d6f4a21f30
When the ioctl interface for the write commands was introduced it did
not mark the core response with UVERBS_ATTR_F_VALID_OUTPUT. This causes
rdma-core in userspace to not mark the buffers as written for valgrind.
Along the same lines it turns out we have always missed marking the driver
data. Fixing both of these makes valgrind work properly with rdma-core and
ioctl.
Fixes: 4785860e04
("RDMA/uverbs: Implement an ioctl that can call write and write_ex handlers")
Signed-off-by: Jason Gunthorpe <jgg@mellanox.com>
Reviewed-by: Artemy Kovalyov <artemyko@mellanox.com>
Signed-off-by: Leon Romanovsky <leonro@mellanox.com>
225 lines
7.8 KiB
C
225 lines
7.8 KiB
C
/*
|
|
* Copyright (c) 2005 Topspin Communications. All rights reserved.
|
|
* Copyright (c) 2005, 2006 Cisco Systems. All rights reserved.
|
|
* Copyright (c) 2005-2017 Mellanox Technologies. All rights reserved.
|
|
* Copyright (c) 2005 Voltaire, Inc. All rights reserved.
|
|
* Copyright (c) 2005 PathScale, Inc. All rights reserved.
|
|
*
|
|
* This software is available to you under a choice of one of two
|
|
* licenses. You may choose to be licensed under the terms of the GNU
|
|
* General Public License (GPL) Version 2, available from the file
|
|
* COPYING in the main directory of this source tree, or the
|
|
* OpenIB.org BSD license below:
|
|
*
|
|
* Redistribution and use in source and binary forms, with or
|
|
* without modification, are permitted provided that the following
|
|
* conditions are met:
|
|
*
|
|
* - Redistributions of source code must retain the above
|
|
* copyright notice, this list of conditions and the following
|
|
* disclaimer.
|
|
*
|
|
* - Redistributions in binary form must reproduce the above
|
|
* copyright notice, this list of conditions and the following
|
|
* disclaimer in the documentation and/or other materials
|
|
* provided with the distribution.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
|
|
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
|
|
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
|
|
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
|
|
* BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
|
|
* ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
|
|
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
|
* SOFTWARE.
|
|
*/
|
|
|
|
#ifndef RDMA_CORE_H
|
|
#define RDMA_CORE_H
|
|
|
|
#include <linux/idr.h>
|
|
#include <rdma/uverbs_types.h>
|
|
#include <rdma/uverbs_ioctl.h>
|
|
#include <rdma/ib_verbs.h>
|
|
#include <linux/mutex.h>
|
|
|
|
struct ib_uverbs_device;
|
|
|
|
void uverbs_destroy_ufile_hw(struct ib_uverbs_file *ufile,
|
|
enum rdma_remove_reason reason);
|
|
|
|
int uobj_destroy(struct ib_uobject *uobj);
|
|
|
|
/*
|
|
* uverbs_uobject_get is called in order to increase the reference count on
|
|
* an uobject. This is useful when a handler wants to keep the uobject's memory
|
|
* alive, regardless if this uobject is still alive in the context's objects
|
|
* repository. Objects are put via uverbs_uobject_put.
|
|
*/
|
|
void uverbs_uobject_get(struct ib_uobject *uobject);
|
|
|
|
/*
|
|
* In order to indicate we no longer needs this uobject, uverbs_uobject_put
|
|
* is called. When the reference count is decreased, the uobject is freed.
|
|
* For example, this is used when attaching a completion channel to a CQ.
|
|
*/
|
|
void uverbs_uobject_put(struct ib_uobject *uobject);
|
|
|
|
/* Indicate this fd is no longer used by this consumer, but its memory isn't
|
|
* necessarily released yet. When the last reference is put, we release the
|
|
* memory. After this call is executed, calling uverbs_uobject_get isn't
|
|
* allowed.
|
|
* This must be called from the release file_operations of the file!
|
|
*/
|
|
void uverbs_close_fd(struct file *f);
|
|
|
|
/*
|
|
* Get an ib_uobject that corresponds to the given id from ufile, assuming
|
|
* the object is from the given type. Lock it to the required access when
|
|
* applicable.
|
|
* This function could create (access == NEW), destroy (access == DESTROY)
|
|
* or unlock (access == READ || access == WRITE) objects if required.
|
|
* The action will be finalized only when uverbs_finalize_object or
|
|
* uverbs_finalize_objects are called.
|
|
*/
|
|
struct ib_uobject *
|
|
uverbs_get_uobject_from_file(u16 object_id,
|
|
struct ib_uverbs_file *ufile,
|
|
enum uverbs_obj_access access, s64 id);
|
|
|
|
/*
|
|
* Note that certain finalize stages could return a status:
|
|
* (a) alloc_commit could return a failure if the object is committed at the
|
|
* same time when the context is destroyed.
|
|
* (b) remove_commit could fail if the object wasn't destroyed successfully.
|
|
* Since multiple objects could be finalized in one transaction, it is very NOT
|
|
* recommended to have several finalize actions which have side effects.
|
|
* For example, it's NOT recommended to have a certain action which has both
|
|
* a commit action and a destroy action or two destroy objects in the same
|
|
* action. The rule of thumb is to have one destroy or commit action with
|
|
* multiple lookups.
|
|
* The first non zero return value of finalize_object is returned from this
|
|
* function. For example, this could happen when we couldn't destroy an
|
|
* object.
|
|
*/
|
|
int uverbs_finalize_object(struct ib_uobject *uobj,
|
|
enum uverbs_obj_access access,
|
|
bool commit);
|
|
|
|
int uverbs_output_written(const struct uverbs_attr_bundle *bundle, size_t idx);
|
|
|
|
void setup_ufile_idr_uobject(struct ib_uverbs_file *ufile);
|
|
void release_ufile_idr_uobject(struct ib_uverbs_file *ufile);
|
|
|
|
/*
|
|
* This is the runtime description of the uverbs API, used by the syscall
|
|
* machinery to validate and dispatch calls.
|
|
*/
|
|
|
|
/*
|
|
* Depending on ID the slot pointer in the radix tree points at one of these
|
|
* structs.
|
|
*/
|
|
|
|
struct uverbs_api_ioctl_method {
|
|
int(__rcu *handler)(struct uverbs_attr_bundle *attrs);
|
|
DECLARE_BITMAP(attr_mandatory, UVERBS_API_ATTR_BKEY_LEN);
|
|
u16 bundle_size;
|
|
u8 use_stack:1;
|
|
u8 driver_method:1;
|
|
u8 disabled:1;
|
|
u8 has_udata:1;
|
|
u8 key_bitmap_len;
|
|
u8 destroy_bkey;
|
|
};
|
|
|
|
struct uverbs_api_write_method {
|
|
int (*handler)(struct uverbs_attr_bundle *attrs);
|
|
u8 disabled:1;
|
|
u8 is_ex:1;
|
|
u8 has_udata:1;
|
|
u8 has_resp:1;
|
|
u8 req_size;
|
|
u8 resp_size;
|
|
};
|
|
|
|
struct uverbs_api_attr {
|
|
struct uverbs_attr_spec spec;
|
|
};
|
|
|
|
struct uverbs_api {
|
|
/* radix tree contains struct uverbs_api_* pointers */
|
|
struct radix_tree_root radix;
|
|
enum rdma_driver_id driver_id;
|
|
|
|
unsigned int num_write;
|
|
unsigned int num_write_ex;
|
|
struct uverbs_api_write_method notsupp_method;
|
|
const struct uverbs_api_write_method **write_methods;
|
|
const struct uverbs_api_write_method **write_ex_methods;
|
|
};
|
|
|
|
/*
|
|
* Get an uverbs_api_object that corresponds to the given object_id.
|
|
* Note:
|
|
* -ENOMSG means that any object is allowed to match during lookup.
|
|
*/
|
|
static inline const struct uverbs_api_object *
|
|
uapi_get_object(struct uverbs_api *uapi, u16 object_id)
|
|
{
|
|
const struct uverbs_api_object *res;
|
|
|
|
if (object_id == UVERBS_IDR_ANY_OBJECT)
|
|
return ERR_PTR(-ENOMSG);
|
|
|
|
res = radix_tree_lookup(&uapi->radix, uapi_key_obj(object_id));
|
|
if (!res)
|
|
return ERR_PTR(-ENOENT);
|
|
|
|
return res;
|
|
}
|
|
|
|
char *uapi_key_format(char *S, unsigned int key);
|
|
struct uverbs_api *uverbs_alloc_api(struct ib_device *ibdev);
|
|
void uverbs_disassociate_api_pre(struct ib_uverbs_device *uverbs_dev);
|
|
void uverbs_disassociate_api(struct uverbs_api *uapi);
|
|
void uverbs_destroy_api(struct uverbs_api *uapi);
|
|
void uapi_compute_bundle_size(struct uverbs_api_ioctl_method *method_elm,
|
|
unsigned int num_attrs);
|
|
void uverbs_user_mmap_disassociate(struct ib_uverbs_file *ufile);
|
|
|
|
extern const struct uapi_definition uverbs_def_obj_counters[];
|
|
extern const struct uapi_definition uverbs_def_obj_cq[];
|
|
extern const struct uapi_definition uverbs_def_obj_device[];
|
|
extern const struct uapi_definition uverbs_def_obj_dm[];
|
|
extern const struct uapi_definition uverbs_def_obj_flow_action[];
|
|
extern const struct uapi_definition uverbs_def_obj_intf[];
|
|
extern const struct uapi_definition uverbs_def_obj_mr[];
|
|
extern const struct uapi_definition uverbs_def_write_intf[];
|
|
|
|
static inline const struct uverbs_api_write_method *
|
|
uapi_get_method(const struct uverbs_api *uapi, u32 command)
|
|
{
|
|
u32 cmd_idx = command & IB_USER_VERBS_CMD_COMMAND_MASK;
|
|
|
|
if (command & ~(u32)(IB_USER_VERBS_CMD_FLAG_EXTENDED |
|
|
IB_USER_VERBS_CMD_COMMAND_MASK))
|
|
return ERR_PTR(-EINVAL);
|
|
|
|
if (command & IB_USER_VERBS_CMD_FLAG_EXTENDED) {
|
|
if (cmd_idx >= uapi->num_write_ex)
|
|
return ERR_PTR(-EOPNOTSUPP);
|
|
return uapi->write_ex_methods[cmd_idx];
|
|
}
|
|
|
|
if (cmd_idx >= uapi->num_write)
|
|
return ERR_PTR(-EOPNOTSUPP);
|
|
return uapi->write_methods[cmd_idx];
|
|
}
|
|
|
|
void uverbs_fill_udata(struct uverbs_attr_bundle *bundle,
|
|
struct ib_udata *udata, unsigned int attr_in,
|
|
unsigned int attr_out);
|
|
|
|
#endif /* RDMA_CORE_H */
|