%d write %lld at %016llx, read %lld at %016llx\n",
proc->pid, thread->pid,
(u64)bwr.write_size, (u64)bwr.write_buffer,
(u64)bwr.read_size, (u64)bwr.read_buffer);
if (bwr.write_size > 0) {
ret = binder_thread_write(proc, thread,
bwr.write_buffer,
bwr.write_size,
&bwr.write_consumed);
trace_binder_write_done(ret);
if (ret < 0) {
bwr.read_consumed = 0;
if (copy_to_user(ubuf, &bwr, sizeof(bwr)))
ret = -EFAULT;
goto out;
}
}
if (bwr.read_size > 0) {
ret = binder_thread_read(proc, thread, bwr.read_buffer,
bwr.read_size,
&bwr.read_consumed,
filp->f_flags & O_NONBLOCK);
trace_binder_read_done(ret);
binder_inner_proc_lock(proc);
if (!binder_worklist_empty_ilocked(&proc->todo))
binder_wakeup_proc_ilocked(proc);
binder_inner_proc_unlock(proc);
if (ret < 0) {
if (copy_to_user(ubuf, &bwr, sizeof(bwr)))
ret = -EFAULT;
goto out;
}
}
binder_debug(BINDER_DEBUG_READ_WRITE,
"%d:%d wrote %lld of %lld, read return %lld of %lld\n",
proc->pid, thread->pid,
(u64)bwr.write_consumed, (u64)bwr.write_size,
(u64)bwr.read_consumed, (u64)bwr.read_size);
if (copy_to_user(ubuf, &bwr, sizeof(bwr))) {
ret = -EFAULT;
goto out;
}
out:
return ret;
}
static int binder_ioctl_set_ctx_mgr(struct file *filp)
{
int ret = 0;
struct binder_proc *proc = filp->private_data;
struct binder_context *context = proc->context;
struct binder_node *new_node;
kuid_t curr_euid = current_euid();
mutex_lock(&context->context_mgr_node_lock);
if (context->binder_context_mgr_node) {
pr_err("BINDER_SET_CONTEXT_MGR already set\n");
ret = -EBUSY;
goto out;
}
ret = security_binder_set_context_mgr(proc->tsk);
if (ret < 0)
goto out;
if (uid_valid(context->binder_context_mgr_uid)) {
if (!uid_eq(context->binder_context_mgr_uid, curr_euid)) {
pr_err("BINDER_SET_CONTEXT_MGR bad uid %d != %d\n",
from_kuid(&init_user_ns, curr_euid),
from_kuid(&init_user_ns,
context->binder_context_mgr_uid));
ret = -EPERM;
goto out;
}
} else {
context->binder_context_mgr_uid = curr_euid;
}
new_node = binder_new_node(proc, NULL);
if (!new_node) {
ret = -ENOMEM;
goto out;
}
binder_node_lock(new_node);
new_node->local_weak_refs++;
new_node->local_strong_refs++;
new_node->has_strong_ref = 1;
new_node->has_weak_ref = 1;
context->binder_context_mgr_node = new_node;
binder_node_unlock(new_node);
binder_put_node(new_node);
out:
mutex_unlock(&context->context_mgr_node_lock);
return ret;
}
static int binder_ioctl_get_node_info_for_ref(struct binder_proc *proc,
struct binder_node_info_for_ref *info)
{
struct binder_node *node;
struct binder_context *context = proc->context;
__u32 handle = info->handle;
if (info->strong_count || info->weak_count || info->reserved1 ||
info->reserved2 || info->reserved3) {
binder_user_error("%d BINDER_GET_NODE_INFO_FOR_REF: only handle may be non-zero.",
proc->pid);
return -EINVAL;
}
/* This ioctl may only be used by the context manager */
mutex_lock(&context->context_mgr_node_lock);
if (!context->binder_context_mgr_node ||
context->binder_context_mgr_node->proc != proc) {
mutex_unlock(&context->context_mgr_node_lock);
return -EPERM;
}
mutex_unlock(&context->context_mgr_node_lock);
node = binder_get_node_from_ref(proc, handle, true, NULL);
if (!node)
return -EINVAL;
info->strong_count = node->local_strong_refs +
node->internal_strong_refs;
info->weak_count = node->local_weak_refs;
binder_put_node(node);
return 0;
}
static int binder_ioctl_get_node_debug_info(struct binder_proc *proc,
struct binder_node_debug_info *info)
{
struct rb_node *n;
binder_uintptr_t ptr = info->ptr;
memset(info, 0, sizeof(*info));
binder_inner_proc_lock(proc);
for (n = rb_first(&proc->nodes); n != NULL; n = rb_next(n)) {
struct binder_node *node = rb_entry(n, struct binder_node,
rb_node);
if (node->ptr > ptr) {
info->ptr = node->ptr;
info->cookie = node->cookie;
info->has_strong_ref = node->has_strong_ref;
info->has_weak_ref = node->has_weak_ref;
break;
}
}
binder_inner_proc_unlock(proc);
return 0;
}
static long binder_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
{
int ret;
struct binder_proc *proc = filp->private_data;
struct binder_thread *thread;
unsigned int size = _IOC_SIZE(cmd);
void __user *ubuf = (void __user *)arg;
/*pr_info("binder_ioctl: %d:%d %x %lx\n",
proc->pid, current->pid, cmd, arg);*/
binder_selftest_alloc(&proc->alloc);
trace_binder_ioctl(cmd, arg);
ret = wait_event_interruptible(binder_user_error_wait, binder_stop_on_user_error < 2);
if (ret)
goto err_unlocked;
thread = binder_get_thread(proc);
if (thread == NULL) {
ret = -ENOMEM;
goto err;
}
switch (cmd) {
case BINDER_WRITE_READ:
ret = binder_ioctl_write_read(filp, cmd, arg, thread);
if (ret)
goto err;
break;
case BINDER_SET_MAX_THREADS: {
int max_threads;
if (copy_from_user(&max_threads, ubuf,
sizeof(max_threads))) {
ret = -EINVAL;
goto err;
}
binder_inner_proc_lock(proc);
proc->max_threads = max_threads;
binder_inner_proc_unlock(proc);
break;
}
case BINDER_SET_CONTEXT_MGR:
ret = binder_ioctl_set_ctx_mgr(filp);
if (ret)
goto err;
break;
case BINDER_THREAD_EXIT:
binder_debug(BINDER_DEBUG_THREADS, "%d:%d exit\n",
proc->pid, thread->pid);
binder_thread_release(proc, thread);
thread = NULL;
break;
case BINDER_VERSION: {
struct binder_version __user *ver = ubuf;
if (size != sizeof(struct binder_version)) {
ret = -EINVAL;
goto err;
}
if (put_user(BINDER_CURRENT_PROTOCOL_VERSION,
&ver->protocol_version)) {
ret = -EINVAL;
goto err;
}
break;
}
case BINDER_GET_NODE_INFO_FOR_REF: {
struct binder_node_info_for_ref info;
if (copy_from_user(&info, ubuf, sizeof(info))) {
ret = -EFAULT;
goto err;
}
ret = binder_ioctl_get_node_info_for_ref(proc, &info);
if (ret < 0)
goto err;
if (copy_to_user(ubuf, &info, sizeof(info))) {
ret = -EFAULT;
goto err;
}
break;
}
case BINDER_GET_NODE_DEBUG_INFO: {
struct binder_node_debug_info info;
if (copy_from_user(&info, ubuf, sizeof(info))) {
ret = -EFAULT;
goto err;
}
ret = binder_ioctl_get_node_debug_info(proc, &info);
if (ret < 0)
goto err;
if (copy_to_user(ubuf, &info, sizeof(info))) {
ret = -EFAULT;
goto err;
}
break;
}
default:
ret = -EINVAL;
goto err;
}
ret = 0;
err:
if (thread)
thread->looper_need_return = false;
wait_event_interruptible(binder_user_error_wait, binder_stop_on_user_error < 2);
if (ret && ret != -ERESTARTSYS)
pr_info("%d:%d ioctl %x %lx returned %d\n", proc->pid, current->pid, cmd, arg, ret);
err_unlocked:
trace_binder_ioctl_done(ret);
return ret;
}
static void binder_vma_open(struct vm_area_struct *vma)
{
struct binder_proc *proc = vma->vm_private_data;
binder_debug(BINDER_DEBUG_OPEN_CLOSE,
"%d open vm area %lx-%lx (%ld K) vma %lx pagep %lx\n",
proc->pid, vma->vm_start, vma->vm_end,
(vma->vm_end - vma->vm_start) / SZ_1K, vma->vm_flags,
(unsigned long)pgprot_val(vma->vm_page_prot));
}
static void binder_vma_close(struct vm_area_struct *vma)
{
struct binder_proc *proc = vma->vm_private_data;
binder_debug(BINDER_DEBUG_OPEN_CLOSE,
"%d close vm area %lx-%lx (%ld K) vma %lx pagep %lx\n",
proc->pid, vma->vm_start, vma->vm_end,
(vma->vm_end - vma->vm_start) / SZ_1K, vma->vm_flags,
(unsigned long)pgprot_val(vma->vm_page_prot));
binder_alloc_vma_close(&proc->alloc);
}
static vm_fault_t binder_vm_fault(struct vm_fault *vmf)
{
return VM_FAULT_SIGBUS;
}
static const struct vm_operations_struct binder_vm_ops = {
.open = binder_vma_open,
.close = binder_vma_close,
.fault = binder_vm_fault,
};
static int binder_mmap(struct file *filp, struct vm_area_struct *vma)
{
int ret;
struct binder_proc *proc = filp->private_data;
const char *failure_string;
if (proc->tsk != current->group_leader)
return -EINVAL;
if ((vma->vm_end - vma->vm_start) > SZ_4M)
vma->vm_end = vma->vm_start + SZ_4M;
binder_debug(BINDER_DEBUG_OPEN_CLOSE,
"%s: %d %lx-%lx (%ld K) vma %lx pagep %lx\n",
__func__, proc->pid, vma->vm_start, vma->vm_end,
(vma->vm_end - vma->vm_start) / SZ_1K, vma->vm_flags,
(unsigned long)pgprot_val(vma->vm_page_prot));
if (vma->vm_flags & FORBIDDEN_MMAP_FLAGS) {
ret = -EPERM;
failure_string = "bad vm_flags";
goto err_bad_arg;
}
vma->vm_flags |= VM_DONTCOPY | VM_MIXEDMAP;
vma->vm_flags &= ~VM_MAYWRITE;
vma->vm_ops = &binder_vm_ops;
vma->vm_private_data = proc;
ret = binder_alloc_mmap_handler(&proc->alloc, vma);
if (ret)
return ret;
return 0;
err_bad_arg:
pr_err("%s: %d %lx-%lx %s failed %d\n", __func__,
proc->pid, vma->vm_start, vma->vm_end, failure_string, ret);
return ret;
}
static int binder_open(struct inode *nodp, struct file *filp)
{
struct binder_proc *proc;
struct binder_device *binder_dev;
binder_debug(BINDER_DEBUG_OPEN_CLOSE, "%s: %d:%d\n", __func__,
current->group_leader->pid, current->pid);
proc = kzalloc(sizeof(*proc), GFP_KERNEL);
if (proc == NULL)
return -ENOMEM;
spin_lock_init(&proc->inner_lock);
spin_lock_init(&proc->outer_lock);
get_task_struct(current->group_leader);
proc->tsk = current->group_leader;
INIT_LIST_HEAD(&proc->todo);
proc->default_priority = task_nice(current);
/* binderfs stashes devices in i_private */
if (is_binderfs_device(nodp))
binder_dev = nodp->i_private;
else
binder_dev = container_of(filp->private_data,
struct binder_device, miscdev);
proc->context = &binder_dev->context;
binder_alloc_init(&proc->alloc);
binder_stats_created(BINDER_STAT_PROC);
proc->pid = current->group_leader->pid;
INIT_LIST_HEAD(&proc->delivered_death);
INIT_LIST_HEAD(&proc->waiting_threads);
filp->private_data = proc;
mutex_lock(&binder_procs_lock);
hlist_add_head(&proc->proc_node, &binder_procs);
mutex_unlock(&binder_procs_lock);
if (binder_debugfs_dir_entry_proc) {
char strbuf[11];
snprintf(strbuf, sizeof(strbuf), "%u", proc->pid);
/*
* proc debug entries are shared between contexts, so
* this will fail if the process tries to open the driver
* again with a different context. The priting code will
* anyway print all contexts that a given PID has, so this
* is not a problem.
*/
proc->debugfs_entry = debugfs_create_file(strbuf, 0444,
binder_debugfs_dir_entry_proc,
(void *)(unsigned long)proc->pid,
&proc_fops);
}
return 0;
}
static int binder_flush(struct file *filp, fl_owner_t id)
{
struct binder_proc *proc = filp->private_data;
binder_defer_work(proc, BINDER_DEFERRED_FLUSH);
return 0;
}
static void binder_deferred_flush(struct binder_proc *proc)
{
struct rb_node *n;
int wake_count = 0;
binder_inner_proc_lock(proc);
for (n = rb_first(&proc->threads); n != NULL; n = rb_next(n)) {
struct binder_thread *thread = rb_entry(n, struct binder_thread, rb_node);
thread->looper_need_return = true;
if (thread->looper & BINDER_LOOPER_STATE_WAITING) {
wake_up_interruptible(&thread->wait);
wake_count++;
}
}
binder_inner_proc_unlock(proc);
binder_debug(BINDER_DEBUG_OPEN_CLOSE,
"binder_flush: %d woke %d threads\n", proc->pid,
wake_count);
}
static int binder_release(struct inode *nodp, struct file *filp)
{
struct binder_proc *proc = filp->private_data;
debugfs_remove(proc->debugfs_entry);
binder_defer_work(proc, BINDER_DEFERRED_RELEASE);
return 0;
}
static int binder_node_release(struct binder_node *node, int refs)
{
struct binder_ref *ref;
int death = 0;
struct binder_proc *proc = node->proc;
binder_release_work(proc, &node->async_todo);
binder_node_lock(node);
binder_inner_proc_lock(proc);
binder_dequeue_work_ilocked(&node->work);
/*
* The caller must have taken a temporary ref on the node,
*/
BUG_ON(!node->tmp_refs);
if (hlist_empty(&node->refs) && node->tmp_refs == 1) {
binder_inner_proc_unlock(proc);
binder_node_unlock(node);
binder_free_node(node);
return refs;
}
node->proc = NULL;
node->local_strong_refs = 0;
node->local_weak_refs = 0;
binder_inner_proc_unlock(proc);
spin_lock(&binder_dead_nodes_lock);
hlist_add_head(&node->dead_node, &binder_dead_nodes);
spin_unlock(&binder_dead_nodes_lock);
hlist_for_each_entry(ref, &node->refs, node_entry) {
refs++;
/*
* Need the node lock to synchronize
* with new notification requests and the
* inner lock to synchronize with queued
* death notifications.
*/
binder_inner_proc_lock(ref->proc);
if (!ref->death) {
binder_inner_proc_unlock(ref->proc);
continue;
}
death++;
BUG_ON(!list_empty(&ref->death->work.entry));
ref->death->work.type = BINDER_WORK_DEAD_BINDER;
binder_enqueue_work_ilocked(&ref->death->work,
&ref->proc->todo);
binder_wakeup_proc_ilocked(ref->proc);
binder_inner_proc_unlock(ref->proc);
}
binder_debug(BINDER_DEBUG_DEAD_BINDER,
"node %d now dead, refs %d, death %d\n",
node->debug_id, refs, death);
binder_node_unlock(node);
binder_put_node(node);
return refs;
}
static void binder_deferred_release(struct binder_proc *proc)
{
struct binder_context *context = proc->context;
struct rb_node *n;
int threads, nodes, incoming_refs, outgoing_refs, active_transactions;
mutex_lock(&binder_procs_lock);
hlist_del(&proc->proc_node);
mutex_unlock(&binder_procs_lock);
mutex_lock(&context->context_mgr_node_lock);
if (context->binder_context_mgr_node &&
context->binder_context_mgr_node->proc == proc) {
binder_debug(BINDER_DEBUG_DEAD_BINDER,
"%s: %d context_mgr_node gone\n",
__func__, proc->pid);
context->binder_context_mgr_node = NULL;
}
mutex_unlock(&context->context_mgr_node_lock);
binder_inner_proc_lock(proc);
/*
* Make sure proc stays alive after we
* remove all the threads
*/
proc->tmp_ref++;
proc->is_dead = true;
threads = 0;
active_transactions = 0;
while ((n = rb_first(&proc->threads))) {
struct binder_thread *thread;
thread = rb_entry(n, struct binder_thread, rb_node);
binder_inner_proc_unlock(proc);
threads++;
active_transactions += binder_thread_release(proc, thread);
binder_inner_proc_lock(proc);
}
nodes = 0;
incoming_refs = 0;
while ((n = rb_first(&proc->nodes))) {
struct binder_node *node;
node = rb_entry(n, struct binder_node, rb_node);
nodes++;
/*
* take a temporary ref on the node before
* calling binder_node_release() which will either
* kfree() the node or call binder_put_node()
*/
binder_inc_node_tmpref_ilocked(node);
rb_erase(&node->rb_node, &proc->nodes);
binder_inner_proc_unlock(proc);
incoming_refs = binder_node_release(node, incoming_refs);
binder_inner_proc_lock(proc);
}
binder_inner_proc_unlock(proc);
outgoing_refs = 0;
binder_proc_lock(proc);
while ((n = rb_first(&proc->refs_by_desc))) {
struct binder_ref *ref;
ref = rb_entry(n, struct binder_ref, rb_node_desc);
outgoing_refs++;
binder_cleanup_ref_olocked(ref);
binder_proc_unlock(proc);
binder_free_ref(ref);
binder_proc_lock(proc);
}
binder_proc_unlock(proc);
binder_release_work(proc, &proc->todo);
binder_release_work(proc, &proc->delivered_death);
binder_debug(BINDER_DEBUG_OPEN_CLOSE,
"%s: %d threads %d, nodes %d (ref %d), refs %d, active transactions %d\n",
__func__, proc->pid, threads, nodes, incoming_refs,
outgoing_refs, active_transactions);
binder_proc_dec_tmpref(proc);
}
static void binder_deferred_func(struct work_struct *work)
{
struct binder_proc *proc;
int defer;
do {
mutex_lock(&binder_deferred_lock);
if (!hlist_empty(&binder_deferred_list)) {
proc = hlist_entry(binder_deferred_list.first,
struct binder_proc, deferred_work_node);
hlist_del_init(&proc->deferred_work_node);
defer = proc->deferred_work;
proc->deferred_work = 0;
} else {
proc = NULL;
defer = 0;
}
mutex_unlock(&binder_deferred_lock);
if (defer & BINDER_DEFERRED_FLUSH)
binder_deferred_flush(proc);
if (defer & BINDER_DEFERRED_RELEASE)
binder_deferred_release(proc); /* frees proc */
} while (proc);
}
static DECLARE_WORK(binder_deferred_work, binder_deferred_func);
static void
binder_defer_work(struct binder_proc *proc, enum binder_deferred_state defer)
{
mutex_lock(&binder_deferred_lock);
proc->deferred_work |= defer;
if (hlist_unhashed(&proc->deferred_work_node)) {
hlist_add_head(&proc->deferred_work_node,
&binder_deferred_list);
schedule_work(&binder_deferred_work);
}
mutex_unlock(&binder_deferred_lock);
}
static void print_binder_transaction_ilocked(struct seq_file *m,
struct binder_proc *proc,
const char *prefix,
struct binder_transaction *t)
{
struct binder_proc *to_proc;
struct binder_buffer *buffer = t->buffer;
spin_lock(&t->lock);
to_proc = t->to_proc;
seq_printf(m,
"%s %d: %pK from %d:%d to %d:%d code %x flags %x pri %ld r%d",
prefix, t->debug_id, t,
t->from ? t->from->proc->pid : 0,
t->from ? t->from->pid : 0,
to_proc ? to_proc->pid : 0,
t->to_thread ? t->to_thread->pid : 0,
t->code, t->flags, t->priority, t->need_reply);
spin_unlock(&t->lock);
if (proc != to_proc) {
/*
* Can only safely deref buffer if we are holding the
* correct proc inner lock for this node
*/
seq_puts(m, "\n");
return;
}
if (buffer == NULL) {
seq_puts(m, " buffer free\n");
return;
}
if (buffer->target_node)
seq_printf(m, " node %d", buffer->target_node->debug_id);
seq_printf(m, " size %zd:%zd data %pK\n",
buffer->data_size, buffer->offsets_size,
buffer->data);
}
static void print_binder_work_ilocked(struct seq_file *m,
struct binder_proc *proc,
const char *prefix,
const char *transaction_prefix,
struct binder_work *w)
{
struct binder_node *node;
struct binder_transaction *t;
switch (w->type) {
case BINDER_WORK_TRANSACTION:
t = container_of(w, struct binder_transaction, work);
print_binder_transaction_ilocked(
m, proc, transaction_prefix, t);
break;
case BINDER_WORK_RETURN_ERROR: {
struct binder_error *e = container_of(
w, struct binder_error, work);
seq_printf(m, "%stransaction error: %u\n",
prefix, e->cmd);
} break;
case BINDER_WORK_TRANSACTION_COMPLETE:
seq_printf(m, "%stransaction complete\n", prefix);
break;
case BINDER_WORK_NODE:
node = container_of(w, struct binder_node, work);
seq_printf(m, "%snode work %d: u%016llx c%016llx\n",
prefix, node->debug_id,
(u64)node->ptr, (u64)node->cookie);
break;
case BINDER_WORK_DEAD_BINDER:
seq_printf(m, "%shas dead binder\n", prefix);
break;
case BINDER_WORK_DEAD_BINDER_AND_CLEAR:
seq_printf(m, "%shas cleared dead binder\n", prefix);
break;
case BINDER_WORK_CLEAR_DEATH_NOTIFICATION:
seq_printf(m, "%shas cleared death notification\n", prefix);
break;
default:
seq_printf(m, "%sunknown work: type %d\n", prefix, w->type);
break;
}
}
static void print_binder_thread_ilocked(struct seq_file *m,
struct binder_thread *thread,
int print_always)
{
struct binder_transaction *t;
struct binder_work *w;
size_t start_pos = m->count;
size_t header_pos;
seq_printf(m, " thread %d: l %02x need_return %d tr %d\n",
thread->pid, thread->looper,
thread->looper_need_return,
atomic_read(&thread->tmp_ref));
header_pos = m->count;
t = thread->transaction_stack;
while (t) {
if (t->from == thread) {
print_binder_transaction_ilocked(m, thread->proc,
" outgoing transaction", t);
t = t->from_parent;
} else if (t->to_thread == thread) {
print_binder_transaction_ilocked(m, thread->proc,
" incoming transaction", t);
t = t->to_parent;
} else {
print_binder_transaction_ilocked(m, thread->proc,
" bad transaction", t);
t = NULL;
}
}
list_for_each_entry(w, &thread->todo, entry) {
print_binder_work_ilocked(m, thread->proc, " ",
" pending transaction", w);
}
if (!print_always && m->count == header_pos)
m->count = start_pos;
}
static void print_binder_node_nilocked(struct seq_file *m,
struct binder_node *node)
{
struct binder_ref *ref;
struct binder_work *w;
int count;
count = 0;
hlist_for_each_entry(ref, &node->refs, node_entry)
count++;
seq_printf(m, " node %d: u%016llx c%016llx hs %d hw %d ls %d lw %d is %d iw %d tr %d",
node->debug_id, (u64)node->ptr, (u64)node->cookie,
node->has_strong_ref, node->has_weak_ref,
node->local_strong_refs, node->local_weak_refs,
node->internal_strong_refs, count, node->tmp_refs);
if (count) {
seq_puts(m, " proc");
hlist_for_each_entry(ref, &node->refs, node_entry)
seq_printf(m, " %d", ref->proc->pid);
}
seq_puts(m, "\n");
if (node->proc) {
list_for_each_entry(w, &node->async_todo, entry)
print_binder_work_ilocked(m, node->proc, " ",
" pending async transaction", w);
}
}
static void print_binder_ref_olocked(struct seq_file *m,
struct binder_ref *ref)
{
binder_node_lock(ref->node);
seq_printf(m, " ref %d: desc %d %snode %d s %d w %d d %pK\n",
ref->data.debug_id, ref->data.desc,
ref->node->proc ? "" : "dead ",
ref->node->debug_id, ref->data.strong,
ref->data.weak, ref->death);
binder_node_unlock(ref->node);
}
static void print_binder_proc(struct seq_file *m,
struct binder_proc *proc, int print_all)
{
struct binder_work *w;
struct rb_node *n;
size_t start_pos = m->count;
size_t header_pos;
struct binder_node *last_node = NULL;
seq_printf(m, "proc %d\n", proc->pid);
seq_printf(m, "context %s\n", proc->context->name);
header_pos = m->count;
binder_inner_proc_lock(proc);
for (n = rb_first(&proc->threads); n != NULL; n = rb_next(n))
print_binder_thread_ilocked(m, rb_entry(n, struct binder_thread,
rb_node), print_all);
for (n = rb_first(&proc->nodes); n != NULL; n = rb_next(n)) {
struct binder_node *node = rb_entry(n, struct binder_node,
rb_node);
if (!print_all && !node->has_async_transaction)
continue;
/*
* take a temporary reference on the node so it
* survives and isn't removed from the tree
* while we print it.
*/
binder_inc_node_tmpref_ilocked(node);
/* Need to drop inner lock to take node lock */
binder_inner_proc_unlock(proc);
if (last_node)
binder_put_node(last_node);
binder_node_inner_lock(node);
print_binder_node_nilocked(m, node);
binder_node_inner_unlock(node);
last_node = node;
binder_inner_proc_lock(proc);
}
binder_inner_proc_unlock(proc);
if (last_node)
binder_put_node(last_node);
if (print_all) {
binder_proc_lock(proc);
for (n = rb_first(&proc->refs_by_desc);
n != NULL;
n = rb_next(n))
print_binder_ref_olocked(m, rb_entry(n,
struct binder_ref,
rb_node_desc));
binder_proc_unlock(proc);
}
binder_alloc_print_allocated(m, &proc->alloc);
binder_inner_proc_lock(proc);
list_for_each_entry(w, &proc->todo, entry)
print_binder_work_ilocked(m, proc, " ",
" pending transaction", w);
list_for_each_entry(w, &proc->delivered_death, entry) {
seq_puts(m, " has delivered dead binder\n");
break;
}
binder_inner_proc_unlock(proc);
if (!print_all && m->count == header_pos)
m->count = start_pos;
}
static const char * const binder_return_strings[] = {
"BR_ERROR",
"BR_OK",
"BR_TRANSACTION",
"BR_REPLY",
"BR_ACQUIRE_RESULT",
"BR_DEAD_REPLY",
"BR_TRANSACTION_COMPLETE",
"BR_INCREFS",
"BR_ACQUIRE",
"BR_RELEASE",
"BR_DECREFS",
"BR_ATTEMPT_ACQUIRE",
"BR_NOOP",
"BR_SPAWN_LOOPER",
"BR_FINISHED",
"BR_DEAD_BINDER",
"BR_CLEAR_DEATH_NOTIFICATION_DONE",
"BR_FAILED_REPLY"
};
static const char * const binder_command_strings[] = {
"BC_TRANSACTION",
"BC_REPLY",
"BC_ACQUIRE_RESULT",
"BC_FREE_BUFFER",
"BC_INCREFS",
"BC_ACQUIRE",
"BC_RELEASE",
"BC_DECREFS",
"BC_INCREFS_DONE",
"BC_ACQUIRE_DONE",
"BC_ATTEMPT_ACQUIRE",
"BC_REGISTER_LOOPER",
"BC_ENTER_LOOPER",
"BC_EXIT_LOOPER",
"BC_REQUEST_DEATH_NOTIFICATION",
"BC_CLEAR_DEATH_NOTIFICATION",
"BC_DEAD_BINDER_DONE",
"BC_TRANSACTION_SG",
"BC_REPLY_SG",
};
static const char * const binder_objstat_strings[] = {
"proc",
"thread",
"node",
"ref",
"death",
"transaction",
"transaction_complete"
};
static void print_binder_stats(struct seq_file *m, const char *prefix,
struct binder_stats *stats)
{
int i;
BUILD_BUG_ON(ARRAY_SIZE(stats->bc) !=
ARRAY_SIZE(binder_command_strings));
for (i = 0; i < ARRAY_SIZE(stats->bc); i++) {
int temp = atomic_read(&stats->bc[i]);
if (temp)
seq_printf(m, "%s%s: %d\n", prefix,
binder_command_strings[i], temp);
}
BUILD_BUG_ON(ARRAY_SIZE(stats->br) !=
ARRAY_SIZE(binder_return_strings));
for (i = 0; i < ARRAY_SIZE(stats->br); i++) {
int temp = atomic_read(&stats->br[i]);
if (temp)
seq_printf(m, "%s%s: %d\n", prefix,
binder_return_strings[i], temp);
}
BUILD_BUG_ON(ARRAY_SIZE(stats->obj_created) !=
ARRAY_SIZE(binder_objstat_strings));
BUILD_BUG_ON(ARRAY_SIZE(stats->obj_created) !=
ARRAY_SIZE(stats->obj_deleted));
for (i = 0; i < ARRAY_SIZE(stats->obj_created); i++) {
int created = atomic_read(&stats->obj_created[i]);
int deleted = atomic_read(&stats->obj_deleted[i]);
if (created || deleted)
seq_printf(m, "%s%s: active %d total %d\n",
prefix,
binder_objstat_strings[i],
created - deleted,
created);
}
}
static void print_binder_proc_stats(struct seq_file *m,
struct binder_proc *proc)
{
struct binder_work *w;
struct binder_thread *thread;
struct rb_node *n;
int count, strong, weak, ready_threads;
size_t free_async_space =
binder_alloc_get_free_async_space(&proc->alloc);
seq_printf(m, "proc %d\n", proc->pid);
seq_printf(m, "context %s\n", proc->context->name);
count = 0;
ready_threads = 0;
binder_inner_proc_lock(proc);
for (n = rb_first(&proc->threads); n != NULL; n = rb_next(n))
count++;
list_for_each_entry(thread, &proc->waiting_threads, waiting_thread_node)
ready_threads++;
seq_printf(m, " threads: %d\n", count);
seq_printf(m, " requested threads: %d+%d/%d\n"
" ready threads %d\n"
" free async space %zd\n", proc->requested_threads,
proc->requested_threads_started, proc->max_threads,
ready_threads,
free_async_space);
count = 0;
for (n = rb_first(&proc->nodes); n != NULL; n = rb_next(n))
count++;
binder_inner_proc_unlock(proc);
seq_printf(m, " nodes: %d\n", count);
count = 0;
strong = 0;
weak = 0;
binder_proc_lock(proc);
for (n = rb_first(&proc->refs_by_desc); n != NULL; n = rb_next(n)) {
struct binder_ref *ref = rb_entry(n, struct binder_ref,
rb_node_desc);
count++;
strong += ref->data.strong;
weak += ref->data.weak;
}
binder_proc_unlock(proc);
seq_printf(m, " refs: %d s %d w %d\n", count, strong, weak);
count = binder_alloc_get_allocated_count(&proc->alloc);
seq_printf(m, " buffers: %d\n", count);
binder_alloc_print_pages(m, &proc->alloc);
count = 0;
binder_inner_proc_lock(proc);
list_for_each_entry(w, &proc->todo, entry) {
if (w->type == BINDER_WORK_TRANSACTION)
count++;
}
binder_inner_proc_unlock(proc);
seq_printf(m, " pending transactions: %d\n", count);
print_binder_stats(m, " ", &proc->stats);
}
static int state_show(struct seq_file *m, void *unused)
{
struct binder_proc *proc;
struct binder_node *node;
struct binder_node *last_node = NULL;
seq_puts(m, "binder state:\n");
spin_lock(&binder_dead_nodes_lock);
if (!hlist_empty(&binder_dead_nodes))
seq_puts(m, "dead nodes:\n");
hlist_for_each_entry(node, &binder_dead_nodes, dead_node) {
/*
* take a temporary reference on the node so it
* survives and isn't removed from the list
* while we print it.
*/
node->tmp_refs++;
spin_unlock(&binder_dead_nodes_lock);
if (last_node)
binder_put_node(last_node);
binder_node_lock(node);
print_binder_node_nilocked(m, node);
binder_node_unlock(node);
last_node = node;
spin_lock(&binder_dead_nodes_lock);
}
spin_unlock(&binder_dead_nodes_lock);
if (last_node)
binder_put_node(last_node);
mutex_lock(&binder_procs_lock);
hlist_for_each_entry(proc, &binder_procs, proc_node)
print_binder_proc(m, proc, 1);
mutex_unlock(&binder_procs_lock);
return 0;
}
static int stats_show(struct seq_file *m, void *unused)
{
struct binder_proc *proc;
seq_puts(m, "binder stats:\n");
print_binder_stats(m, "", &binder_stats);
mutex_lock(&binder_procs_lock);
hlist_for_each_entry(proc, &binder_procs, proc_node)
print_binder_proc_stats(m, proc);
mutex_unlock(&binder_procs_lock);
return 0;
}
static int transactions_show(struct seq_file *m, void *unused)
{
struct binder_proc *proc;
seq_puts(m, "binder transactions:\n");
mutex_lock(&binder_procs_lock);
hlist_for_each_entry(proc, &binder_procs, proc_node)
print_binder_proc(m, proc, 0);
mutex_unlock(&binder_procs_lock);
return 0;
}
static int proc_show(struct seq_file *m, void *unused)
{
struct binder_proc *itr;
int pid = (unsigned long)m->private;
mutex_lock(&binder_procs_lock);
hlist_for_each_entry(itr, &binder_procs, proc_node) {
if (itr->pid == pid) {
seq_puts(m, "binder proc state:\n");
print_binder_proc(m, itr, 1);
}
}
mutex_unlock(&binder_procs_lock);
return 0;
}
static void print_binder_transaction_log_entry(struct seq_file *m,
struct binder_transaction_log_entry *e)
{
int debug_id = READ_ONCE(e->debug_id_done);
/*
* read barrier to guarantee debug_id_done read before
* we print the log values
*/
smp_rmb();
seq_printf(m,
"%d: %s from %d:%d to %d:%d context %s node %d handle %d size %d:%d ret %d/%d l=%d",
e->debug_id, (e->call_type == 2) ? "reply" :
((e->call_type == 1) ? "async" : "call "), e->from_proc,
e->from_thread, e->to_proc, e->to_thread, e->context_name,
e->to_node, e->target_handle, e->data_size, e->offsets_size,
e->return_error, e->return_error_param,
e->return_error_line);
/*
* read-barrier to guarantee read of debug_id_done after
* done printing the fields of the entry
*/
smp_rmb();
seq_printf(m, debug_id && debug_id == READ_ONCE(e->debug_id_done) ?
"\n" : " (incomplete)\n");
}
static int transaction_log_show(struct seq_file *m, void *unused)
{
struct binder_transaction_log *log = m->private;
unsigned int log_cur = atomic_read(&log->cur);
unsigned int count;
unsigned int cur;
int i;
count = log_cur + 1;
cur = count < ARRAY_SIZE(log->entry) && !log->full ?
0 : count % ARRAY_SIZE(log->entry);
if (count > ARRAY_SIZE(log->entry) || log->full)
count = ARRAY_SIZE(log->entry);
for (i = 0; i < count; i++) {
unsigned int index = cur++ % ARRAY_SIZE(log->entry);
print_binder_transaction_log_entry(m, &log->entry[index]);
}
return 0;
}
const struct file_operations binder_fops = {
.owner = THIS_MODULE,
.poll = binder_poll,
.unlocked_ioctl = binder_ioctl,
.compat_ioctl = binder_ioctl,
.mmap = binder_mmap,
.open = binder_open,
.flush = binder_flush,
.release = binder_release,
};
DEFINE_SHOW_ATTRIBUTE(state);
DEFINE_SHOW_ATTRIBUTE(stats);
DEFINE_SHOW_ATTRIBUTE(transactions);
DEFINE_SHOW_ATTRIBUTE(transaction_log);
static int __init init_binder_device(const char *name)
{
int ret;
struct binder_device *binder_device;
binder_device = kzalloc(sizeof(*binder_device), GFP_KERNEL);
if (!binder_device)
return -ENOMEM;
binder_device->miscdev.fops = &binder_fops;
binder_device->miscdev.minor = MISC_DYNAMIC_MINOR;
binder_device->miscdev.name = name;
binder_device->context.binder_context_mgr_uid = INVALID_UID;
binder_device->context.name = name;
mutex_init(&binder_device->context.context_mgr_node_lock);
ret = misc_register(&binder_device->miscdev);
if (ret < 0) {
kfree(binder_device);
return ret;
}
hlist_add_head(&binder_device->hlist, &binder_devices);
return ret;
}
static int __init binder_init(void)
{
int ret;
char *device_name, *device_tmp;
struct binder_device *device;
struct hlist_node *tmp;
char *device_names = NULL;
ret = binder_alloc_shrinker_init();
if (ret)
return ret;
atomic_set(&binder_transaction_log.cur, ~0U);
atomic_set(&binder_transaction_log_failed.cur, ~0U);
binder_debugfs_dir_entry_root = debugfs_create_dir("binder", NULL);
if (binder_debugfs_dir_entry_root)
binder_debugfs_dir_entry_proc = debugfs_create_dir("proc",
binder_debugfs_dir_entry_root);
if (binder_debugfs_dir_entry_root) {
debugfs_create_file("state",
0444,
binder_debugfs_dir_entry_root,
NULL,
&state_fops);
debugfs_create_file("stats",
0444,
binder_debugfs_dir_entry_root,
NULL,
&stats_fops);
debugfs_create_file("transactions",
0444,
binder_debugfs_dir_entry_root,
NULL,
&transactions_fops);
debugfs_create_file("transaction_log",
0444,
binder_debugfs_dir_entry_root,
&binder_transaction_log,
&transaction_log_fops);
debugfs_create_file("failed_transaction_log",
0444,
binder_debugfs_dir_entry_root,
&binder_transaction_log_failed,
&transaction_log_fops);
}
if (strcmp(binder_devices_param, "") != 0) {
/*
* Copy the module_parameter string, because we don't want to
* tokenize it in-place.
*/
device_names = kstrdup(binder_devices_param, GFP_KERNEL);
if (!device_names) {
ret = -ENOMEM;
goto err_alloc_device_names_failed;
}
device_tmp = device_names;
while ((device_name = strsep(&device_tmp, ","))) {
ret = init_binder_device(device_name);
if (ret)
goto err_init_binder_device_failed;
}
}
ret = init_binderfs();
if (ret)
goto err_init_binder_device_failed;
return ret;
err_init_binder_device_failed:
hlist_for_each_entry_safe(device, tmp, &binder_devices, hlist) {
misc_deregister(&device->miscdev);
hlist_del(&device->hlist);
kfree(device);
}
kfree(device_names);
err_alloc_device_names_failed:
debugfs_remove_recursive(binder_debugfs_dir_entry_root);
return ret;
}
device_initcall(binder_init);
#define CREATE_TRACE_POINTS
#include "binder_trace.h"
MODULE_LICENSE("GPL v2");